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Chapter 4 

Impact of Suction or Blowing on Elastico-Viscous 

Hydromagnetic Fluid Flow Past a Stretching 

Permeable Sheet  

 

4.1 Introduction 

The stretching sheet problem in fluid dynamics find its place in industry because of it’s 

numerous important applications. This type of problem often noticed in industry in 

manufacturing unit, such as rolling of artificial fibres, extraction of polymer sheet, glass-

fibre production, crystal growing, paper production, crystal growing and so on. 

Sakiadis [65] investigated the flow of boundary layer maintaing constant velocity past 

a moving rigid surface of it’s own plane.  The viscous boundary layer fluid flow past a 

linearly stretching sheet taking similarity transformation examined by Crane [66] 

analytically. Gupta et al. [67] has extended the heat transition and mass transport analysis 

of Crane's problem with suction or blowing effect. Parlov [68] presented the hydromagnetic 

viscous fluid past a plane deformed surface. Chakrabarti et al. [69] investigated the 

magnetohydrodynamic Newtonian fluid past a streatching sheet taking uniform 

temperature. 
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Crane’s preliminary study further extended by research scientists like Vajravelu and 

Rollins [70], Chamkha [71], Zhang and Wang [72], Khan and Pop [73], Mahmoud [74], 

Hayat et al. [75] , Chauhan and Olkha [76], Mahapatra et al. [77] and Ishak et al. [78] 

taking fluids of different classes with  different physical situations. The above-mentioned 

works are noteworthy because in each paper undeniable important properties of boundary 

layer and the heat transition because of motion of the sheet are explained. He [79-82] laid 

the mathematical foundation of HPM. His work inspired many researchers at later stage to 

solve coupled nonlinear differential equations involved in fluid dynamics problems with 

this method.  

The present study aims to examine the boundary layer electrically conducting 

hydromagnetic steady elastico-viscous fluid flow along a stretching permeable sheet using 

Homotopy Perturbation method. Walters liquid (Model B/) exhibits the elastico-viscous 

property in the fluid. To study the impact of elastico-viscous parameter, magnetics 

parameter, suction and blowing parameters in the flow field, the analytically computed 

results of velocity expression and shear stress are plotted to bring out physical insight of 

the problem.   

4.2 Mathematical Formulation 

The steady electrically conducting hydromagnetic elastico-viscous boundary layer fluid 

flow along a stretching permeable sheet is considered. Using usual boundary layer and 

MHD approximation, the fluid motion governed by: 
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The last term of equation (4.2.2) is the contribution of electromagnetic force termed as 

Lorentz force under MHD approximation. 
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Fig. 4.1 Geometrical model of flow problem  

The approximate boundary conditions are:  

𝑢 = 𝑈𝑤 = cx ,   𝑣 = 𝑣𝑤 at  y = 0  ;    𝑢 = 0 as  𝑦 → ∞                                                    (4.2.3) 

where  𝑈𝑤 is the stretching velocity, c is the stretching constant with 𝑐 > 0. Here 𝑣𝑤 is a 

specified distribution of suction (𝑣𝑤 < 0) or, blowing (𝑣𝑤 > 0). 

Similarity solution of the above system of equations are: 

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −(𝑐𝜈)
1
2𝑓(𝜂)                                                                                     (4.2.4) 

where  𝜂 = 𝑦 (
𝑐

𝜈
)

1

2
. 

Using (4.2.4) in (4.2.2), the self-similar equations obtained as: 

𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′′(𝜂) − [𝑓′(𝜂)]2 − 𝑀𝑓′(𝜂)

− 𝑘1[2𝑓′(𝜂)𝑓′′′(𝜂) − [𝑓′′(𝜂)]2 − 𝑓(𝜂)𝑓′v(𝜂)] = 0                            (4.2.5) 

where 𝑀 =
σ𝐵1

𝑐ρ
 and 𝑘1 =

k0 𝑐

ρ𝜈
 are the modified magnetic and elastico-viscous parameter. 

The boundary condition (4.2.3) reduces to  

𝐴𝑡  𝜂 = 0, 𝑓(𝜂) = 𝑆, 𝑓′(𝜂) = 1   ; 𝑎𝑠  𝜂 → ∞ 𝑓(𝜂) = 0                                         (4.2.6) 

where 𝑆 = −
𝑣𝑤

(𝑐𝜈)
1

2
⁄  represents suction for 𝑣𝑤 < 0  and blowing for 𝑣𝑤 > 0. 

4.3 Method of Solution 

Using Homotopy Perturbation Method, equation (4.2.5) is constructed as follows: 

(1 − 𝑝)(𝑓′′′ − 𝑀𝑓′) + 𝑝[𝑓′′′ − 𝑀𝑓′ + 𝑓𝑓′′ − 𝑓′2
− 𝑘1(2𝑓′𝑓′′′ − 𝑓𝑓′v − 𝑓′′2

)]   

= 0                                                                                                                    (4.3.1) 
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We consider  𝑓 = 𝑓0 + 𝑝𝑓1 + 𝑝2𝑓2 + ⋯ … … … … , and thus equation (4.3.1) becomes 

(1 − 𝑝)[(𝑓0
′′′ + 𝑝𝑓1

′′′ + 𝑝2𝑓2
′′′ + ⋯ … … ) − 𝑀(𝑓0

′ + 𝑝𝑓1
′ + 𝑝2𝑓2

′ + ⋯ … . . )]
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′′ + ⋯ … … )2}]

= 0                                                                                                                    (4.3.2) 

Terms independence of p gives, 

𝑓0
′′′ − 𝑀𝑓0

′ = 0                                                                                                                          (4.3.3)  

Transformed conditions at boundary are, 

𝑓0(0) = 𝑆,   𝑓0
′(0) = 1,   𝑓0

′(∞) = 0                                                                                     (4.3.4)         

Term containing only p gives,          

 𝑓1
′′′ − 𝑀𝑓1

′ = −𝑓0𝑓0
′′ − 𝑓0

′2 + 𝑘1(2𝑓0
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iv − 𝑓0

′2)                                                (4.3.5) 

Transformed conditions at boundary are, 

𝑓1(0) = 0,    𝑓1
′(0) = 0,   𝑓1

′(∞) = 0                                                                                    (4.3.6)            

Terms containing only 𝑝2 gives, 

𝑓2
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′ = −𝑓0𝑓1
′′ − 𝑓1𝑓0

′′ + 2𝑓0
′𝑓1

′  + 𝑘1(2𝑓0
′𝑓1

′′′ + 𝑓1
′𝑓0

′′′ − 𝑓0𝑓1
iv − 𝑓1𝑓0

iv

− 2𝑓0
′′𝑓1

′′)                                                                                                        (4.3.7) 

Transformed conditions at boundary are,  

𝑓2(0) = 0, 𝑓2
′(0) = 0, 𝑓2

′(∞) = 0                                                                                 (4.3.8) 

Solving equations (4.3.3), (4.3.5), 𝑎𝑛𝑑 (4.3.7) with the help of boundary conditions 

 (4.3.4), (4.3.6), 𝑎𝑛𝑑 (4.3.8), we get 

𝑓0 = 𝐴1 + 𝐴2𝑒−√𝑀 𝜂                                                                                                                 (4.3.9)  

𝑓1 = 𝐷8  + 𝐷9 𝑒−√𝑀 𝜂 + 𝐾2(𝐷5 𝑒−2√𝑀 𝜂 + 𝐷6 𝑒−√𝑀 𝜂)                                                 (4.3.10) 
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𝑓2 = 𝐷33 + 𝐷34𝑒−√𝑀 𝜂 + 𝐷28 𝑒−2√𝑀 𝜂

+ 𝐾2(𝐷29 𝑒−2√𝑀 𝜂 + 𝐷30 𝑒−2√𝑀 𝜂 + 𝐷31 𝑒−3√𝑀 𝜂)                             (4.3.11) 

Hence,   

𝑓(𝜂) = 𝐴1 + 𝐴2𝑒−√𝑀 𝜂 + 𝑝 [𝐷8  + 𝐷9 𝑒−√𝑀 𝜂 + 𝐾2(𝐷5 𝑒−2√𝑀 𝜂 + 𝐷6 𝑒−√𝑀 𝜂)]

+ 𝑝2 [𝐷33 + 𝐷34𝑒−√𝑀 𝜂 + 𝐷28 𝑒−2√𝑀 𝜂

+ 𝐾2(𝐷29 𝑒−2√𝑀 𝜂 + 𝐷30 𝑒−2√𝑀 𝜂 + 𝐷31 𝑒−3√𝑀 𝜂)] +. … … …         (4.3.12) 

Differentiating equation (4.3.12) with respect to 𝜂, we obtain 

𝑓′(𝜂) = 𝐷35𝑒−√𝑀 𝜂 + 𝑝 [𝐷36 𝑒−√𝑀 𝜂 + 𝐾2(𝐷37 𝑒−2√𝑀 𝜂 + 𝐷38 𝑒−√𝑀 𝜂)]

+ 𝑝2 [𝐷39𝑒−√𝑀 𝜂 + 𝐷40 𝑒−2√𝑀 𝜂

+ 𝐾2(𝐷41 𝑒−2√𝑀 𝜂 + 𝐷42 𝑒−2√𝑀 𝜂 + 𝐷43 𝑒−3√𝑀 𝜂)] +. … … … … … (4.3.13) 

The constants of the above equations are obtained but not given here for the sake of 

brevity. 

4.4 Results and Discussions 

The expression for approximate skin friction coefficient is given by 

The skin friction at the sheet is obtained as 

𝜏 = 𝑓′′(0) + 𝑘1{𝑓(0)𝑓′′′(0) + 3𝑓′(0)𝑓′′(0)}                                                                  (4.4.1) 

The numerical computations for the velocity component and skin friction at the sheet 

are obtained by analytic method. The Matlab software is used for computation and 

graphical repressentation to observed the effects of different flow parameters viz., visco-

elastic parameter k1, magnetic parameter M and suction or blowing parameter S. The 

elastico-viscous effect is displayed by the parameter k1. Setting k1=0, it is possible to 

obtain the results for Newtonian fluid.  

Figure 4.2 illustrates the velocity distribution with variation of elastico-viscous 

parameter k1 for 𝑆 = 0 with 𝑀 = 4,  𝑝 = 1. With the rising magnitude of elastico-viscous 

parameter,  the motion of the fluid diminishes and gradually vanishes with progressive 
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distance from the sheet. Further, it is noticed that velocity diminishing rate is higher for 

non-Newtonian case in comparison with Newtonian case. 

The velocity distribution with variation of magnetic parameter is depicted in figure 4.3 

for 𝑆 = 0 with k1 = 0.1,  𝑝 = 1. With the growth of M, velocity reduces for fixed 𝜂. The 

magnetic field exerts Lorenz force which retards the fluid motion. With increasing distance, 

the velocity vanishes. The thickness reduces for boundary layer with the growth of M which 

can be found from velocity curves. 

Figures 4.4 and 4.5 depict the velocity profile against  𝜂 across the boundary layer for 

suction and blowing parameter variation for fixed values of  𝑀 = 4, k1 = 0.1 and  𝑝 = 1. 

It has been observed that the velocity curves rise with the growth of applied suction but 

diminishes for the growth of blowing. Thus, blowing helps to diminish the thickness of 

boundary layer but suction shows opposite behaviors.  

Figures 4.6 to 4.8 reveal the shearing stress at the stretching sheet against M and S for 

different values of k1. Figure 4.6 demonstrates that the shearing stress reduces initially for 

fixed values of M for elastico-viscosity growth. But it enhances with the rising magnitude 

of magnetic parameter 𝑀 = 4 onwards. Figure 4.7 illustrates that the shearing stress 

enhances in the beginning as elastic-viscous parameter rises for fixed 𝑀 = 4, k1 = 0.1 and  

𝑝 = 1 , but it reduces gradually as applied suction increases.   Further, figure 8 displays 

that the shearing stress diminishes in the beginning with rising magnitude of elastico-

viscous parameter for fixed 𝑀 = 4, k1 = 0.1 and  𝑝 = 1 but it enhances gradually as 

applied blowing increases. 

 

    Fig. 4.2 Velocity profile  𝑓′(𝜂)  against 𝜂  for variation of 𝑘1 
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 Fig. 4.3 Velocity profile 𝑓′(𝜂)  against 𝜂 for variation of M 

 

Fig. 4.4 Velocity profile 𝑓′(𝜂)  against 𝜂 for variation of S (suction) 

 

 

Fig. 4.5 Velocity profile 𝑓′(𝜂)  against 𝜂 for variation of S (blowing) 
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Fig. 4.6 Skin friction curves 𝜏 against M for variation of 𝑘1 

 

 

Fig. 4.7 Skin friction curves 𝜏 against S (suction) for variation of 𝑘1 

 

 

Fig. 4.8 Skin friction curves 𝜏  against S (blowing) for variation of 𝑘1 
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4.5 Conclusion 

The highly coupled nonlinear differential equations involved in this paper solved by 

homotopy perturbation technique. This method has advantage over the regular perturbation 

method. The effects of visco-elastic, magnetic and suction or blowing parameters on the 

velocity components and skin friction are investigated graphically. It is noticed that the 

flow field is significantly influenced by the elastic-viscous, magnetic and suction or 

blowing parameters A future study investigating the flow simulation of the problem would 

be very interesting. Besides this, numerical method can also be implemented to find the 

solution of the same problem and the results obtained can be compared by analytical 

method. The flow simulation may give the clear picture of the problem. 

The present study reveals the following important points: 

 The fluid velocity reduces for elastico-viscous fluid as compared to Newtonian fluid 

(k1 = 0). 

 Setting k1 = 0 provides all results corresponding to Newtonian fluid. 

 The fluid velocity gradually reduces and ultimately vanishes with progressive 

distance for variations of elastico-viscous and magnetic parameters. 

 The boundary layer thickness diminishes with the growth of magnetic parameter. 

 The velocity profile enhances as applied suction rises whereas reverse pattern is 

observed for blowing. 

 The boundary layer thickness reduces when blowing parameter acts on the flow 

field but suction acts oppositely 

 

 

 


