Wound Healing and Antimicrobial Properties of *Kaempferia galanga* L. and Formulation of Topical Applications

A THESIS SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE OF

> DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY

> > То

By

Vanshika Sharma Department of Biotechnology Royal School of Biosciences Registration No: 1181198

October 2023

DECLARATION

I hereby declare that the content embodied in the Ph.D. thesis entitled "Wound healing and antimicrobial properties of *Kaempferia galanga* L. and formulation of topical applications" is the result of research work carried out by me in the Department of Biotechnology, The Assam Royal Global University, Guwahati, India, under the supervision of Dr. Ranjan Dutta Kalita. In keeping with the general practice of reporting research observations, due acknowledgments have been made wherever the work described is based on the findings of other researchers.

Further, I declare that this thesis as a whole or any part thereof has not been submitted to any university (or institute) for the award of any degree/ diploma.

Vanshika Shaama

Signature

VANSHIKA SHARMA

Date: 30.07.27

Place: GUWAHATI

Registration No: 1181198

Roll No: 187151001

CERTIFICATE FROM THE SUPERVISORS

This is to certify that the work presented in the thesis entitled "Wound healing and antimicrobial properties of *Kaempferia galanga* L. and formulation of topical applications" by Vanshika Sharma, submitted to the Assam Royal Global University for the award of the degree of Doctor of Philosophy in **Biotechnology**, is a record of the results obtained from the research work carried under our supervision.

This thesis conforms to the template and stipulated guidelines of the Assam Royal Global University, including the standard related to plagiarism, and has a plagiarism index of 5%, excluding the bibliography.

pinion 2014/24 Signature of the Supervisor

(With Date and Seal) Dr. Ranjan Dutta Kalita Associate Professor Dept. of Biotechnology Royal Global University Guwahati-781035, Assam

Am 30/11/24

Signature of the Co-Supervisor (With Date and Seal)

Dr. Ajanita Majumdar Assistant Protessor Deptt. of Molecular Biology & Biotechnology Cotton University, Guwahati-01, Assam

ACKNOWLEDGEMENTS

It is a moment of gratification and pride to look back with a sense of contentment at the longtravelled path, to be able to recapture some of the fine moments and to be able to thank the infinite number of people, some of whom were with me from the beginning and some who joined me at some stage during the journey.

I am obligated to The Assam Royal Global University, Guwahati, Assam, for providing me with the finest facilities for smooth functioning of my research work.

I take the foremost opportunity to express my heartfelt reverence to my respected guide, Dr. Ranjan Dutta Kalita, Associate Professor and HoD, Department of Biotechnology, who always boosted my morale with his valuable guidance, creative suggestions, helpful discussion, unfailing advice, keen interest in research, dedicated efforts and enduring support on all occasions. I consider myself privileged to have worked under his guidance, as he always shared his vast experience generously and patiently in spite of his busy schedule. I sincerely appreciate the interactive help received from him, in the form of suggestions and spirit. I specially thank him for giving me the liberty of decision making and overcoming my failure with positive and confident attitude throughout the work.

I would like to thank my Co-Supervisor, Dr. Ajanita Mazumdar, Assistant Professor, Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, who guided me during these years and helped me with her valuable suggestions and encouragement with her wise words of wisdom.

I am thankful to the faculty members of the department, Dr. Rupesh Kumar, Dr. Debajit Borah, Dr. Bhaskarjyoti Gogoi, Dr. Siddhartha Narayan Borah, and Dr. Rupshikha Patowary and the Dean, RSBSC, Prof. Anupam Chatterjee for extending their helping hands and advising me throughout my work. I feel gratified to them for imparting me with their immense knowledge and support throughout my research work. I specially thank Dr. Bhaskarjyoti Gogoi for helping me with the *in-silico* analysis. I also thank Dr. Arabinda Ghosh, Associate Professor and HoD, Dept of Computational Biology and Biotechnology, Mahapurush Srimanta Sankardev University, Nagaon for extending his help in carrying out the molecular simulation studies.

I also take the opportunity to thank Dr. Bipul Nath, Royal School of Pharmacy, The Assam Royal Global University, Guwahati, for guiding me in the formulation of ointment.

Without his help an integral part of my research journey would have been incomplete. Thank you, Sir, for supervising.

My sincere gratitude to Biotech Park, Guwahati, for their help in carrying out the Gas Chromatography-Mass Spectroscopy related experiment. I would like to extent my heartfelt gratitude to Prof. Dipankar Saha, Registrar and Dr. Sunaynana Barua, Animal Officer of Girijananda Chowdhury Institute of Management, Guwahati, for providing me the facilities to perform animal model studies in their laboratory and teaching me the technique of handling and caressing of rats with proper guidance.

Words are not adequate to express my feelings for my fellow laboratory mates, Indukalpa Das, Sahiba Khan, Bishwapriya Chutia for playing a key role in contributing immensely to my personal and professional motivation and it was indeed a real great experience working with them and making infinite memories which I will always bag along with me.

I was fortunate to have my friends, Neelakshi Das, Nazareen Bakardor Kharrubon, Nomita Syiem and Saptadipa Paul for being my backbone since the day I started my Ph.D. journey. Their constant support in my highs and low will always be appreciated. From the day of sample collection till compilation of my work. Words are not enough to thank you all, your efforts and support both emotionally and physically will always be treasured.

I am deeply indebted to my parents; Dr. Arvind Kumar Sharma and Mrs. Seema Sharma for constantly being my support system and guiding me throughout my journey, lifting me up during my hard times and showering their blessings upon me infinitely. I feel short of words to express my gratitude for them. I always knew that you believed in me and wanted the best for me. Thank you for teaching me that my job in life was to learn, to be happy, and to know and understand myself; only then could I know and understand others. My deepest gratitude goes to my father because I understood the value of life from him. He is a man of sincerity and of great value. My mother always wanted to see me achieving the apex of education and I am proud that I am still climbing the apex because of her love and wishes. My parents were the first and last to believe in my strength of achieving dreams. Thank you so much for giving me the best ever facilities. Their patience and sacrifice will remain my inspiration throughout my life.

I am very grateful to my extended family members, and my husband for their unconditional love and support throughout my journey. I have imbibed in all my confidence and patience with their love and support which has greatly helped me in completing my thesis. I owe my sincerest thanks to my grandparents Late Shyam Sundar Sharma, Late Geeta Sharma, Mr. Om Prakash Sharma and Late Ratan Prabha, for bestowing their love, affection and infinite blessings.

I thank all the people associated with me yet whose names could not be mentioned, for always lending me their helping hand and encouragement.

And above all I thank God Almighty for always showering his blessing me with good health and guiding me through my path, without his blessings this journey would have been vague.

Vanshina Shaama

(Vanshika Sharma)

Plagiarism Report

Document Information

Analyzed document	Wound Healing and Antimicrobial Properties of Kaempferia galanga L. and Formulation of Topical Applications by Vanshika Sharma.docx (D174855677)
Submitted	2023-09-29 09:48:00
Submitted by	Royal Global University
Submitter email	centrallibrary@rgu.ac
Similarity	5%
Analysis address	centrallibrary.rgu@analysis.urkund.com

Sources included in the report

W	URL: https://1library.net/document/y4wd2o0q-a-review-on-ointment-and-ointment-bases.html Fetched: 2020-12-31 11:08:02	88	4	
SA	Pranaya - Article - 10.01.2023.docx Document Pranaya - Article - 10.01.2023.docx (D156339763)	88	20	
SA	SUBHASH MISHRA THESIS.pdf Document SUBHASH MISHRA THESIS.pdf (D141489364)	88	1	
SA	final paper.edited.docx Document final paper.edited.docx (D54903440)	88	2	
SA	THESIS_PLAGARISM_CHECK.pdf Document THESIS_PLAGARISM_CHECK.pdf (D173742364)	88	1	
SA	Major Project (Sana Begum Batch 2020-22).docx Document Major Project (Sana Begum Batch 2020-22).docx (D136498631)	88	1	
SA	plag COMPILE.docx Document plag COMPILE.docx (D172985201)	88	1	

Entire Document

Wound healing and antimicrobial properties of Kaempferia galanga L. and formulation of topical applications A THESIS SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOTECHNOLOGY To

By Vanshika Sharma Department of Biotechnology Royal School of Biosciences Registration No: 1181198 September 2023 1 Introduction

Abbreviations

%	Percent
&	And
+	Plus
=	Equal
±SD	plus or minus Standard Deviation
3D	3-Dimensional
Å	Armstrong
ABTS	2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid
AD	Anno Domini
ADMET	Absorption, Distribution, Metabolism, Excretion, and Toxicity
AIDS	Acquired immune deficiency syndrome
ATCC	American Type Culture Collection
ATP	Adenosine Triphosphate
BBB	Blood-brain barrier
BC	Before Christ
BHT	Butylated hydroxytoluene
BSI	Bloodstream infection
CA-MRSA	Community-acquired MRSA
CADD	Computer aided drug design
CDC	Centre for Disease Control and Prevention
CDS	Chronic Disease Score
Cm	Centimeter
CNS	Central nervous system
CV	Crystal Violet
СҮР	Cytochrome P450

Da	Dalton
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DPPH	2,2-diphenyl-1- picrylhydrazyl
ECM	Extracellular matrix
eDNA	Environmental DNA
EDTA	Ethylenediaminetetraacetic acid
e.g.,	Example gratia
E.O.	Essential oil
EP	Exopolysachharide
EPR	Electron paramagnetic resonance
EPS	Extracellular polymeric substrate
et al.,	et alia
FDA	Food and Drug Administration
fm	Femtosecond
FRET	Forster resonance energy transfer
g	Gram (s)
GC-MS	Gas chromatography/Mass spectrometry
h	Hour (s)
H_2SO_4	Sulphuric acid
HA-MRSA	Hospital-acquired MRSA
HCL	Hydrochloric acid
H&E	Haematoxylin and eosin
HIA	Human intestinal absorption
i.e.,	that is
IC ₅₀	50% Inhibitory Concentration
ICU	Intensive Care Unit

K. galanga L.	Kaempferia galanga Linnaeus	
kcal/mol	Kilocalorie per mole	
Kg	Kilogram	
LB	Luria Broth	
LNCap	Lymph Node Carcinoma of the prostrate	
М	Molarity	
MD	Molecular Simulation	
MDR	Multidrug resistant	
mg	Milligram	
MHA/MHB	Muller-Hinton agar/broth	
MIC	Minimum inhibitory concentration	
min	Minutes	
ml	Milliliter	
mm	Millimeter	
mmol/L	Millimoles per liter	
mM	Millimolar	
MRSA	Methicillin-resistant Staphylococcus aureus	
MSCRAMMs	Microbial surface components recognizing adhesive matrix molecules	
MTT	3-(4,5-Dimethyl- thiazol-2-yl)-2,5-diphenyltetrazolium bromide	
NCI	National Cancer Institute	
NIH	National Institute of Health	
NIs	Nosocomial infections	
NIST	National Institute of Standards and Technology	
NPT	Constant pressure	
NPs	Natural products	
nm	Nanometer	

NMR	Nuclear magnetic resonance
ns	Nanosecond
NVT	Constant temperature
°C	Degree centigrade or Celsius
O.D.	Optical Density
PB2a	Penicillin binding protein
PBS	Phosphate-Buffered saline
PDB	Protein Data Bank
рН	Hydrogen ion concentration
PIA	Polysaccharide intercellular antigen
PSMs	Phenol-soluble modulins
ps	Picosecond
QS	Quorum sensing
QSAR	Quantitative Structure-Activity Relationship
RBCs	Red Blood Cells
RMSD	Root mean square deviation
RMSF	Root mean square fluctuation
Rg	Radius of gyration
rpm	Rotation per minutes
RSCB	Research Collaboratory for Structural Bioinformatics
S. aureus	Staphylococcus aureus
SBDD	Structure-based drug design
SEM	Scanning electron microscope
Sl. No.	Serial Number
sp.	Species
TAC	Total Antioxidant Activity
TFC	Total Flavonoid Content

TMP- SMZ	Trimethoprim and Sulfamethoxazole
TPC	Total Phenol Content
US	United States
USA	United State of America
UV-Vis	Ultra violet visible
viz.	Videlicet
WHO	World Health Organization
α	Alpha
β	Beta
γ	Gamma
μg	Microgram
μl	Microliter
μm	Micrometer

This page is intentionally left blank

List of Figures

Fig. No.	Figure Caption	Page No.
1.1	Structures of first natural product derived from medicinal plants	4
1.2	Some examples of natural product isolated from medicinal plants as	6
	therapeutic agents	
1.3	The growth cycle of biofilm involves planktonic cells attaching to	12
	the surface, aggregating, producing ECM (extracellular matrix),	
	forming microcolonies, cell division, and finally, enzymes promote	
	dispersion, allowing bacterial cells to detach and colonize new	
	ecological niches	
1.4	SEM micrograph showing MRSA	14
1.5	Some medicinal plants exhibiting antibacterial activity against	16
	Staphylococcus aureus	
2.1	Structures of medicines derived from natural products	27
2.2	Prevalence of MRSA in different regions of India	36
2.3	Flowchart of <i>in-silico</i> drug design process	38
2.4	Flowchart of Molecular Docking	40
3.1	Pictorial representation of Kaempferia galanga Linn leaves and	52
	rhizome	
3.2	Location of Ri-Bhoi district from where Kaempferia galanga Linn	53
	was collected: 2448 sq.km and lies between E 91°20'30" and E	
	92°17'00" Longitude and N 25°40' to N 26°20' Latitude.	
4.1	Isolation of Kaempferia galanga L. essential oil using Soxhlet	67
	apparatus	
4.2	Total Ion Chromatogram (TIC) of the Kaempferia galanga L.	68
	essential oil obtained after GC-MS analysis	
4.3	Free radical scavenging activity of the essential oil of Kaempferia	72
	galanga L. by DPPH assay	
4.4	Free radical scavenging activity of the essential oil of Kaempferia	73
	galanga L. by ABTS ⁺ assay	

4 5		
4.5	Hemolytic activity of <i>Kaempferia galanga</i> L. essential oil	75
4.6	Agar well diffusion assay of essential oil against Staphylococcus	77
	aureus	
4.7	MIC activity of essential oil against Staphylococcus aureus	78
4.8	Biofilm inhibition of essential oil against Staphylococcus aureus	79
4.9	A. B. C- Depiction of binding affinity of CrtM (PDB ID-2ZCO)	84
	with γ -elemene and D.E.F- Binding affinity of SarA proteins (PDB	
	ID-2FNP) with caryophyllene	
4.10	RMSD plots of 2FNP-Caryophyllene where black plot is of protein	86
	and red plot is for ligand. (B) RMSF of $C\alpha$ backbone of 2FNP bound	
	to Caryophyllene-ligand, (C) Radius of gyration (Rg) of Ca	
	backbone of 2FNP bound to Caryophyllene-ligand (D) Solvent	
	accessible surface area of 2FNP bound to Caryophyllene-ligand.	
	MD simulation analysis of 100 ns trajectories of (E) Ca backbone	
	of 2ZCO bound to γ -elemene ligand, (F) RMSF of C α backbone of	
	2ZCO bound to γ-elemene -ligand, (G) Radius of gyration (Rg) of	
	Ca backbone of 2ZCO bound to γ -elemene (H) Solvent accessible	
	surface area of 2ZCO bound to γ-elemene.	
4.11	Time series analysis of the (A) 2FNP-Caryophyllene and (B)	89
	2ZCO-γ-elemene complexes exhibiting the poses of ligands at	
	various time scale snapshots.	
4.12	Free energy Landscape (FEL) represented (A) for 2FNP-	90
	Caryophyllene and (B) 2ZCO-γ-elemene where left panel	
	exhibiting 2D FEL and the clusters of frames. The structures at mid-	
	point has been exhibited with time scale and the right panel	
	exhibiting the well of global minima in 3D representation.	
4.13	Different concentration of K. galanga L. essential oil topical	91
	formulation.	
4.14	Skin irritancy and acute dermal toxicity showing no signs of	94
	oedema and erythema upon treatment with topical application.	
4.15	Wound contraction image from day 0 to day 14 post treatment	96
4.16	Analysis graph showing wound contraction of different groups	98
4.17	Photograph of normal control H&E (X100)	100

- (xii)

4.18	Photograph showing wound healing of negative control group	100
	H&E (X100)	
4.19	Photograph showing wound healing of positive control group	101
	treated with 2% Mupirocin H&E (X100)	
4.20	Photograph showing wound healing of group treated with 4%	102
	formulation H&E (X100)	
4.21	Photograph showing wound healing of group treated with 10%	103
	formulation H&E (X100)	

This page is intentionally left blank

List of Tables

Table No.	Table Caption	Page No.
1.1	List of medicinal plants with antibacterial properties	8
1.2	Antibacterial natural products against methicillin-resistant <i>Staphylococcus aureus</i> (MRSA)	15
1.3	Representative medicinal plants and their bioactive compounds targeting <i>S. aureus</i>	18
2.1	In vivo studies of the wound healing properties of the natural products.	49
3.1	Hydrophilic ointment base composition	61
3.2	Draize scoring system	64
4.1	GC-MS characterized compounds of <i>Kaempferia galanga</i> L. essential oil	69
4.2	Phytochemical analysis of <i>Kaempferia galanga</i> L. essential oil	70
4.3	Free radical scavenging activity of Kaempferia galanga L. essential oil by	72
	DPPH assay	
4.4	Free radical scavenging activity of <i>Kaempferia galanga</i> L. essential oil by ABTS ⁺⁺	73
4.5	Haemolytic activity of Kaempferia galanga L. essential oil	75
4.6	Antimicrobial screening of <i>Kaempferia galanga</i> L. essential oil against <i>S. aureus</i>	77
4.7	Antibiofilm activity of Kaempferia galanga L. against S. aureus	79
4.8	ADMET properties of the compounds isolated from <i>Kaempferia galanga</i> L. essential oil	81
4.9	Binding affinity of the characterized compounds of <i>Kaempferia galanga</i> L. with CrtM (PDB ID: 2ZCO) and SarA (PDB ID: 2FNP) proteins of <i>S</i> .	83
	aureus	
4.10	Calculated Binding free energy components for the 2FNP-Caryophyllene	88
A 11	and 2ZCO- γ -elemene.	02
4.11	Pharmaceutical evaluation of the formulation	92 07
4.12	Wound contraction rate from day 0 to day 14 after treatment	97

_____ (xv)_____