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5 
Chapter 5 

 

Solution of Non-Newtonian Boundary Layer Flow in a  

Convergent Channel using Homotopy 

Perturbation Method 

5.1 Introduction 

Magnetohydrodynamics electrically conducting non-Newtonian fluid flow in a convergent 

channel has not only theoretical appeal but also serves as a model of numerous biological 

and technical problems, including plasma research, industrial metal casting, nuclear 

reactors, blood flow concerns, etc. Chemical,  aerospace,civil, environmental, mechanical, 

and bio-mechanical engineering are just some of the fields that may benefit from 

understanding the theory behind such flows. 

In 1915, Jeffry [85] developed the mathematical formulations of incompressible 

viscous fluid flow through a convergent or divergent channel. The work of Jeffery has been 

extended by Srivastava [86] to an electrically conducting fluid in the presence of a 

transverse magnetic field. Millsaps and Pohlhausen [87] performed the numerical 

computations of Jeffery-Hamel flows between nonparallel planar barriers. Rosenhead [88] 

presented the solution for two-dimensional incompressible laminar flow in a converging 

channel with an impermeable wall. Terril [89] analysed the sluggish laminar flow in a 

converging or diverging channel with suction at one wall and injection at the other.  
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Falkner and Skan [90] were the first to analyse the two-dimensional laminar boundary 

layer flow of an incompressible, viscous, non-uniform stream past solid obstacles. Phukan 

[91] examined the convergent channel flow of an electrically conducting Newtonian fluid. 

Mahapatra et al. [92] investigated the hydromagnetic laminar flow of a viscous fluid in a 

converging or diverging channel with suction at one wall and equal pressure at the other 

wall. Sanyal and Adhikari [93] studied the two-dimensional laminar MHD boundary layer 

flow past a wedge with slip velocity. Alam and Khan [94] have conducted a comprehensive 

analysis of MHD flow in convergent-divergent channels. 

The MHD convergent channel flow of a viscoelastic electrically conducting fluid with 

slip velocity has been studied by Choudhury and Dey [95]. Hosseini et al. [96] investigated 

the hydromagnetic flow of an incompressible viscous fluid through a convergent or 

divergent channel in the presence of a strong magnetic field. Alam and Khan [97] 

investigated the hydromagnetic effects on mixed convection flow through a diverging 

channel with a circular obstacle. He [98-100] investigated the preliminary work in the 

Homotopy perturbation method (HPM), which inspired a large number of researchers, 

including Ariel et al. [101], Belendez et al. [102], Ganji and Rajabi [103], Siddiqui et al. 

[104], and many others, to use this method to solve nonlinear equations. 

Using the Homotopy Perturbation method, this study aims to examine the two-

dimensional boundary layer flow of a non-Newtonian electrically conducting fluid through 

a convergent channel characterised by Walters liquid (Model B/)   in the presence of a 

transverse magnetic field. J.H. and He [105] investigated the Homotopy Perturbation 

method for bifurcation of a nonlinear problem. With the combination of magnetic and other 

flow parameters involved in the solution, the non-Newtonian effects across the boundary 

layer on the dimensionless velocity component and skin friction coefficient were illustrated 

graphically. 

5.2 Mathematical Formulation 

The fundamental equations for the steady flow of Walters liquid (Model B/) in a two-

dimensional boundary layer in the presence of a transverse magnetic field B(x) are provided 

by. 
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subject to the boundary conditions  

y = 0:  𝑢 = 0  ,   𝑣 = 0;   𝑦 → ∞  ∶    𝑢 = 𝑈(𝑥)                                                                (5.2.3) 

where x-axis coincides with the wall of the convergent channel and y-axis is perpendicular 

to it. U(x) is the main stream velocity, u and v are the flow velocities in the direction of x 

and y respectively, 𝜌 is the fluid density, 𝜈 is the kinematic viscosity, 𝜎 is the electrical 

conductivity of the fluid and 𝑘0 is the visco-elastic parameter.  

                           

                       Fig. 5.1 Physical sketch of the flow in a convergent channel 

It is assumed that the induced magnetic field is negligible compared to imposed one, the 

electric field is zero and the electric field due to polarization of charges is also negligible. 

The velocity of the potential flow along the wall of a convergent channel is given by 

Schlichting [106]:   

𝑈(𝑥) = −
𝑢1

𝑥
                                                                                                                             (5.2.4) 

with 𝑢1 > 0 represents two-dimensional motion in a convergent channel with wall (sink) 

and it leads to similarity solution.  

To obtain similarity solutions we introduce the following change of variables: 

𝜂(𝑥, 𝑦) = 𝑦√−
𝑈(𝑥)

𝑥𝜈
= 𝑦√

𝑢1

𝑥2𝜈
=

𝑦

𝑥
√

𝑢1

𝜈
                                                                          (5.2.5) 

and the stream function 

𝜓(𝑥, 𝑦) = −√𝜈𝑢1 𝐹(𝜂)                                                                                                          (5.2.6) 

Then, we obtain the velocity components as 

𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑈(𝑥)𝐹′(𝜂)                                                                                                              (5.2.7) 
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𝑣 = −
𝜕𝜓

𝜕𝑥
= −

𝜂

𝑥
√𝑢1𝜈 𝐹

′(𝜂)                                                                                                 (5.2.8) 

The equation of continuity (5.2.1) is identically satisfied for the velocity components. 

Similarity solution exists if the magnetic field B(x) has the special form Chiam [107] 

𝐵(𝑥) =
𝐵0

𝑥
                                                                                                                                (5.2.9)  

Using the equations (5.1.4) to (5.1.9), the equation (5.2.2) takes the form as follows: 

𝐹′′′ − 𝐹′2 − 𝑘1[4𝐹
′𝐹′′′ − 2𝐹′′2] + 𝑀(1 − 𝐹′) + 1 = 0                                           (5.2.10)          

where prime indicated the differentiation with respect to 𝜂.  𝑘1 and 𝑀 denote the modified 

non-Newtonian parameter and magnetic parameter respectively. 

The corresponding boundary conditions are 

𝐹′(0) = 0, 𝐹′(∞) = 1       &        𝐹′′(∞) = 0                                                           (5.2.11) 

5.3 Method of Solution 

Now we consider 

 𝑧 = √𝑀𝜂     &     𝑓(𝑧) = √𝑀𝐹(𝜂)                                                                                        (5.3.1) 

Then 

𝑓′(𝑧) = 𝐹′(𝜂), 𝑓′′(𝑧) =
1

√𝑀
𝐹′′(𝜂), 𝑓′′′(𝑧) =

1

𝑀
𝐹′′′(𝜂)                                       (5.3.2) 

Using the equations (5.3.2) in the equation (5.2.10), we get the following differential 

equation 

𝑓′′′ − 𝑘1[4𝑓
′𝑓′′′ − 2𝑓′′2] + (1 − 𝑓′) = 𝜀(𝑓′2 − 1)                                                        (5.3.3) 

where  𝜀 =
1

𝑀
 . 

The modified boundary conditions are   

𝑓′(0) = 0, 𝑓′(∞) = 1       &        𝑓′′(∞) = 0                                                              (5.3.4) 

Using Homotopy perturbation method, equation (2.3.3) is constructed as follows: 

(1 − 𝑝)(𝑓′′′ − 𝑓′) + 𝑝[(𝑓′′′ − 𝑓′) − 𝑘1(4𝑓
′𝑓′′′ − 2𝑓′′2) − 𝜀𝑓′2 + λ]                      (5.3.5) 



 61 

where λ = 1 + 𝜀 

We consider  𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 + ⋯………… , and thus equation (5.3.5) becomes 

(1 − 𝑝)[𝑓0
′′′ + 𝑝𝑓1

′′′ + 𝑝2𝑓2
′′′ + ⋯……) − (𝑓0

′ + 𝑝𝑓1
′ + 𝑝2𝑓2

′ + ⋯… . . )]

+ 𝑝[(𝑓0
′′′ + 𝑝𝑓1

′′′ + 𝑝2𝑓2
′′′ + ⋯……) − (𝑓0

′ + 𝑝𝑓1
′ + 𝑝2𝑓2

′

+ ⋯… . . ) – 𝑘1{4(𝑓0
′ + 𝑝𝑓1

′ + 𝑝2𝑓2
′ + ⋯… . . )(𝑓0

′′′ + 𝑝𝑓1
′′′ + 𝑝2𝑓2

′′′

+ ⋯……) − 2(𝑓0
′′ + 𝑝𝑓1

′′ + 𝑝2𝑓2
′′ + ⋯…… )2}

−  𝜀(𝑓0
′ + 𝑝𝑓1

′ + 𝑝2𝑓2
′ …… . . )2 + λ]

= 0                                                                                                                    (5.3.6) 

Terms independent of p gives, 

𝑓0
′′′ − 𝑓0

′ = 0                                                                                                                              (5.3.7)  

The boundary conditions are, 

𝑓0
′(0) = 0,   𝑓0

′(∞) = 1,    𝑓0
′′(∞) = 0                                                                                 (5.3.8)         

Term containing only p gives,          

 𝑓1
′′′ − 𝑓1

′ − 4𝑘1𝑓0
′𝑓0

′′′ − 2𝑓0
′′2 − 𝜀𝑓0

′2 + λ = 0                                                                  (5.3.9) 

The boundary conditions are, 

𝑓1
′(0) = 0,    𝑓1

′(∞) = 1,   𝑓1
′′(∞) = 0                                                                               (5.3.10)            

Terms containing only 𝑝2 gives, 

 𝑓2
′′′ − 𝑓2

′ − 4𝑘1(𝑓0
′𝑓1

′′′ + 𝑓1
′𝑓0

′′′) − 4𝑓0
′′𝑓1

′′ − 2𝜀𝑓0
′𝑓1

′ = 0                                           (5.3.11)             

The boundary conditions are,  

𝑓2
′(0) = 0, 𝑓2

′(∞) = 1,  𝑓2
′′(∞) = 0                                                                                  (5.3.12)               

Terms containing only 𝑝3 gives, 

𝑓3
′′′ − 𝑓3

′ − 4𝑘1(𝑓0
′𝑓2

′′′ + 𝑓1
′𝑓1

′′′ + 𝑓2
′𝑓0

′′′) − 2(𝑓0
′′2 + 2𝑓2

′′𝑓0
′′)𝑓0

′′𝑓1
′′ − 𝜀(𝑓1

′2 + 2𝑓2
′𝑓0

′)

= 0                                                                                                                                            (5.3.13) 

The boundary conditions are,  
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𝑓3
′(0) = 0, 𝑓3

′(∞) = 1,  𝑓3
′′(∞) = 0                                                                           (5.3.14)               

Solving equations (5.3.7), (5.3.9), (5.3.11) 𝑎𝑛𝑑 (5.3.13) with the help of boundary 

condition, we get  (5.3.8), (5.3.10), (5.3.12), (5.3.14)  

𝑓(𝑧) =   λ(𝑧 + 𝑒−𝑧 − 1)   

+ 𝑝3(𝐷 + 𝐸𝑒−𝑧 + 𝐹𝑒−2𝑧 + 𝐺𝑧𝑒−𝑧 + 𝐻𝑧)+.……………                  (5.3.15) 

Differentiating equation (5.3.15) with respect to z, we obtain 

𝑓′(𝑧) = λ(1 − 𝑒−𝑧)     

+ 𝑝3[−𝐸𝑒−𝑧 − 2𝐹𝑒−2𝑧 + 𝐺(𝑒−𝑧 − 𝑧𝑒−𝑧) + 𝐻]+.……………       (5.3.16) 

From equation (5.3.16) we can easily find the dimensionless velocity 𝐹′(𝜂) across the 

boundary layer. The constants of the solution of the differential equations are not presented 

here for the sake of brevity. 

5.4 Results and Discussions 

The skin friction coefficient at the wall of the convergent channel is given by 

𝜏 = 𝑓′′(0) − 𝑘1 (
3

ν
) 𝑓′(0)𝑓′′(0)                                                                                         (5.4.1) 

where,  

𝑓′(0) = −𝑝3(𝐸 + 2𝐹 − 𝐺 − 𝐻) and  𝑓′′(0) = λ + 𝑝3(𝐸 + 4𝐹 − 2𝐺) 

This work analyses the impact of the visco-elastic parameter on the two-dimensional 

laminar MHD boundary layer flow via a converging channel. The Homotopy perturbation 

approach is used to provide an analytical solution to this issue. Using Matlab software, 

numerical estimates of the velocity and skin friction at the wall have been performed for a 

range of values of the flow parameters. The non-dimensional parameter k1 displays the 

non-Newtonian impact. Setting k1 = 0 yields all of the Newtonian fluid's equivalent 

findings. 

For various values of visco-elastic, magnetic, and other flow characteristics, the 

fluctuations in dimensionless velocity 𝐹′(𝜂) versus the variable 𝜂  over the boundary layer 

are shown in Figs. 5.2 to 5.4. The velocity has been seen to grow with increasing values of 

𝜂 in both Newtonian and non-Newtonian cases. It shows that when the parameter 𝜂 

increases, the thickness of the boundary layer that forms close to the convergent channel 
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decreases. However, for certain fixed values of the magnetic parameter, the velocity 

decreases with rising values of the visco-elastic parameter in compared to the Newtonian 

fluid. Additionally, it can be shown in Figs. 5.2 to 5.4 that 𝐹′(𝜂) diminishes as the magnetic 

parameter's values rise. It demonstrates that when the magnetic parameter grows, the 

boundary layer thickness increases. 

The dimensionless shearing stress at the convergent channel wall measured in accordance 

with the magnetic parameter M for different visco-elastic and other flow parameter values 

is shown in Fig. 5.5. The shearing stress is shown to decrease in both Newtonian and non-

Newtonian scenarios when the visco-elastic parameter's values increase. Also noted is that 

although the magnetic parameter M first causes the shearing stress to rise, as M's value 

rises, the shearing stress finally decreases. The fact that the boundary layer thickness 

decreases as the magnetic parameter increases is consistent with this. 

 

            Fig. 5.2 Velocity distribution against  𝜂 for     𝑀 = 8 

   

          Fig. 5.3 Velocity distribution against  𝜂 for 𝑀 = 10 
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                          Fig. 5.4 Velocity distribution against  𝜂 for M = 12 

 

              

                            Fig. 5.5 Skin friction coefficient for different values of K1 

 

 5.5 Conclusion 

In order to solve nonlinear differential equations, the homotopy perturbation approach is 

used in this study. This technique improves upon the standard perturbation approach. It has 

been shown that the visco-elastic and magnetic parameters have a significant impact on the 

flow field. Research shows that in the special situation of non-Newtonian fluid represented 

by Walters Liquid(Model 𝐵ˊ)., boundary layer flow is achievable. For the purpose of 

contrasting the findings acquired by analytical approach, the identical issue may also be 

solved using numerical methods. It would be fascinating to see future research examine the 

subject from the perspective of flow simulation. This opens up a lot of possibilities for the 

future of the work.         


