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5 
Chapter 5 

 

Reactive Mass Diffusion in Viscoelastic Fluid Past a Stretchable 

Exponential Sheet Due to Variation in Wall Concentration 

 

5.1 Introduction 

The viscous layer flow that extends to the expandable surface is an important problem 

arising from fluid mechanics as a result of its extensive applications in industrial 

manufacturing, such as polymer sheet extraction, paper production, fiber glass 

manufacturing, metal processing, wire drawing, etc. Crane [66] firstly studied the exact 

solution in the closed-form of a steady flow boundary of the membrane of viscous fluid 

over a simple stretchable plate. Many scientists later built on Crane's work, including 

Pavlov [68], Gupta and Gupta [83], Chen and Char [84], who studied thermal and mass 

transport mechanisms with magnetic field influence of different physical phenomena. 

Andersson [85] observed the hydromagnetic viscoelastic movement of fluid flow past an 

expandable sheet. The hydromagnetic heat transport flow past a stretchable layer was 

explained by Char [86]. El-Aziz [87] investigated the heat transition and mass transport of 

temperature dependent viscous fluid along with thermal conductivity as it passed through 

a continuously stretching sheet with Ohmic heating. 
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The mass diffusion caused by chemical reactions in the boundary layer has numerous 

uses in chemical engineering, fibrous insulation, and atmospheric flows. The reactive 

diffusion process of species through the boundary layer was defined by Chambre and 

Young [88]. Stan [89] studied boundary layer flow and chemical surface interactions 

together. In addition, the impact of chemical reaction on fluid passing over a flat surface 

was also examined in many articles [90-94]. 

The flow through a stretchable surface is induced by the flat surface's linear stretching 

velocity. However, despite being a very critical and constructive flow that occurs often in 

many manufacturing industries, such flow is rarely studied. Magyari and Keller [95] 

examined the heat transport through the boundary layer of an expandable sheet when the 

wall temperature varied exponentially. Khan and Sanjayanand [96] explored viscoelastic 

flow patterns and heat transmission along with a stretchable layer with viscous dissipation. 

Elbashbeshy [97] studied numerically the fluid motion and heat transmission of stretchable 

exponential sheets considering wall suction. Banerjee et al. [98] examined mass dissipation 

in the boundary layer with chemical reaction across an expandable exponential sheet with 

variable wall concentration.  

Nayak et al. [99] demonstrated the transition of thermal energy and and mass transport 

process for chemically reactive hydromagnetic viscoelastic fluid through boundary layer 

with source/sink. According to Singh and Kumar [100], the heat transition and mass 

transport process is affected by chemical reactions in a micropolar fluid past a porous 

channel with thermal radiation and heat generation. Mjankwi et al. [101] studied the impact 

of varying fluid characteristics on heat flux and mass absorption coefficient. Misra and 

Govardhan [102] investigated the impact of chemical reactions on the boundary layer flow 

of nanofluids, as well as fluctuations in heat transition and mass transfer.  

The mass diffusion in visco-elastic fluid through boundary layer past a stretchable 

exponential sheet with first order chemical reaction modeled by Walter Liquid (Model B/) 

is investigated in this paper. The species reaction rate and the concentration variation at the 

wall are taken as exponential forms. Employing similarity variables, equations guided fluid 

motion are reduced to self-similar type and then evaluated by solver ‘bvp4c’ of MATLAB. 

The numerically obtained results are graphically presented. The influence of flow feature 

factors on the concentration profiles is analyzed from graphs from a physical standpoint.  
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5.2 Mathematical Formulation 

The steady two-dimensional elastico-viscous boundary layer fluid flow past a flat moving 

plate. The mass diffusion due to chemical reaction in non-Newtonian viscoelastic fluid 

through boundary layer past a stretchable exponential sheet with deviation in wall 

concentration is considered. The fluid motion, taking appropriate approximation of 

boundary layer, is guided by the below mentioned equations. 
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The corresponding boundary conditions are: 

𝑢 = 𝑈𝑤(𝑥),  𝑣 = 0  at  y = 0;    𝑢 → 0 as 𝑦 → ∞                                                              (5.2.4) 

𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐶0𝑒
(

𝜆𝑥
2𝐿

)
at  y = 0  ;   𝐶 → 𝐶∞  as  𝑦 → ∞                                               (5.2.5) 

The velocity expansion of the sheet 𝑈𝑤(𝑥) is given by 

𝑈𝑤(𝑥) = 𝑎𝑒(
𝑥
𝐿

)                                                                                                                          (5.2.6) 

To obtain self-similar forms of above equation, the following similarity transformation are 

introduced: 
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 The stream function Ψ connected with velocity components as u =
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∂y
 and 𝑣 = −

𝜕𝛹
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 . 

Using relation (5.2.7) in (5.2.2) and (5.2.3), the following set of self-similar equations are 

obtained: 

𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′′(𝜂) − 2(𝑓′(𝜂))
2

− 𝑘1 [2𝑓′(𝜂)𝑓′′′(𝜂) −
1

3
𝑓(𝜂)𝑓′v(𝜂) − (𝑓′′(𝜂))

2
] =

0                                                                                                                                                   (5.2.8)  



 62 

𝜙′′(𝜂) + 𝑆𝑐(𝑓(𝜂)𝜙′(𝜂) − 𝜆𝑓′(𝜂)𝜙(𝜂) − 𝛽𝜙(𝜂)) = 0                                                   (5.2.9) 

where, 𝑘1 =
3k0 𝑎

2𝜇𝐿
𝑒(

𝑥

𝐿
)
 is the modified visco-elastic parameter, 𝑆𝑐 =

𝜈

𝐷
 is the Schmidt 

number, 𝛽 =
2𝐿𝑅0

𝑎
 is the reaction rate parameter. 

Transformed condition at the boundary are: 

𝑓(𝜂) = 0,  𝑓′(𝜂) = 1 𝑎𝑡  𝜂 = 0 ;        𝑓′(𝜂) = 0,  𝑓′′(𝜂) = 0 𝑎𝑠  𝜂 → ∞                  (5.2.10) 

𝜙(𝜂) = 1 𝑎𝑡  𝜂 = 0 ;  𝜙(𝜂) = 0 𝑎𝑠 𝜂 → ∞                                                                     (5.2.11)                               

5.3 Method of Solution 

The numerical method ‘bvp4c’ of Matlab is a collocation method used to solve differential 

equation of the form 
𝑑𝑦

𝑑𝑥
= g(x, y, q), x ∈ [𝑎, 𝑏] with non-linear boundary conditions 

h(y(a), y(b), q) = 0, where vector q is a unknown parameter. This method is an effective 

solver different from the shooting method and it is based on an algorithm. It can compute 

inexpensively the approximate value of  𝑦(𝑥) for any x in [𝑎, 𝑏] taking boundary conditions 

at every step. In this method, the infinity conditions at the boundary are replaced with a 

finite point which reasonably satisfies the given problem. 

The self-similar differential equations (5.2.8) and (5.2.9) are transformed to first order 

differential equations and then solved by using ‘bvp4c’MATLAB solver as follows: 

𝑓 = 𝑓1, 𝑓′ = 𝑓2,  𝑓′′ = 𝑓3, 𝑓′′′ = 𝑓4 , 𝜙 = 𝑓5, 𝜙′ = 𝑓6                                                       (5.3.1) 

From (5.3.1), we can write 

𝑓1
′ = 𝑓2, 𝑓2

′ = 𝑓3, 𝑓3
′ = 𝑓4, 𝑓5

′ = 𝑓6                                                                                          (5.3.2) 

Making use of (5.3.1) and (5.3.2), the equations (5.2.8) and (5.2.9) can be written as: 

𝑓4
′ =

3

𝑓1
[2𝑓2𝑓4 − (𝑓3)2 − (

1

𝑘1
) {𝑓4 + 𝑓1𝑓3 − 2(𝑓2)2}]                                                      (5.3.3) 

𝑓6
′ = −𝑆𝑐(𝑓1𝑓6 − 𝜆𝑓2𝑓5 − 𝛽𝑓5)                                                                                              (5.3.4) 

and the applicable boundary conditions (6.2.10) and (6.2.11) reduces as follows: 

𝑓1(0) = 0, 𝑓2(0) = 1, (0) 𝑎𝑛𝑑  𝑓2(∞) = 0, 𝑓3(∞) = 0                                                   (5.3.5) 

𝑓5(0) = 1  𝑎𝑛𝑑  𝑓5(∞) = 0                                                                                                    (5.3.6) 
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5.4 Results and Discussion 

To find the impact of flow feature factors viz., the viscoelastic parameter 𝑘1, the Schmidt 

number 𝑆𝑐, the reaction rate parameter 𝛽 and the parameter 𝜆, computation is carried out 

numerically using ‘bvp4c’ solver. To understand the behaviour of diffusion owing to 

chemical reaction on the viscoelastic fluid through boundary layer past a stretchable 

exponential sheet, the computed results are plotted in Fig. 5.1–5.8. 

To assess the precision of the numerically acquired findings produced by ‘bvp4c' and 

to validate the present work, the skin friction coefficients  𝑓′′(0) and 𝑓(∞) are computed 

without taking into account viscoelastic characteristics. The present work yields  𝑓′′(0)= 

1.28180838 and  𝑓(∞) =0.90564328, which are well accord with the results found by 

Magyari and Keller (1999) ( 𝑓′′(0) = 1.281808 and  𝑓(∞)= 0.905639) and Banerjee et al. 

(2018) ( 𝑓′′(0) = 1.281833 and  𝑓(∞)= 0.90564328). 

At first, our focus is concentrated on the impact of viscoelastic factor 𝑘1 on chemically 

reactive mass diffusion. The reactive concentration curves 𝜙(𝜂) for variation of 𝑘1 are 

presented in Fig. 5.1 and Fig.  5.2 for 𝜆 = 1 and  𝜆 = −1. From the figures, it is observed 

that for both direct and inverse variations of exponential surface concentration, the 

dimensionless concentration at a location and the thickness of solute boundary layer drop 

gradually with growing 𝜂 but slightly enhancing pattern is observed for rising values of 𝑘1. 

Secondly, we look into the effect of Schmidt number 𝑆𝑐 on chemically reactive mass 

diffusion. The reactive concentration curves 𝜙(𝜂) for variation of  𝑆𝑐 are presented in Fig. 

5.3 and Fig. 5.4 for 𝜆 = 1 and 𝜆 = −1. It is noticed that for both direct and inverse 

variations of exponential surface concentration, the concentration of the fluid reduces 

rapidly at every point and the boundary layer thickness diminishes as 𝑆𝑐 enhances. The 

growth of Schmidt number diminishes the diffusion coefficient and thus enhances the mass 

transfer rate. As a result, the thickness of the species boundary layer is reduced. 

Next, the changes in concentration curves 𝜙(𝜂) for variation of reaction rate parameter 

𝛽  are discussed. The concentration curves 𝜙(𝜂) for different values of  𝛽 are exhibited in 

Fig. 5.5 and Fig. 5.6 for first order chemical reaction for direct and inverse variations of 

exponential wall concentration distribution. In both situations, the concentration at a point 

diminishes with the growth of reaction rate. Also, the rising value of 𝛽, reduces the 

thickness of species boundary layer. 
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The impact of the parameter  𝜆 which is related to wall concentration distribution is 

very significant in controlling the reactive mass diffusion. In Fig. 5.7 and Fig. 5.8, the 

reactive species profiles  𝜙(𝜂) are depicted for several values of 𝜆. Out of which, in Fig. 

5.7 all values of 𝜆 are non-negative, whereas in Fig. 5.8 all are non-positive. From Fig. 5.7, 

it is noticed that the concentration slightly enhancing as 𝜆 enhances and the thickness 

species boundary layer slightly increased with 𝜆. But the concentration of the fluid 

diminishing with increasing 𝜂.  On the other hand, for negative variation of 𝜆, the 

concentration at fixed point diminishes for higher negative values of 𝜆. Hence, it can be 

understood that below a certain value of  𝜆 < 0, absorption of mass occurs at the stretchable 

sheet and it increases with the growing magnitude of 𝜆 < 0. As a consequence, the 

thickness of species boundary layer enhances with the rising magnitude of 𝜆 <0. 

 

 

Fig. 5.1 Concentration curves 𝜙(𝜂) for variation of 𝑘1with 𝜆 > 0 

 

Fig. 5.2 Concentration curves 𝜙(𝜂) for variation of 𝑘1with 𝜆 < 0 
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Fig. 5.3 Concentration curves 𝜙(𝜂) for variation of 𝑆𝑐 with 𝜆 > 0 

 

 

Fig. 5.4 Concentration curves 𝜙(𝜂) for variation of 𝑆𝑐 with 𝜆 < 0 

 

 

Fig. 5.5 Concentration curves 𝜙(𝜂) for variation of 𝛽 with 𝜆 > 0 
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Fig. 5.6 Concentration curves 𝜙(𝜂) for variation of 𝛽 with 𝜆 < 0 

 

 

Fig. 5.7 Concentration curves 𝜙(𝜂) for variation of 𝜆 > 0 

 

 

Fig. 5.8 Concentration curves 𝜙(𝜂) for variation of 𝜆 < 0         
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5.5 Conclusion 

Mass diffusion with chemical reaction in viscoelastic fluid flow through boundary layer 

induced by a stretchable exponential sheet is investigated. The chemical reaction rate and 

distribution of wall concentration for the species are taken as variables. Utilizing similarity 

variables, the fluid guided equations are reduced into nonlinear self-similar forms and then 

evaluated by employing MATLAB solver ‘bvp4c’. The present investigation brings out the 

fact that growing visco-elastic parameter enhances the fluid concentration. Also, as the 

Schmidt number rises, the fluid concentration and the thickness of species boundary layer 

significantly reduce and the reaction rate factor has a comparable effect to the Schmidt 

number. The variable wall concentration, characterized by the parameter 𝜆, controls the 

mass transfer. Most importantly, below a certain value of 𝜆, mass absorption occurs at the 

sheet. This model study is intended to serve as inspiration for future experimental studies.  

Fluid simulation can assist in the visualization of a flow problem.  

 

 

 

 


