Chapter 3
Uniserial and Bezout character of
distributive N-group

This work has been published as “Uniserial and Bezout character of distributive” in the

journal “Bull. Cal. Math. Soc.”, 115 (6), 717-730, (2023) .
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Uniserial and Bezout character of

distributive N-group

3.1 Introduction

The essential definitions and outcomes of DN-groups are the main underlying
ideas of this chapter. Stephenson [65] analyzed the notion of modules with distributive
lattices of submodules by showing that if M is a D-module and @ € END(M), then ev-
ery submodule P of M can be uniquely expressed as P=A+Aa = BNBa~'. Davidson
[66] investigated the distributive homomorphism of rings and modules. This paved the
path for researchers such as Victor Camilo [67] and Erdogdu [68] to investigate the con-

cepts of distributive modules with diverse features. The relationship between D-module
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and annihilators of a module is derived by Camilo and different properties of the direct
sum of D-modules are studied by Erdogdu. Tuganbaev [69] together with Mikhalev
[1] investigated several properties of distributive rings and modules by defining distinct
characteristics of uniserial and Bezout modules. They established the relationships be-
tween the uniserial and Bezout modules. The arithmetical ideals of rings, right prufer
rings and noetherian rings were also studied by them. Endomorphism rings and semi-
distributive rings were defined by Tuganbaev [70] to study the direct sum of distributed
modules. Here, the above ideas of D-modules, uniserial and Bezout modules have been

extended to the near-ring group (N-group).

3.2 Uniserial N-groups

Definition 3.2.1. E is referred to as an uniserial N-group if any two of its N-subgroups

are comparable to each other.

Example 3.2.1. Example of an uniserial N-group.

Let N =E ={0,s,d,t} be the Klein’s 4-group, which are given by the following table:-
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Then (E,+,.) is a near-ring as well as N-group over itself.
Also P={0},B=1{0,s} <y Eas NP C P,NB C B suchthat P CBCE.

This shows that E is an uniserial N-group.
Now, consider the following examples-

Example 3.2.2. [60] Let N = E = {0,s,d,t} be the Klein’s 4-group, which are given

by the following table:-
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0 s d ot +]0 s d ¢
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Then (E,+,.) is a near-ring as well as N-group over itself.

Also Ns ={0,s},Nd = {0,d},Nt = {0,t} are N-subgroups as well as ideals of E.

Example 3.2.3. [60] Let N = E = {0,a,b,c,x,y} is a near-ring as well as an N-group

over itself under addition and multiplication as follows -

Then (E,+,.) is a near-ring as well as N-group over itself.
Also Ax = Ay = {0,a},Bx = By = {0,b},Cx = Cy = {0, ¢} are ideals of E, where A =
{0,a},B=1{0,b},C = {0,c} are N-subgroups of E.

The N-subgroups mentioned above have a common property that every principal
N-subgroups are ideals.
So, confine our discussion on N-group restricted in the sense that every princi-

pal N-subgroup is an ideal .

Proposition 3.2.1. E is a DN-group if and only if N(q+ g) = N¢qNN(q+g) + NgN

N(q+g),Vqg€E.

Proof : Suppose E is DN-group.
Now, n(q+g) —ng € Ng, for any n € N [ since Ng <E]
=n(q+g) € Ng+Ng
= N(g+g) SNg+Ng
= N(g+g) = (Ng+Ng)NN(q+g).
Then NgNN(qg+g)+ NgNN(g+g)
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= (Nq+Ng)NN(g+ g)l since E is DN-group]
=N(g+g)l since N(q+g) € Ng+Ngl.

Conversely, suppose that N¢NN(g+g) + NgNN(g+g) =N(q+g) forall ¢g,g € E.
Letc=qg+g.

Then ¢ € (D+B)NL, where D,B,L <y E suchthatc € L,q € D and g € B.
Clearly, DNL+BNL C(D+B)NL.

Now, Ne =N(qg+g) =NgNN(q+g) + N¢NN(q+g)=NgNNc+NgNNc CDNL+
BNL.

Since 1 € N,c € Nc¢, therefore c e DNL+BNL

So,(D+B)NL CDNL+BNL.

Thus, DNL+BNL=(D+B)NL.

Hence the result.

Proposition 3.2.2. Suppose E is a DN-group and s,b € E with NsONNb = 0. Then 3

¢ € N such that Neb+N(1 —c¢)s = 0.

Proof : Lett =s—+b, forany s,b € E.
Since E is a DN-group, by proposition 3.2.1,
N(s+b)=NsNN(s+b) + NbNN(s+b), forall s,b € E
= Nt = NsNNt+NbNNt.
Since 1 € N,t = 1.t € Nt.
Therefore, dc,d € N satisfying ¢t € Ns, dt € Nband c+d = 1
= ¢(t —s)—ct € Ns [ since Ns<{E]
= cb—ct €Ns
= cb € Ns [ since ct € Ns]
= cb € NsNND [ since cb € Nb]
= Ncb C NsNNb [ since ¢b € Ncb].
Similarly, ds € Nb .
Letp=1—candz=1—c—d,thenzt=0andz=p—d = ps=zs+ds.
Again, z(t —b) —zt € Nb

= zs —zt € Nb| since Nb < E|]




= z5 € Nb [ since zt = 0]

= ps=2z5+dseNb

= (l—c)s€Nb

= (1—c)s € NsNND

= N(1—c)s C NsNNb.

Thus, Ncb+N(1 —c¢)s C NsNNb

= Ncb+N(1—c¢)s =0 [since NsNNb = 0].

Proposition 3.2.3. If E is a DN-group over a local N and s,k € E. Then cither s € Nk

ork € Ns.

Proof : Since E is a DN-group, by proposition 3.2.2, gk € Ns, (1 —q)s € Nk for
gEN.
Since N is local, g or (1 —g) is invertible.
q is invertible implies k € Ns and (1 — g) is invertible implies s € Nk.

Thus, either s € Nk or k € Nss.

Proposition 3.2.4. If E is a DN-group with NsNNk =0V s,k € E, then 3 ¢ € N such
that ck = (1—c¢)s=0.

Proof : Since E is DN-group and s,k € E, by proposition 3.2.2, 9 ¢ € N such that
ck € NsNNk =0.
Therefore, ck = 0.
Also, (1—¢)s e NsNNk=0
So, (1 —¢)s=0.
Thus, ck= (1 —¢)s =0.

Proposition 3.2.5. If E' is a subfactor of a fully DN-group E and Ns' \"\Nk' = O’ for

s' k' € E', then 3 h,t € N suchthat | = h+t and hs' =tk' = 0.

Proof : Since E is fully DN-group, by proposition 2.3.1, the subfactor E’ of E is
also DN-group.
If ',k € E with Ns' "Nk’ = 0/, then 3 h € N such that hs’ = (1 — h)k’ = 0'[ by propo-
sition 3.2.4] .
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Letusputr=1—h.

Sol=h+tand hs' =tk' =0'.

Theorem 3.2.1. For any subfactor E' of E such that NS "\Nh' =0,V s',h' € E' and

l=p+q,ps’ =qh' =0,V p,q €N, then E is a DN-group.

Proof : Lets’, i’ be the natural images of s, 4 under the epimorphism E — W(:
E’) such that N "\Nh' =0 and ps' =qh' =0, 1 = p+¢q,p,q €N.
Now, ps' =0 = p el(s)
and gh' =0 = q ().

Since l e Nand 1 = p+qg € I(s')+(F'), we have
N CI(s)+1(H).

Therefore, N = I(s") + () [ since [(s"),I(h) C N].
Now, p € I(s')

= ps' =0

= p(s+NsNNh) =NsNNh

= ps+NsNNh=NsNNh

= ps € Nh

So,p € (Nh:s)

Therefore, I(s') C (Nh : s).

Also, g € (Nh :s)

=qs € Nh

= gs € NsNNh [ since gs € Ns]

= gs+NsNNh=NsNNh

= q(s+NsNNh)=NsNNh

=qgs' =0

So, g €l(s).

Therefore, I(s') = (Nh : s).

Similarly, I[(#') = (Ns : h).

Thus, N = (Nh:s)+ (Ns:h), fors,h € E.

So by theorem?2.3.1, E is a DN-group.
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Proposition 3.2.6. If E is a DN-group such that NfNNj =0, for any f,j € E, then

1(f)+1(j) =N.

Proof : Forany s,h € N,
s€l(f)

=sf=0eNfNNj

=sfENj

So,s € (Nj:f)

Therefore, [(f) C (N : f).
Now, he (Nj: f)

= hf € NfNNJ[ since hf € Nf]
= hf=0

So, h € I(f)

Therefore,(Nj : f) CI(f)
Thus,(Nj: f) = I(f).

Similarly, (Nf : j) = 1()).

By theorem 2.3.1, N = (Nj: f)+ (Nf: j).

Thus, N =1(f)+1(j).

Theorem 3.2.2. If E is a DN-group with Nh N\ Ns = 0, for any non zero h,s € E, then
the direct sum of Nh and N is cyclic and [(h+s) = [(h) NI (s).

Proof : Since E is a DN-group such that NhN Ns = 0, for any non zero h,s € E,
by proposition 3.2.4, 3 ¢ € N such that ch = (1 —c¢)s = 0.
From proposition 3.2.1, N(h+s) C Nh+ Ns.
Since N(h+s) < E, therefore
c(h+s—s)+cs€N(h+s)
= ch+cseN(h+s)
= Nh+Ns C N(h+s).
So, N(h+s) = Nh+ Ns
= N(h+s) =Nh®Ns[ since Nt Ns =0] .
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Thus, Nh & Ns is cyclic.

Letx € l(h+s)

So, x(h+s) =0.

Now, x(h+s) —xh € Ns [ since Ns <E]
= xh € NhNNs [ since xh € Nh]

= xh = 0[ since NANNs = 0]

So, x € I(h).

Similarly, x € I(s).

Therefore,x € I(h) N1(s).

Also, y € I(h)NI(s)
=yh=0andys =0

= yh=ys € NhNNs

= y(h+s)—ys € Nh|[ since Nh <E]
So, y(h+s) € Nh.

Again, y(h+s) —yh € Ns

= y(h+s) € Ns.

Therefore,y(h+s) € NtNNs =0

= y(h+s5)=0

So,y€l(h+s).

Thus, I[(h+s) = I(h) N I(s).

Theorem 3.2.3. Let E be a DN-group over the local N. If E is PNG, then it is an

uniserial N-group.

Proof: Leta,b € E.
Since E is DN-group over the local N, by propeosition 3.2.3, either a € Nb or b € Na.
Thus, Na C Nb or Nb C Na.
Since E is PNG, every N-subgroup is principal.

This shows that E is an uniserial N-group over the local N.
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Theorem 3.2.4. Let E be a PNG andV d,i € E, Nd+Ni <y E is cyclic. Thendp,q,l,s €
N such that (1 —1p)d € Ni,(1 —sq)i € Nd and if at least one of 1 —Ip, lq, | —sq, sp is

invertible, then E is an uniserial N-group.

Proof: Since,Vd,i € E, Nd+Ni <y E is cyclic, dp,q € N such that every element
of Nd + Ni is generated by a single element pd + qi.
Since i,d € Nd + Ni
= 3l,s € N such that d = [(pd + qi),i = s(pd + qi).
Now, I(pd + qi) — Ipd € Ni[ since Ni <E]
=d—Ipd € Ni
= (1 —1Ip)d € Ni.
If (1 —1Ip) is invertible, then d € Ni.
Also, s(pd + qi) — sqi € Nd
=i—sqi € Nd
= (1 —sq)i € Nd.
If (1 — sq) is invertible, then i € Nd.
Again, [(pd + gi) — lqi € Nd
= lqi € Nd[ Since d = I(pd + gi) € Nd] .
If lq is invertible, then i € Nd.
and s(pd + qi) — spd € Ni
= spd € Ni[ Since i = s(pd + qi) € Ni] .
If sp is invertible, then d € Ni.
Thus, if at least one of 1 —Ip, lq, 1 —sq, sp is invertible, thend € Niori € Nd = Nd C
Nior Ni C Nd.

Thus E is an uniserial N-group.

Theorem 3.2.5. Let E be a PNG over the local N and for any k,d € E such that Nk +

Nd is cyclic. Then E is an uniserial N-group.

Proof : Since Nk + Nd is cyclic N-group, by theorem 3.2.4, dp.q,r,s € N such
that(1 —rp)k € Nd, (1 —sq)d € Nk.
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Again, since N is local near-ring, (1 — rp) or rp is invertible.
If (1 —rp) is invertible, then k € Nd = Nk C Nd.
Suppose rp is invertible.

Since s € N, then s is either invertible or not invertible.
If s is invertible, then as in theorem 3.2.4

spk € Nd

= spk = gd, for some g € N

=k=(rp) Nrs~lgd

= ke Nd

= Nk C Nd.

If s is not invertible, then sqg is also not invertible.
Since N is local, 1 — sq is invertible.

So, (1 —sq)d € Nk

= (1 —sq)d = gk, for some g € N
=d=(1-sq)"'gkc Nk

=d € Nk

= Nd C Nk.

Thus the result.

Proposition 3.2.7. Let E be a DN-group. Then ¥ l,i € E, dq,p € N such that 1 =

q+ p,ql € Ni,pi € NI and conversely.

Proof : Since E is DN-group and /,i € E, then by proposition3.2.2, dp,q € N
satisfyingt =1 +i,pt e Nl,qt € Niand 1 = p+gq.
Since gt € Ni, qt = xi, for some x € N.
Since Ni <E,i € Ni,t €E, q(i—1t)+qt € Ni
= q(i—1) € Ni[ Since gt € Ni]
=gl € Ni[ Sincet =1+1] .
Similarly, pi € NI.
Conversely, let F,Q,K <y E such that c € (F + Q) NK.

Thenc=1+1i forsomel € F,ie¢ Qandc € K.
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Since NI <E, p(l+1i) — pi € NI

= p(l+1) € NI[ Since pi € NI]

= pc € NI [ Since c = [ +1]

= pc € NINNc| since pc € Nc]

= pc CFNK[Since Nl C F and Nc CK].
Similarly, gc € ONK.

Now, 1 =p+g¢

=c=pct+qce (FNK)+(QNK).
Again,letx e FNK+QNK
=y+z=x,ye€F,Kandz€ Q, K
=>y+z=x€F+Qandy+z=x¢€ K[ Since K <y E]
=xe(F+Q)NK.

Thus, (FNK)+(QNK)=(F+Q)NK.

Hence E is a DN-group.

Theorem 3.2.6. Let E be a PNG and (Nf : j)+ (Nj: f) =N, V f,j € E. Then
dq,p,r,s € N such that | = p+q,pj € Nf,qf € Nj. If at least one of p and q is

invertible, then E is an uniserial N-group.

Proof : Since (Nf: j)+ (Nj:f)=N,V f,j€E, by theorem 2.3.1, E is DN-
group.
So, by proposition 3.2.7, dp,qg.r,s € N suchthat | = p+q,qf € Nj,pj e Nf.
If p is invertible, then j € N f and if ¢ is invertible, then f € Nj.
So, either Nf CNjorNjC Nf.

Thus E is an uniserial N-group.

3.3 Bezout N-groups

Definition 3.3.1. E is called a Bezout N-group if any of its finitely generated N-subgroups

is cyclic.
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Example 3.3.1. Example of a Bezout N-group.

Let N = E = {0,s,k,t}. Then, the following table defines (N,+,.) as a near-ring-

0 s kot +]0 s k t
0j]0 0 0 O 0/]0 s k t
s|0 0 s s s|s O t k
k|0 s k k klk t 0 s
t|0 s t t tjt k s O

Also (E,+,.) is an N-group over itself.
ThenT ={0},L={0,s}, E <y E and T = NO,L = Ns, E = Nk = Nt.
This shows that T,L and E are cyclic N-subgroups.

Hence E is a Bezout N-group.

Theorem 3.3.1. E is a Bezout N-group if and only if V h,k € E ;3 s,q € N such that h

and k are generated by ( sh+qgk).

Proof: Let W = Nh—+ Nk, h,k € E and E be a Bezout N-group.

Then W is cyclic and there exits s,g € N such that every element of W is generated by
(sh + gk).

Since 1 € N, therefore h,k e W.

So, h and k are generated by ( sh + gk).

Conversely, suppose W be any 2-generated N-subgroup.

It is enough to establish that W is cyclic.

Now, for any x € W,
x=s"W +q'k, forsome s’,q' € N and i,k € W[ by definition of finitely generated] .
Now, W', k' € W.

= I’ k' are generated by (sh’ + gk’).

So, by assumption, /' = t(sh’ +qk') and k' = d(sh’' + gk’), for some t,d € N.
Therefore,x = s't(sh' + gk') + ¢'t(sh' + gk’)

= x = (st +q't)(sh' + gk’)[ by left distributive property]

= x is generated by (sh' +gk’).

This shows that W is cyclic generated by ( sh’ + gk’).
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Since the result of W can be extended to any finitely generated N-subgroups i.e finitely

generated N-subgroup is cyclic and so E is a Bezout N-group.
Theorem 3.3.2. Let E be a Bezout PNG over a local N, then E is an uniserial N-group.

Proof : Since E is a Bezout N-group, for any k,t € E, Nk+ Nt is cyclic N-subgroup.

Since N is local, E is an uniserial N-group| by theorem 3.2.5] .

Definition 3.3.2. E is referred to as a simple N-group if E = Nm, for any non-zero

meM, where M <y E.

Definition 3.3.3. An N-group is said to be semi simple if it is the sum of simple N-

subgroups or direct sum of simple N-subgroups.

Proposition 3.3.1. If E| and E, are cyclic N-subgroups of a DN-group E with E1 N

E> =0, then the direct sum of E| and E» is also a cyclic N-subgroup of E.

Proof : Suppose E; and E; are generated by g € E and g € E; respectively.
Then E; = Ng and E> = Ng.
Since E is a DN-group,
N(g+q)+NgnNNg = Ng+ Ng[ by theorem 2.3.2] .
Since E; and E; are disjoint, E1 N E, = 0 implies Ng+Ng = N(g+q).
Now, forany y € E| + E»,
y = e+ ey, where e; = n1g and e; = npq, for some ey € Eq, e € E> and ny,ny € N.
Therefore,y = nig+nyqg € Ng+Ng=N(g+q)
= y="h(g+q), forsome h € N.

This shows that direct sum of E and Ej is cyclic N-subgroup.

Corollary 3.3.1. As a consequence of proposition 3.3.1, the finite direct sum of disjoint

cyclic N-subgroups of a DN-group is also cyclic N-subgroups.

Definition 3.3.4. S <y E is referred to be Small in E if for any ideal D of E, S+ D =E

implies D = E.
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Proposition 3.3.2. If W <y E is small, then E is cyclic if and only if % is cyclic.

Proof : Let E be a cyclic N-group generated by x € E.
Now, for any k4+W € %, keE
= k = hx, for some h € N
= k+W =hx+W =h(x+W).
This shows that % is cyclic.
conversely, let % is cyclic generated by (x+W).
Letye E
=y+We %
= y+W =h(x+W), for some h € N
=>y+W=hx+W
= y=hx+m, forsomemecW.
Therefore,E = Nx+ W
= E = Nx [ since W is small in E] .

This shows that E is cyclic N-group.

Proposition 3.3.3. If E is a DN-group and M NE is small such that AE,I is the finite

direct sum of disjoint cyclic N-subgroups, then E is cyclic.

Proof : By corollary 3.3.1, A% is cyclic.

Also, by propesition 3.3.2, E is cyclic.

Definition 3.3.5. Jacobson radical J(N) is an ideal of N satisfying a € J(N) implies

that 1 — a is invertible.
Lemma 3.3.1. J(N)E = E implies E = 0 if E is finitely generated.

Proof : Let E be generated by ¢ € E.
Then, for any e € E,
e=njep, forsomen; € E.
Now, e; € Eand J(N)E = E

= e1 = aey, for some a € J(N)




= (1—a)e; =0

= (I—a)'(1—a)e; =0

= e| = ([ since E is unitary]

=e=0

=E=0.

Let E be generated by {e1,e2}.

Then, for any e € E,

e = njej +noey, for some ny,ny € N.

Now, if e; € E and J(N)E = E, as above it can be shown that e¢; = 0.
Again, if e; € E and J(N)E = E, as above it can be shown that e; = 0.
Thus e = 0 and hence E = 0.

Also, if E is generated by {ej,e,...e,}, then in the same way E = 0.
Proposition 3.3.4. If E is finitely generated, then J(N)E is small in E.

Proof : First, try to show that for any normal N-subgroups W, % is finitely gener-
ated unitary factor N-group of E.
Let E be generated by a finite set {e,ez,e3...e,} of E .
Then for any e + W € %
e=nje;t+mer~+...nue,, form; €N, i=1,2,3,...n
=e+W=niley+W)+m(ea+W)+...n,(e,+W).
This shows that % is finitely generated factor N-group of E.
Now, x+W € %
=>xckE
= l.x = x[ using unitary in E]
= 1.(x+W)=x+W.
Therefore, VEV is finitely generated unitary factor N-group of E.
Secondly, to show J(N)E +W = E implies J(N)(%) = (%)
Now, e € J(N)E+W
= e=uae;+m,wherea € J(N),e; EE;meW

=e+W=ae1+W
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=e+W=ale,+W) EJ(N)(%)

Therefore, & C J(N)(&).

Again, for b € J(N) and e € E, b(e+ W) € J(N)(&).
Now, be+m e J(N)E+W.

=bet+tmckE

=bet+m+Wek

=be+Wef

=ble+W) e

Sls

Therefore,J(N)(35) C

E
W

S

= J(N)(i7) =

Eh

By lemma 3.3.1,
E _§{_
w=0=W
=FE=W.

Thus the result.

Theorem 3.3.3. E is a Bezout N-group if and only if for any finitely generated ideal L

of E, the factor N-group J(NL)L is cyclic.

Proof : Since E is a Bezout N-group and L is finitely generated, L is cyclic.

By proposition 3.3.4, J(N)L is small in L.

So, by proposition 3.3.2, J(NL)L is cyclic.

Conversely, since L is finitely generated and W‘ is cyclic,

So by proposition 3.3.2, L is cyclic.

Thus E is a Bezout N-group.

Theorem 3.3.4. Let E be a DN-group such that for any finitely generated L <y E, the

factor N-group J(NL)L is direct sum of finite cyclic N-subgroups. Then E is a Bezout

N-group.
Proof : Since L <y E is finitely generated, J(N)L <y L is small[ by proposition
3.34].

Also L is DN-group as a N-subgroup of a DN-group.
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Also, by hypothesis, J(N)L <yL.
Thus J(N)L is small normal N-subgroup of an DN-group L such that the factor N-group
J(NL)L is direct sum of finite cyclic N-subgroups.

So, by proposition 3.3.3 L is cyclic.

This shows that E is a Bezout N-group.
Definition 3.3.6. If a = axa is true for all a,x € N, then N is said to be regular.
Proposition 3.3.5. A strongly regular near-ring is regular.

Proof : Let N be a strongly regular near-ring. If 7 € N, then ¢ = yr2, for some € N
=2 —ty=0
= (t—tyt)t =0
= {t(t —tyt)}> = t(t —tyt)t(t —tyt) = 0.
If t(t —tyt) # 0, then t(t —tyt) = y{t(t —tyt)}*> = 0, for some y € N[ since N is strongly
regular] -which is a contradiction.
Thus, #(t —tyt) =0
= tyt(t —tyt) =0
= (t—tyt)> = (t —tyt)(t —tyt) = t(t —tyt) —tyt(t —tyt) =0
= (t —tyt) = 0[ as above]
=1 =11

Hence N is regular.

Theorem 3.3.5. If E is a DN-group over a strongly regular N, then E is a Bezout N-

group.

Proof : Let L= Ns+ Ng, forany s,g € L.
It is sufficient to show that L is cyclic.
Since E is DN-group over a strongly regular N, by proposition 3.2.7, 9 k,t € N such
that 1 = k+¢t,ks € Ng,tg € Ns.
N is regular, by propesition 3.3.5 and so k = kxk, Vx € N.
Let us put xk = z, then z € N and z is idempotent as 7> = zz = xkxk = xk = z.

Also,
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k = kxk

=k=kzeNz

= Nk C Nz.

Also, z € Nz and z = xk € Nk.
Therefore, Nz C Nk.

= Nz = Nk.

Now, for any x € N,

Xz =xz

=z =xz| since N is strongly regular]

:>xz:x2

z=x[ since N is strongly regular] .

Again, 7 = xz

= zx = xzx = x [ Since N is regular] .

Therefore, zx =xz, Vx €N

= z Is central.

Again, (1 —z)?=1—-z—z4+7>=1—2

So, (1 —z) is idempotent.

So x(1—2)>=x(1—2)

= (1—2) =x(1—2) [ since (1 —z) € N and N is strongly regular]

= x(1 —z) =x*(1 —z) = x [ since N is strongly regular] .

Again, (1—z) =x(1—2)

= (I —z)x =x(1 —z)x =x [ since N is regular] .

Therefore, (1 —z)x=x(1—z) VxE€N.

Thus, (1 —z) is also central.

Since 1,z € N and Ns,Ng € E, so by using distributive property of N-group,
L=2zNs+zNg+ (1 —2z)Ns+ (1 —2z)Ng =Nzs+Nzg+N(1 —z)s+ N(1—z)gl since
z,1 — z are central] .

Now, z = zkz = zkxk = zk[sinceNisregular]

=zs=zks € ZNg = Nzg

= Nzs C Nzg.
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Again, since 1 — z is central,

(1 —2)k=k(1 —z) = k(1 —z)*[ since 1 — z is idempotent]
= (1 —z)k =1 —¢[ since 1 — z is strongly regular]

= (l—-z)s=(1—-2)kse (1 —z)Ng=N(1—-12)g

= N(1—2)s CN(1 —2)g.

Therefore, L =Nzg+ N(1 —z)g.

Again, x e NzgNN(1 —z2)g

=x=n'zg =n"(1—2)g, for some n',n" € N

= zn'zg =z"(1 - 2)g

= n'zzg=n"7(1-2)g=n"(1-2)z¢

= n'zg=n"(z—7%)g

=n'zg=0

=x=0.

Again, L is DN-group being a N-subgroup of a DN-group and zg, (1 —z)g € L,
We get, L = N(zg+ (1 —z)g)[ by theorem 2.3.2] .

This shows that L is cyclic.

Hence it can be conclude that E is a Bezout N-group.

3.4 Conclusion

To study near ring group concepts of uniserial and Bezout modules is the moti-
vation of this chapter. Introducing uniserial and Bezout N-groups, their relationships
are developed and proved. The theorems 3.2.1 to 3.2.6 describe the correlation be-
tween DN-groups and uniserial N-groups. Theorems 3.3.1 to 3.3.5 illustrate the link-
age among DN-groups, uniserial N-groups and Bezout N-groups. The results obtained

here will be used in the subsequent chapters.
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