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Chapter 3 

 

Mixed Convective Slip Flow and Heat Transport for  

Visco-Elastic Fluid Past a Vertical Plate 

 

3.1 Introduction 

The heat transition due to the combined effects of pressure and buoyancy forces for 

boundary layer past a plate is extensively studied these days because of its wide 

applications in manufacturing processes. The application of such flow is often observed in 

solar and electronic devices, nuclear reactors, heat exchangers, lubrication, and drying 

processes. The mixed convective flow which arises due to the interaction of pressure and 

buoyant forces influences the amount of heat transfer. Mukhopadhyay et al. [55] 

demonstrated the magnetohydrodynamic heat flow due to mixed convection past a vertical 

porous surface with slip effects. Das et al. [56] presented the MHD mixed convective fluid 

flow in an inclined permeable plate taking viscous dissipation and Joule heating into 

consideration. Aurangzaib et al. [57] examined the mixed convective unsteady stagnation 

point slip flow on a shrinking sheet. The study revealed that the surface velocity enhances 

due to slip at the sheet.  Prasannakumara et al. [58] investigated the impact of thermal 

radiation along with slip flow and heat transfer of fluid containing nanoparticles over a 
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permeable stretching sheet. Ellahi et al. [59] examined the hydromagnetic entropy 

generation and slip effect on heat transport for the boundary layer flow past a moving flat 

plate. The effect of Hall and ion-slip on mixed convective flow for nanofluid past a 

permeable stretching sheet is investigated by Ibrahim et al. [60]. Dey and Nath [61] 

presented the mixed convective steady fluid flow over a vertical plate without viscous 

dissipation whereas the theoretical investigation of mixed convective viscous 

incompressible boundary layer external fluid flow past a moving vertical plate taking 

viscous dissipation into account was carried out by Bachok et al. [62].  

The fluid-particle when comes in contact with a solid boundary often slips without 

taking the velocity of the surface due to its own fixed tangential velocity. This type of flow 

is called slip flow and such flow is often observed in polymer and adhesive solutions. The 

fluids which exhibit slip flow have many practical applications in the chemical polishing 

industry. Bhattacharyya et al. [50] investigated the effects of slip parameter for Newtonian 

boundary layer fluid flow over a moving flat plate and found that the fluid motion is 

significantly affected under the influence of slip parameter. Cao et al. [51] presented the 

effects of slip on laminar mixed convection and heat transfer over a vertical plate. The 

numerical solution carried out in this study to observe flow parameters impact on the 

velocity and temperature distribution. Aziz [63] examined the hydromagnetic boundary 

layer fluid flow past a flat plate taking slip flow and heat flux surface condition. The study 

explored the constant heat flux boundary conditions. Patil et al. [48] presented the parallel 

stream mixed convection fluid flow for unsteady case taking a vertical moving plate.  

The non-Newtonian visco-elastic fluid pertaining viscous and elastic nature has lots of 

practical applications in different fields of engineering sciences. When pressure is applied 

to it with the high velocity it hardens and changes its state from liquid to solid. That’s why 

these days it is widely used in protective equipment like liquid body armor, liquid sports 

shoes, helmet, mobile case, speed bump, etc. Hayat et al. [64] demonstrated the heat 

transport for mixed convection taking visco-elastic fluid through a stretching cylinder. The 

hydromagnetic mixed convective visco-elastic fluid motion and transition of heat past a 

permeable wedge in presence of thermal radiation was investigated by Rashidi et al. [36]. 

The above literature survey shows that very little work has been carried out to heat 

transport problems considering the non-Newtonian visco-elastic fluid model in the slip 

flow regime and thus the present paper aims to investigate the heat transition due to mixed 
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convection for boundary layer visco-elastic fluid over a vertical plate with slip condition. 

The visco-elasticity of the fluid exhibits by the non-Newtonian fluid model Walters Liquid 

(Model 𝐵ˊ). The resultant equations guiding fluid motion are obtained by using similarity 

variables. The MATLAB inbuilt solver ‘bvp4c’ is applied for computation. The evaluated 

results are plotted for discussions to observe the effects of involved dominant flow 

parameters. 

3.2 Mathematical Formulation 

The motion of steady mixed convective incompressible visco-elastic boundary layer fluid 

past a vertical plate with slip condition factor is considered. Fig. 3.1 depicts the geometry 

of fluid motion. The fluid flow governed by equations of continuity, motion and energy is 

written taking boundary layer approximations as:  

𝑢𝑥 + 𝑣𝑦 = 0                                                                                                                               (3.2.1) 

𝑢𝑢𝑥 + 𝑣𝑢𝑦 = ν𝑢𝑦𝑦  −
k0

ρ
(𝑢𝑢𝑥𝑦𝑦 + 𝑣𝑢𝑦𝑦𝑦 − 𝑢𝑦𝑢𝑥𝑦 − 𝑣𝑦𝑢𝑦𝑦) + g 𝛽∗(𝑇 − 𝑇∞)      (3.2.2) 

𝑢𝑇𝑥 + 𝑣𝑇𝑦 = (
K

ρ𝐶𝑝
) 𝑇𝑦𝑦                                                                                                         (3.2.3) 

The lower subscripts of u, v, and T in terms of x and y denote the derivatives of respective 

order and other symbols have their usual meaning as stated above. 

 

Fig. 3.1 The geometrical flow model 

The conditions imposed at the boundary are: 

𝑢 = 𝐿1𝑢𝑦 , 𝑣 = 0  at  y = 0;    𝑢 → 𝑈∞ as 𝑦 → ∞                                                             (3.2.4) 
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𝑇 = 𝑇𝑊 + 𝐷1𝑇𝑦  at  y = 0  ;   𝑇 → 𝑇∞  as  𝑦 → ∞                                                              (3.2.5) 

where, 𝐿1 = 𝐿0(𝑅𝑒𝑥)
1

2 : velocity slip factor,  

𝐷1 = 𝐷0(𝑅𝑒𝑥)
1

2 : thermal slip factor,  

𝑅𝑒𝑥 =
𝑈∞𝑥

ν
 : Reynolds number, 

𝐿0 and 𝐷0: initial values of slip factors, 

𝑇𝑊 = 𝑇∞ +
𝑇0

𝑥
: variable plate temperature with 𝑇0constant, 

𝑈∞: free stream velocity. 

Similarity transformations have taken after careful investigation as 

𝛹 = √𝑈∞νx 𝑓(𝜉), 𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜉)   𝑎𝑛𝑑  𝜉 =
𝑦

𝑥
√𝑅𝑒𝑥                        (3.2.6) 

where 𝛹 and 𝜉 represent stream function and similarity variable respectively with 

𝑢 =
𝜕𝛹

𝜕𝑦
  and 𝑣 = −

𝜕𝛹

𝜕𝑥
. 

Applying similarity transformations (3.2.6), equations (3.2.2) and (3.2.3) finally reduced to 

the forms: 

𝑓′′′ +
1

2
𝑓𝑓′′ + 𝑘1[2𝑓′𝑓′′′ + 𝑓𝑓′v − (𝑓′′)2] + λ𝜃 = 0                                                    (3.2.7) 

𝜃′′ + 𝑃𝑟 (
1

2
𝑓𝜃′ + 𝑓′𝜃) = 0                                                                                                   (3.2.8) 

where dashes denote differentiation with respect to 𝜉 and 

𝑘1 =
𝑘0𝑈∞

2𝜇𝑥
 : modified visco-elastic parameter, 

λ =
𝑔𝛽∗𝑇0

𝑈∞
2  : mixed convection parameter,  

𝑃𝑟 =
𝜇𝐶𝑝

𝐾
 : Prandtl number.  

The final reduced form of conditions (3.2.4) and (3.2.5) at the boundary are 

𝑓(𝜉) = 0,  𝑓′(𝜉) = δ𝑓′′(𝜉) 𝑎𝑡  𝜉 = 0 ;       𝑓′(𝜉) → 1,  𝑓′′(𝜉) → 0 𝑎𝑠  𝜉 → ∞          (3.2.9) 
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𝜃(𝜉) = 1 + 𝛽𝜃′(𝜉)𝑎𝑡  𝜉 = 0 ;  𝜃(𝜉) → 0 𝑎𝑠 𝜉 → ∞                                                     (3.2.10) 

 

3.3 Method of Solution 

The Matlab solver ‘bvp4c’ is a collocation method employed to solve a system of linear or 

non-linear BVP. This method is different from the shooting method and it is based on an 

algorithm. It can compute inexpensively the approximate value of  𝑦(𝑥) for any x in [𝑎, 𝑏] 

taking boundary conditions at every step. In this method, the boundary conditions at infinity 

are replaced with one at a finite point which reasonably satisfies the given problem. To 

apply finite difference method-based solver ‘bvp4c’, the resultant governing equations 

(3.2.7) and (3.2.8) are transformed as follows: 

𝑓 = 𝑔1, 𝑓′ = 𝑔2,  𝑓′′ = 𝑔3, 𝑓′′′ = 𝑔4 , 𝜃 = 𝑔5, 𝜃′ = 𝑔6                                                   (3.3.1) 

From (3.3.1), we can write  

𝑔1
′ = 𝑔2, 𝑔2

′ = 𝑔3, 𝑔3
′ = 𝑔4, 𝑔5

′ = 𝑔6                                                                                    (3.3.2) 

Using (3.3.1) and (3.3.2), equations (3.2.7) and (3.2.8) can be written as: 

𝑔4
′ =

1

𝑔1
[(𝑔3)2 − 2𝑔2𝑔4 − (

1

𝑘1
) (𝑔4 +

1

2
𝑔1𝑔3 + λ𝑔5)]                                                (3.3.3) 

𝑔6
′ = −𝑃𝑟 (

1

2
𝑔1𝑔6 + 𝑔2𝑔5)                                                                                                  (3.3.4) 

and the boundary conditions (3.2.9) and (3.2.10) takes the following forms: 

𝑔1(0) = 0, 𝑔2(0) = δ𝑔3(0) 𝑎𝑛𝑑  𝑔2(∞) = 1, 𝑔3(∞) = 0                                             (3.3.5) 

𝑔5(0) = 1 + 𝛽𝑔6(0) 𝑎𝑛𝑑  𝑔5(∞) = 0                                                                                (3.3.6) 

The numerical computation is carried out by the solver ‘bvp4c’ with the help of the above 

transformed results.  

3.4 Results and Discussions 

To investigate the effects of flow feature parameters on the velocity profile 𝑓′(𝜉), 

temperature profile 𝜃(𝜉), temperature gradient profile 𝜃′(𝜉) and temperature gradient at 

the plate −𝜃′(0)numerical evaluation is carried out with the help of ‘bvp4c’ MATLAB 
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solver. The computed results are represented graphically for discussion to bring out clear 

physical insight into the flow problem.  

To validate the numerical method employed in the present work and to judge the 

accuracy of the obtained results, a comparison is carried out for 𝑓′′(0) and −𝜃′(0)with the 

published results of Dey and Nath (1981), and Bachok et al. (2013) with two different 

values of 𝜆 and other involved flow parameters. The obtained results of the present study 

are found in excellent accord with the earlier published results, as shown in Table 1. 

Table 3.1. Comparison of 𝑓′′(0) and −𝜃′(0) for two different values of 𝜆 with 𝑘1 =

δ =𝛽 = 0 with 𝑃𝑟 = 1. 

 Dey and Nath (1981) Bachok et al. (2013) Present Work 

𝜆 𝑓′′(0) −𝜃′(0) 𝑓′′(0) −𝜃′(0) 𝑓′′(0) −𝜃′(0) 

−0.1 0.350971 0.760608 0.350986 0.760823 0.3507 0.7608 

0.1 0.332920 0.593633 0.332920 0.593633 0.3329 0.5936 

 

Fig. 3.2 to 3.5 are plotted to illustrate the effects of 𝑘1, λ, δ, and 𝛽 on the velocity 

profile.  The velocity profile 𝑓′(𝜉) approaches to 1 very rapidly as 𝜉 →5 and thus taking 5 

as infinity appears to be justify the boundary conditions at infinity. The fluid motion 

accelerated with increasing values of visco-elasticity as seen from Fig. 3.2. The slip 

condition at the boundary allows a large amount of fluid slips along with the plate which 

in turn accelerates the fluid motion. Fig. 3.3 indicates that the rate of fluid flow increases 

with the rise of mixed convection controlling parameter as it gives suitable buoyancy 

impact with slip factor. Fig. 3.4 demonstrate that the rate of fluid transport at the starting 

point shows no variation but soon starts decreasing for a while and then accelerated. With 

distance and rise in slip factor, the sufficient fluid slip through the plate and thus it increases 

the fluid velocity finally. The fluid velocity rises with the growth of 𝛽 as noticed from 

Fig.3.5. The reason behind this is the effect of buoyancy force which arises because of the 

positive mixed convection parameter in presence of slip factor. 

The impacts of 𝑘1, λ, 𝑃𝑟, 𝛽 on the fluid temperature profile are demonstrated from Fig. 

3.6, 3.7, 3.9, and 3.10. It is observed that with the growth of 𝑘1, λ, 𝑃𝑟, and 𝛽, the fluid 

temperature diminish. As fluid becomes more viscous with increasing 𝑘1 it hinders the 

transition of thermal energy to the fluid easily and thus temperature curves decrease. The 
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growth of λ lowered the thermal diffusivity of the fluid which reduces the energy capability 

and the thickness of thermal boundary layer. The relative thickness of the thermal boundary 

layer controlled by 𝑃𝑟 and its growth reduces the thermal diffusivity and thus temperature 

reduces. The fluid temperature reduces with rising values of thermal slip parameter 𝛽 as 

less amount of heat is deported from the plate to the fluid. The fluid temperature gradually 

lowered with increasing distance from the origin and thus there is a transition of thermal 

energy from the fluid towards the plate. Fig.3.8 shows that the temperature of the fluid 

accelerates with the growth of the velocity slip factor. As more fluid passes through the 

plate with an increasing velocity slip factor, it enhances the fluid temperature. 

The effects of flow feature factors 𝑘1, λ,𝛿, 𝑃𝑟, and 𝛽 on the magnitude of the rate of 

temperature are explained from Fig. 3.11 to 3.15. The direction and the rate at which 

temperature changes about the certain locations of the fluid termed as temperature gradient. 

Figures 3.11, 3.12, and 3.14 signifies that the rate of change of temperature gets lowered 

initially with the growth of 𝑘1, λ, 𝑃𝑟 but gradually enhances for rising values of stated 

parameters and distance. The deviation of the rate of change of temperature is observed due 

to dominant viscosity factor and buoyance effects. But from Fig. 3.13 reverse behavior of 

the temperature gradient is noticed for increasing velocity parameter. Fig. 3.15 shows that 

the growth of the thermal slip parameter changes the rate of direction of the temperature 

from the plate to the fluid. 

The graphical representation of the rate of change of temperature on the plate for 

variation of 𝑘1against δ and 𝛽 are plotted in Fig.16 andFig. 3.17. Fig. 3.16 indicates that 

the changing rate of temperature at the plate increases with the growth of 𝑘1 and δ. The 

rising values of visco-elasticity and velocity slip factors help to enhance the amount of 

thermal transition of heat from the fluid to the vertical plate. Fig.3.17 indicates that the 

temperature gradient at the plate rises with the growth of 𝑘1 but diminishes with increasing 

values of 𝛽. The heat transfer can be controlled by adjusting the thermal slip factor. 
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Fig. 3.2: Velocity curves 𝑓′(𝜉) against 𝜉 for k1 

 

 

Fig. 3.3: Velocity curves  𝑓′(𝜉) against 𝜉 for λ 

 

 

Fig. 3.4: Velocity curves 𝑓′(𝜉)  against 𝜉 for δ 
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Fig. 3.5 Velocity curves  𝑓′(𝜉) against 𝜉 for 𝛽 

 

 

Fig. 3.6 Temperature curves  𝜃(𝜉)  against 𝜉  for k1 

 

Fig. 3.7 Temperature curves  𝜃(𝜉)  against 𝜉  for λ 
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Fig. 3.8 Temperature curves  𝜃(𝜉)  against 𝜉  for δ 

 

 

Fig. 3.9: Temperature curves  𝜃(𝜉)  against 𝜉  for 𝑃𝑟 

 

Fig. 3.10 Temperature curves  𝜃(𝜉)  against 𝜉  for 𝛽 
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Fig. 3.11: Temperature gradient curves  𝜃′(𝜉)  against 𝜉  for 𝑘1 

 

 

Fig. 3.12: Temperature gradient curves  𝜃′(𝜉)  against 𝜉  for 𝜆 

 

Fig. 3.13: Temperature gradient curves  𝜃′(𝜉)  against 𝜉  for 𝛿 
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Fig. 3.14: Temperature gradient curves  𝜃′(𝜉)  against 𝜉 for 𝑃𝑟 

 

 

Fig. 3.15: Temperature gradient curves  𝜃′(𝜉)  against 𝜉 for 𝛽 

 

Fig. 3.16: Variation of −𝜃′(0)  against 𝛿  for 𝑘1 
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Fig. 3.17: Variation of  −𝜃′(0)  against 𝛽  for 𝑘1 

 

3.5 Conclusions 

The motion of steady mixed convective visco-elastic incompressible boundary layer fluid 

over a vertical plate along with slip factor at the boundary has been analyzed. The impact 

of dominant flow feature factors over velocity, temperature, and temperature gradient are 

studied. The numerical computation is performed with finite difference method based 

‘bvp4c’ solver and results are plotted for visualization and discussions. The fluid domain 

is highly influenced by the elastic-viscous, mixed convection, and slip parameters. The 

results reveal various aspects of the additional terms in the constitutive equations for the 

non-Newtonian visco-elastic fluid model as compared to the Newtonian fluid model. There 

is a lot of future scopes to extend this work. The unsteady case may be considered to study 

fluid motion under the same geometrical conditions. The different analytical and numerical 

methods can also be applied to compare the obtained results. The simulation of the 

numerically computed results may give a clear picture of the fluid flow. 

 

 

 

 


