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6 
Chapter 6 

 

Hydromagnetic Visco-elastic Boundary Layer Slip Flow  

and Heat Transfer over a Flat Plate 

 

6.1 Introduction 

The elastico-viscous fluid has little temperature and salinity sensitivity, and is easily 

regulated by rheology. The elastico-viscous fluid technology generates highly efficient 

fractures with low damage to conductivity providing excellent control of fluid loss and high 

properties of proppant transport to generate geometry of design fractures. The rheology of 

elastico-viscous fluid are used to enhance biomodeling. Biofilms are also elastico-viscous 

materials that are capable of dissipating energy from external forces and overcoming 

external mechanical stresses. 

The study of boundary layer flow is very significant in fluid mechanics as the whole 

dynamics is triggered from the boundary surface. The application of such flow often 

observed in modern engineering and industrial processes for calculation of frictional drag 

of bodies. Blasius [45] firstly investigated the structure of evolution of boundary layer fluid 

velocity over a flat plate. The heat conduction phenomenon of the Blasius problem was 
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analyzed by Pohlhausen [46]. The numerical computation of Blasius problems carried out 

by Howarth [47]. Abu-Sitta [103] established the existence of solution for flow past a flat 

plate. Aziz A [104] presented the solution of thermal boundary layer fluid motion past a 

flat surface by making use of similarity transformation.  

The hydromagnetic fluid motion along with the heat conduction problems over flat 

plate have been studied extensively these days due to its vast application in industry. 

Examples includes, petroleum technology, geothermal energy abstractions, aerodynamics, 

etc. The heat conduction mechanism on a moving metal surface is very significant in 

production and processing industries like plastic, paper, polymer, etc. The hydromagnetic 

unsteady heat and mass transport flow problems through porous surface with slip effects 

studied by Pal and Talukdar [105]. Bhattacharyya et al. [106] presented the 

magnetohydrodynamic Newtonian boundary layer fluid problems past a flat surface with 

slip effects. Bhattacharyya et al. [50] also investigated the boundary layer fluid motion with 

velocity and thermal slip condition at the boundary over a moving flat sheet. 

Velocity slip means non-adherence of the fluid to a solid boundary, is an event that has 

been often noticed in many circumstances. Recently, many researchers [107-110], studied 

the fluid motion considering velocity and thermal slip at the boundary as this type of fluid 

motion has important technological applications. Ambreen et al. [111] discussed the heat 

transfer mechanism of hydromagnetic non-Newtonian fluid motion with slip effects. Ellahi 

et al. [112] examined the hydromagnetic boundary layer slip flow past a moving surface 

with heat conduction and entropy generation. 

Inspired by the works mentioned above, the objective of this work is to investigate the 

steady hydromagnetic visco-elastic boundary layer slip flow and heat transfer characterized 

by Walters Liquid (Model 𝐵ˊ) over a flat plate. The partial differential equations governing 

fluid motion are transformed to ordinary differential equations by making use of suitable 

similarity variables and solved with the help of bvp4c inbuilt MATLAB software. The 

computed numerical results are illustrated with graphs and table and discussed for different 

values of flow parameters involved in the solution.  

6.2 Mathematical Formulation 

A steady laminar two-dimensional hydromagnetic boundary layer visco-elastic electrically 

conducting fluid motion with slip effects over a flat plate is considered. The heat transfer 
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mechanism is also taken into account. The geometrical model of the flow problem is shown 

in Fig. 6.1. The governing equations of fluid motion and energy are derived taking 

boundary layer and hydromagnetic approximation as follows: 
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Fig. 6.1 Geometrical model of the flow problem 

The relevant boundary conditions for the velocity and temperature taking partial slip into 

account:  

𝑢 = 𝐹1 (
𝜕u

𝜕y
) , 𝑣 = 0  at  y = 0;    𝑢 → 𝑈∞ as 𝑦 → ∞                                                        (6.2.3) 

 𝑇 = 𝑇𝑊 + 𝐺1 (
𝜕T

𝜕y
)   at  y = 0  ;   𝑇 → 𝑇∞  as  𝑦 → ∞                                                      (6.2.4) 

where  𝐹1 = 𝐹0(𝑅𝑒𝑥)
1

2 , velocity slip factor with 𝐿0 initial value of slip factor 

           𝐺1 = 𝐺0(𝑅𝑒𝑥)
1

2 , thermal slip factor with 𝐷0  initial value of thermal slip factor  

           𝑅𝑒𝑥 =
𝑈∞𝑥

ν
 , local Reynolds number. 

           𝑇𝑊 and 𝑇∞ are the assumed constant plate and free stream temperature. 

The stream function 𝛹(𝑥, 𝑦) is introduced as follows: 

𝑢 =
𝜕𝛹

𝜕y
  and 𝑣 = −

𝜕𝛹

𝜕x
                                                                                                              (6.2.5) 

The continuity equation is clearly satisfied automatically by the relation (6.2.5). 
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Making use of (6.2.5), the equations of momentum (6.2.1) and temperature (6.2.2) 

transformed as follows: 

𝜕𝛹

𝜕y

∂2𝛹

∂x ∂y
−

𝜕𝛹

𝜕x

∂2𝛹

∂y2

= ν
∂3𝛹

∂y3
−

k0

ρ
[
𝜕𝛹

𝜕y

∂4𝛹

∂x ∂y3
−

𝜕𝛹

𝜕x

∂4𝛹

∂y4
−

∂2𝛹

∂y2

∂3𝛹

∂x ∂y2
+

∂2𝛹

∂x ∂y
 
∂3𝛹

∂y3
]

+
σ𝐵2

ρ
(𝑈∞ − 𝑢)                                                                                            (6.2.6) 

𝜕𝛹

𝜕y

∂T

∂x
−

𝜕𝛹

𝜕x

∂T

∂y
=

K

ρ𝐶𝑝

∂2T

∂y2
                                                                                                   (6.2.7) 

The transformed boundary conditions of (6.2.3) for the velocity component are  

𝜕𝛹

𝜕y
= 𝐿1

∂2𝛹

∂y2
,

𝜕𝛹

𝜕x
= 0  at  y = 0;    

𝜕𝛹

𝜕y
→ 𝑈∞ as 𝑦 → ∞                                      (6.2.8) 

Now, introduce the variables 𝛹 and T in the forms:  

𝛹 = √𝑈∞νx 𝑓(𝜂) and 𝑇 = 𝑇𝑤 + (𝑇𝑤 − 𝑇∞)𝜃(𝜂)                                                             (6.2.9) 

where  𝜂 =
𝑦

𝑥
√𝑅𝑒𝑥 . 

Using (6.2.9), the final self-similar equations for governing fluid motion are obtained as 

follows:  

𝑓′′′(𝜂) +
1

2
𝑓(𝜂)𝑓′′(𝜂) + 𝑘1 [2𝑓′(𝜂)𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′v(𝜂) − (𝑓′′(𝜂))

2
] + M(1 − 𝑓′(𝜂))

= 0                                                                                                                                             (6.2.10) 

𝜃′′(𝜂) +
1

2
𝑃𝑟𝑓(𝜂)𝜃′(𝜂) = 0                                                                                               (6.2.11) 

where 𝑘1 =
k0U∞

2ρ𝜈x
  and 𝑀 =

𝜎𝐵0
2

ρU∞
  are the modified visco-elastic and magnetic parameters 

and 

 𝑃𝑟 =
𝜇𝐶𝑝

𝐾
 is the Prandtl number. 

The boundary conditions (6.2.8) and (6.2.4) finally takes the following forms: 

𝑓(𝜂) = 0,  𝑓′(𝜂) = δ𝑓′′(𝜂) 𝑎𝑡  𝜂 = 0 ;       𝑓′(𝜂) = 1,  𝑓′′(𝜂) = 0 𝑎𝑠  𝜂 → ∞       (6.2.12) 
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𝜃(𝜂) = 1 + 𝛽𝜃′(𝜂) 𝑎𝑡  𝜂 = 0 ;  𝜃(𝜂) = 0 𝑎𝑠 𝜂 → ∞                                                    (6.2.13) 

where δ=
F0U0

𝜈
  , velocity slip parameter  

          𝛽 =
G0U∞

𝜈
 , thermal slip parameter. 

Boundary condition  𝑓′′(𝜂) = 0 𝑎𝑠  𝜂 → ∞ is considered as the fourth physical boundary 

condition taking into account the fact that at infinity there is no shear stress. 

6.3 Method of Solution 

The inbuilt numerical method ‘bvp4c’ of Matlab is a collocation method used to solve 

differential equations of the form 
𝑑𝑦

𝑑𝑥
= g(x, y, q), x ∈ [𝑎, 𝑏] subject to non-linear boundary 

conditions h(y(a), y(b), q) = 0, where q is an unknown parameter. This method is an 

effective solver different from the shooting method and it is based on an algorithm. It can 

compute inexpensively the approximate value of  𝑦(𝑥) for any x in [𝑎, 𝑏] taking boundary 

conditions at every step. In this method, infinity conditions at the boundary are replaced 

with some finite point which reasonably satisfies the given problem. 

The self-similar governing equations (6.2.8) and (6.2.9) are transformed to differential 

equations of the first order as follows: 

𝑓 = 𝑓1, 𝑓′ = 𝑓2,  𝑓′′ = 𝑓3, 𝑓′′′ = 𝑓4 , 𝜃 = 𝑓5, 𝜃′ = 𝑓6                                                        (6.3.1) 

From (4.3.1), we can write  

𝑓1
′ = 𝑓2, 𝑓2

′ = 𝑓3,  𝑓3
′ = 𝑓4, 𝑓5

′ = 𝑓6                                                                                      (6.3.2)  

In view of equations (6.3.1) and (6.3.2), reduced governing equations (6.2.8) and (6.2.9) 

and boundary conditions (6.2.10) and (6.2.11) can be written as:  

𝑓4
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1
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[(𝑓3)2 − 2𝑓2𝑓4 − (
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𝑓6
′ = −

1

2
𝑃𝑟𝑓1𝑓6                                                                                                                        (6.3.4) 

𝑓1(0) = 𝑆, 𝑓2(0) = δ𝑓3(0) 𝑎𝑛𝑑  𝑓2(∞) = 1, 𝑓3(∞) = 0                                                 (6.3.5) 

𝑓5(0) = 1 + 𝛽𝑓6(0)  𝑎𝑛𝑑  𝑓5(∞) = 0                                                                                  (6.3.6) 

The MATLAB inbuilt solver ‘bvp4c’ is employed to compute the above equations together 

with different involved flow feature parameters. 
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6.4  Results and Discussion 

The nonlinear coupled governing ordinary differential equations (6.3.3) and (6.3.4) 

together with boundary conditions (6.3.5) and (6.3.6) are numerically solved by MATLAB 

bvp4c solver for different values of flow parameters. Some figures for velocity, temperature 

and temperature gradient profiles are plotted and illustrated from physical point of view. 

The skin friction coefficient (𝜏) is also computed and displayed in tabular form for various 

values of magnetic parameter and discussed. 

The influence of visco-elastic (k1), magnetic (M) and velocity slip (δ) parameters on 

the velocity profiles are shown in Fig. 6.2 to Fig. 6.4. It is observed from Fig. 6.2 that the 

velocity profile  𝑓′(𝜂)  decreases for a while but gradually it increases with the increasing 

values of k1 and consequently the thickness of the boundary layer decreases. Fig. 6.3 

depicts the variation in velocity field 𝑓′(𝜂) for different values of M and it is noticed that 

fluid motion onward plate reduces as M increases and thus the thickness of boundary layer 

increases. Physically it is interpreted as drag-like force called the Lorentz force is produced 

in the fluid flow due to the presence of transverse magnetic field which in turn reduces the 

fluid motion. The velocity profile  𝑓′(𝜂) for different values of δ is shown in Fig. 6.4 and 

it is observed that with the growth of δ, the fluid motion accelerated. The fluid velocity near 

the plate has some positive value as slip condition act over the plate and thus the thickness 

of boundary layer diminishes. 

The temperature distributions for different values of involved flow parameters are 

illustrated in Fig. 6.5 to Fig. 6.8. It is observed from Fig. 6.5 to Fig. 6.7 that temperature of 

the fluid rises with increasing values of   k1, 𝑀 and δ and gradually it vanishes at some 

distance from the plate. The heat transfer increases due to enhanced fluid motion and the 

slip condition at the plate. The temperature distribution is demonstrated from Fig. 6.8 for 

different values of Prandtl number (𝑃𝑟). It is noticed that with the growth of 𝑃𝑟 fluid 

viscosity enhances which in turn diminishes the fluid motion and thus the temperature of 

the fluid reduces. The result shows that with increasing Prandtl number the thermal 

boundary layer thickness reduces. 

The temperature gradient profiles are illustrated from Fig. 6.9 to Fig. 6.11. From Fig. 

6.9 to Fig. 6.10, it is observed that with the growth of visco-elastic and magnetic parameters 

the temperature gradient profiles are initially increasing but gradually decelerate with 

increasing distance and finally proceeds towards zero. Fig. 6.11 exhibit the temperature 
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gradient profile for various values of δ and it is noticed that temperature gradient reduces 

as δ increases initially but after traversing some distance it increases. The numerical values 

of skin friction coefficient are shown in Table 1 against δ for different values of M. The 

skin friction coefficient is found to reduce as δ enhances but rises with the growth of M. 

 

 

Fig. 6.2 Velocity curves 𝑓′(𝜂) against 𝜂 with variation of 𝑘1 

 

 

Fig. 6.3 Velocity curves 𝑓′(𝜂) against 𝜂 with variation of M 

 

Fig. 6.4 Velocity curves 𝑓′(𝜂) against 𝜂 with variation of δ 



 76 

 

Fig. 6.5 Temperature curves 𝜃(𝜂) against 𝜂 with variation of 𝑘1 

 

 

 

Fig. 6.6 Temperature curves 𝜃(𝜂) against 𝜂 with variation of M 

 

Fig. 6.7 Temperature curves 𝜃(𝜂) against 𝜂 with variation of δ 
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Fig. 6.8 Temperature curves 𝜃(𝜂) against 𝜂 with variation of 𝑃𝑟 

 

 

Fig. 6.9 Temperature Gradient curves  𝜃(𝜂) against 𝜂 with variation of 𝑘1 

 

 

Fig. 6.10 Temperature Gradient curves  𝜃(𝜂) against 𝜂 with variation of M 
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Fig. 6.11 Temperature Gradient curves  𝜃(𝜂) against 𝜂 with variation of δ 

 

Table 6.1. Numerical values of skin friction coefficient 𝜏 for  𝑘1 = 0.4, 𝑃𝑟 = 0.5, 𝛽 = 0.1  

Values of skin friction coefficient 𝜏 = 𝑓′′(0) + 𝑘1𝑓(0)𝑓′′′(0) 

Δ M=0.2 M=0.5 M=1 

0 0.6478 0.8231 1.3256 

0.2 0.5978 0.6824 1.0467 

0.4 0.5246 0.6135 0.8637 

0.6 0.4987 0.5831 0.6836 

0.8 0.3879 0.4971 0.5783 

1 0.2684 0.3257 0.4285 

 

6.5 Conclusion  

The study reveals that the hydromagnetic visco-elastic fluid motion is significantly affected 

by velocity and thermal slip parameters. A future study investigating the flow simulation 

of the problem would be very interesting. Different numerical and analytical methods can 

also be implemented to find the solution of the same problem to compare the results. 

From the above discussions, the following conclusions can be drawn: 

 The rate of transport decreases initially but enhances with the increasing distance 

(𝜂) and visco-elastic parameter. 
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 The fluid velocity is found to diminish wth the growth of magnetic parameter. 

 The rising values of velocity slip parameter cause to increase the fluid velocity. 

 The temperature fluid rises with the growth of visco-elastic, magnetic and slip 

parameters and gradually it vanishes at some distance from the plate. 

 The flow velocity and the temperature diminish with the increase of Prandtl 

number.The thermal boundary layer thickness decreases with increasing Prandtl 

number.  

 The magnitude of temperature gradient profiles are initially increasing but gradually 

start decreasing with distance and proceeds towards zero for increasing values of 

visco-elastic and magnetic parameter. 

 The temperature gradient profile initially decreasing but with distance it increases 

and finally vanishes for increasing values of slip parameter.  

 The skin friction coefficient reduces with the increasing values of δ but enhances 

with the growth of magnetic parameter M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 81 

Scope for Future Work 

Viscoelastic fluid flow is an interesting and challenging field of study and offers significant 

potential for future research and development.  It is important to conduct detailed 

experimental studies to better understand the flow behaviour of viscoelastic fluids. 

Experiencing ways to control and manipulate the flow of viscoelastic fluids may be 

practical for many industries, such as polymer processing and improved oil recovery. The 

development of accurate and efficient numerical models and simulation techniques for the 

flow of viscoelastic fluids is crucial. Another promising area is the study of viscoelastic 

fluid behavior in biological and biomedical environments. This includes studying blood 

flow, mucus flow in the respiratory system, or blood flow in the joints. Research into the 

application of viscoelastic liquids in various industries such as cosmetics, food processing, 

oil and gas maybe a fruitful field of research. The development of advanced computational 

methods and algorithms for solving complex equations governing the flow of viscoelastic 

fluids is crucial. 

 

 

 

 

 

 

 

 


