Chapter 4
Distributive character of multiplication
N-groups

This work has been published as “Distributive character of multiplication N-groups”
in the journal “International Journal of Mathematics Trends and Technology”, 69(6),
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Distributive character of multiplication

N-groups

4.1 Introduction

Krull proposed the concept of a multiplication ring [71] and some important re-
sults like Nakayama Lemma and Principal Ideal Theorem. Mehdi [72] was the first to
develop multiplication modules and studied direct sum of multiplication modules, faith-
ful multiplication modules, projective multiplication modules and weak multiplication
modules. However, Barnard [73], El Bast and Smith [74], Tuganbaev [75], and Atani

and Ghaleh [76] all have thoroughly researched it in various ways. The relationship be-
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tween the distributive module and multiplication module is established by Barnard. Jain
[77] and Rajaee [78] studied generalized multiplication modules on arithmetical rings.
The relationships between distributive modules and multiplication modules were also
analyzed by Erdogdu [79] and Escoriza and Torrecillas [80]. Elaheh Khodadaapour and
Tahereh Roodbarilor [59] studied the multiplication N-groups and cyclic N-groups in
near-rings and their associations.

This chapter describes localized near-rings, localized N-groups and associated
results with reference to DN-groups. The results of localized multiplication N-groups
by defining multiplication N-groups with an example are established. The relation-
ships between the multiplication N-groups and the locally cyclic N-groups and the DN-

groups are established.

4.2 Localized N-groups

Definition 4.2.1. H C N is called multiplicative closed if p € H implies p~' € H or

1 € Hand p,y € H implies py € H.

It is to be noted that forany p e H,pp ' =p~'p=1cHand p= (p~ ')~
Let S be a multiplicative closed subset of a commutative near-ring N with identity.

Define “+4 > and “.” in (S™'N,+,.) by-

sl_lnl —I—sz_lnz = (s152) " N(son1 +5112)

and (sl_lnl).(sz_lnz) = (s182) " Yninmo), ¥V 51,52 € S,ny.ny €N.

Then, for any sl_'nl,sglnz,sglm es N,

(s152)~' € S and spny +s1n3 €N.

So, (s152) '(sony +s1m2) € STIN

=57 ni+sy'my € STIN.

Now, (s7'n1 +55 'n2) +53 'n3

= (s152) " N(sonmi +s1m2) + 55 'n3

= (s15253) " H{s3(s0m1 +511m2) + (s152)n3 }[ since (N, .) is associative]

= (s15253) " (son1 + s1m2)s3 + (s152)n3}[ since S € N and (N, .) is commutative]
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= (s15253) " Y (son1)s3 + (s11m2)s3 + (s152)n3 }[ by right distributive law]

= (s15253) "{s3(s0n1) + 53(s1m2) + (s152)n3}[ since S C N and (N,.) is commutative]
= (s15253) " {s3(s0m1) +53(s11m2) + (s152)n3 }[ since (N,.) is commutative and has right
distributive property]|

= (s15253) " {(s253)n1) + (s183)m2) + (s1s2)n3 } [ since (N, .) is associative and commu-
tative] .

Similarly, it can be shown that sl_lnl + (sz_lnz +s§1n3) = (s15283) " H{(s253)m1) + (s153)m2) +
(s152)n3}.

Therefore, (s, 'n1 +55 'n2) +s3 'n3 = 57 'y + (55 "'na + 55 'n3).

For any s lxe SN,

0+s 'x

=s10+s1x

=5~ 1(0+x)[ since s~! € N, N has the right distributive property and (N,.) is commu-
tative]

=slx

Similarly, s 'x+0=s""x.

Thus, the identity 0 of (N, +) is the identity of (S™!N,+).

For any s~ 'x € STIN, —s~x is the inverse of s 'x as s x+ (—s ) = s ' (x —x) =
sTI0=0=(—s"1x)+s x.

Also, (S7'N,.) is closed by definition.

Since N is commutative, sl_lnl (sz_lnzsglm) = (sl_lnlsz_lng)sglny

Now, for any s,y € SCN,

sThy LTyl (sy) T eSCN.

1

Therefore, s~ ! y-

(s71.1)(y~1.1)[ since N has the unity]

(sy)~1(1.1)[ by hypothesis]
= (sy)~![ since N has the unity] .
Therefore, (sflnl +sg]n2).s§'n3

= (5152) " (s2m1 +51m2)s3 '3
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515283) " (sony +s1no)n3 [ since (N, .) is associative]

' 1.(spnin3 + sinon3)| since N has the unity]

)~

§15283) " 1(S2n1713 + s1non3)
)"

) 1

515283) .83 Iss. (son1n3 + synons3) [ by definition of S]

=
=
= (515253
= (
= (51535253) " (s253n1n3 + s153m0n3)[ since N has the right distributive property and
(N,.) is commutative]
= (s153) "1 (m1n3) + (s253) " (nan3)
= sl_lnl.sglm + sz_lnz.sglng.
The above conditions shows that S~'N is a near-ring, called localized near-ring.
Note that if 7 € H, then h~'0 = 0, where 0 is the identity of (N,+).
Let S be a multiplicative closed subset of a commutative near-ring N with identity.
Then as above (S~'N,+) is a group.
Define amap S”!N x S~'E — S~!E by
(sl_ln,sz_le) — (s5152) 7 (ne)
i e synsy e = (s15) 7 (ne).
Then (sl_lnl +s271n2)(s_1e)
s152) " (sany +s1n2)s7 e
51528) " H(spny +s1m2)e

1

s152) s (sonje 4 symoe) [ as (xy) ™!

=
=
= (s1528) " (samie + s1mpe)
= ( =x 'y
= (s152) 7" (s7'sonie+s7'synze)[ as s~! € N and N is commutative]
= 57! (s7'n1e) + 5 (s 'nae)[ by hypothesis]
= (sl_ls_l)(nle) + (sz_ls_l)(nze)[ since N is commutative]
= (515) 7! (n1e) + (s25) 1) (nge) [ since (xy) ™! =x~1y™1]
= (s7 'n1.s7'e) + (55 'ma.s'e)[ by hypothesis] .
This shows that S~'E is an ! N-group called localized N-group of E or simply S~'E

is an N-group.

Definition 4.2.2. Let S be a multiplicative closed subset of a commutative N with unity.

IfA <y E, then S~'A is called a S~'N-subgroup of S'E ifn(s~'a) = s (na) € S7'A,
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for some s € S,a€ A,n €N.
This S~'N-subgroup is called localized N-subgroup of E or simply S™'A is an N-

subgroup of E.

Definition 4.2.3. Let S be a multiplicative closed subset of a commutative N with unity.
ForI CN, S™'is an ideal of ST'N if S~'1 is an additive normal subgroup of S™'N and
sl_lx.sz_ln, sl_lnl(sz_lnz +s571y) — sl_lnlsglnz € ST, for some s,s1,50 € S,n,n1,no €
N.,xel

This ideal S~'I is called localized ideal of N or simply S~'I is an ideal of N.

Definition 4.2.4. Let P <\N be prime without unity.

Then S = N\ P is multiplicative closed subset of N because if d,b € S, then db € N and
d,b¢P.

Also, P is prime, db & P and so db € S

and 1 ¢P1eN=1€S.

Then S™'N is called localization of N at P and denoted by Np.

Therefore, Np = (N\ P)"'N = S~IN.

Localization of E at a prime ideal P, Ep = S~'E = (N\ P)"'E.
Lemma 4.2.1. SS =S if S is a multiplicative closed subset of N.

Proof : If x € §S, then x = 515, € S, for some 51,52 € S.
So, SS CS.
Again, if s € S, then s = 1.5 [ since N has identity] .
Since 1 € § and § is Multiplicative closed, therefore s = 1.s € SS.

Thus, S C SS and hence SS = S.

Lemma 4.2.2. Let S be a multiplicative closed subset of N and I <I N. Then S™'I <

STIN.

Proof : Since I <« N, for any x,y € I and n,n;,np e Nyxne€l,n+x—n el and
ni(np+x)—nny € I.

Now, for any 51,52 € S,
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Ty — sz_ly = (s152) Ysox—s1y) € ST

5y
and sl_ln—i—sz_lx— sl_ln = (s152) '(son + 51%) +sl_l (—n) = (s1s251) ! [s1(s2n + 51%) —
s1821).

Now,s1 €S=s1eN=s1x€l.

Also, spn € N and so sy (son+s1x) —syson € 1.

Again, sys2s51 € S and therefore (slszsl)_l[sl(szn—l—slx) —s152n] € S~.

Now, s5 x.s7n = (sps1) 7 (xn) € S711

1

—1, (—1 -1 1 —1
and 57 'ni(s, ny+s"x)—s; nis, no

= sl_'nl [(szs)_' (sngy + s2x)] — (s152) " (n1n2)
= (s1528) "1 ny(sma 4 s2x) — (s5152) "' (nyn2)
= (s1528) " [n1(sno + s3x) — s(nynp)] € S~ [ since sox € 17 .
This shows that S~!7 is an ideal of S~'N.
Since by lemma 2.2.1, maximal ideal in N with unity is prime ideal. So, P €

Max(N) implies S = N \ P is closed subset as shown earlier. Now, utilizing this idea,

demonstrate some findings.
Lemma 4.2.3. Let X <y E. Then Xp <y Ep, V P € Max(N).

Proof : We have, Xp =S~ 'X,Ep=S"'E.
Since X <y E, X is subgroup of E and so NX C X.
Now, a,b € Xp implies a = sl_lxl,b = sz_lxz, for some 51,57 € S,x1,x € X.
So, a—b = (s152) " (spx1 — 51x2).
Since spx1,s1x2 € X and X is subgroup of E, sox; — s1x2 € X.
Also, s1.52 € S [ since S is multiplicative closed] .
Therefore,a— b € S~'X.
Also, let y € Np.Xp.
Then y = nx, for some n € Np,x € Xp.

Ty and x = sz_lxl, for some n; € N,x; € X

Therefore, n = s
= nx = (s152) ' (mx) € S7IX.
Thus, y = nx € Xp.

Hence the result.
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Lemma 4.24. IfEp =0,V P € Max(N), then 3s € S= N\ P such that se =0% e € E.

Proof: Ep=0=S"'E=0.
So, forany e € E 3s € Ssuch s~ € Sand (s~!)~'e = 0[ Since S is closed] .
Alsos = (s~ )7L

Thus the result.
Theorem 4.2.1. E =0 if and only if Ep =0, V P € Max(N).

Proof : If E=0,3s¢c (N\P) ! such that se = 0. So, Ep = 0.
LetecE.
Then, for any ny,n; € Ann(e),n € N, (nj —np)e = nje —npe = 0 and nnje = 0.
So, ny —ny,nn;| € Ann(e).
Therefore, Ann(e) <A N.
Let Ann(e) <AN be proper.
Then 3 P € Max(N) such that Ann(e) C P [ since every proper ideal in N is contained
in a maximal ideal] .
Since Ep =0, 35 € S = N\ P such that se = 0[ by lemma 4.2.4] .
Therefore, s € Ann(e) C P
= s € P-which contradicts s € N \ P.
Thus, Ann(e) = N
=ne=0,VneN.

Sincel e N,1le=0=¢e¢=0=E=0.
Corollary 4.2.1. Ap=Bp=A=B,VA,B<yE, P€ Max(N).

Proof : Leta € A.
Then s 'a € S71A, for some 51 € S = N\ P
= sl_la € S_lB[ since Ap = Bp]
= sl_la = sz_lb, for some sp € S,b € B
:>s1_1a—s2_1b:0
= (s152) Y(spa—s51b) =0

= (spa—s1b)p =0

[491]



= (spa —s1b) = O[ by using theorem 4.2.1]
= soa=s1b

= sz_lsza = sz_lslb €NB

=a € NBCB.

Thus, A C B.

Similarly, B C A.

Hence, A = B.
Lemma 4.2.5. IfI < N, then Ip < Np, ¥V P € Max(N)
Proof : Asinlemma 4.2.2 it can be proved the result.

Theorem 4.2.2. An ideal N-group E is a DN-group if and only if Ep is also a DN-

group, ¥ P € Max(N).

Proof : Since E is a DN-group, (DNT)+(KNT)=(D+K)NT,¥D,K,T <yE.
Now, to show (Dp+Kp) N Tp = (DpNTp)+ (KpNTp), ¥ Dp,Kp,Tp <v E Ep.
It is enough to show that, Dp + Kp = (D+K)p and DpNKp = (DN K)p.
Letx € Dp+ Kp
= x=a-+b,wherea € Dp,b € Kp.

So,a= sl_lal,b = sz_lbl for some a; € D,by € K and 51,57 € S.
Therefore, x = sl_lal —|—s2_1b1 = (s152) " (s2a1 +51D2).

Since DK <y E, spa; € D,s|b; € K.

Also, since S is multiplicative closed, 51,53 € S = s1.52 € S.
Therefore, x € S~ (D + K).

= Dp+Kp C (D+K)p.

Letyec (D+K)p=S1(D+K).

Then, y = s~ !(x+b), for some s € S,x € D,b € K.

Since S~'xis an ideal, s~ (x4+b) —s b € S~ 1x
Sy=sx+b) S x+SbCS'D+S'K=Dp+Kp.
Therefore, (D+K)p C Dp+ Kp.

Thus, Dp + Kp = (D—I—K)p




Again, let x e DpNKp =S~'DNS™K.

'a:sz_'b, for some 51,52 € S,a € D,b € K.

Then, x = s
Since s;',s,' € S=N\PandD,K <y E,s;'a€D,s;'beK.

Therefore, x € DNK.

Since DNK <y Eand S=N\PCN,S(DNK)CDNK andso DNK C S~ (DNK).
Therefore, x € S~ (DNK) = (DNK)p.

= DpNK, C(DNK)p.

So, DpNKp = (DNK)p.

Thus, (Dp+Kp)NTp = (D+K)pNTp=[(D+K)NTlp=[(DNT)+ (KNT)|p
=(DONT)p+(KNT)p=(DpNTp)+ (KpNTp).

But by lemma 4.2.3, Dp, Kp, Tp <y Ep.

Hence Ep is a DN-group.

Let Ep be DN-group, then for any D, K, T <y E,

(Dp+Kp)NTp = (DpNTp)+ (KpNTp)

= ((D+K)NT)p=((DNT)+(KNT))p

= (D+K)NT =(DNT)+ (KNT)[ by corollary 4.2.1] .

This shows that E is a DN-group.

Proposition 4.2.1. An ideal N-group E is generated finitely if and only if Ep is gener-

ated finitely, V P € Max(N).

Proof: Lete,c Ep=S"'E=(N\P)"'E.
Then ep = s~ le, for some s € S,e € E.
Since E generated finitely, e = nje; +nzex+- - - +nye,, wheren; E Nye; € Ei=1,2,..n.

Ysey € S7nje

Since S~'nje; is anideal, s~ ! (nje; +noer) — s~
= s (n1e +nyey) = sl_lnlel + 5 'npey, for some sy € S

= s (nje; +nyey) = nl(sl_lel) + nz(sz_lez)[ since N is commutative] , where s = s5.
In the same way, it can be extended to a finite number n of steps, i. e

le=s71(nje; +noes+nzez+---+nye,) =ny (sl_lel)+n2(s2_162)+n3(s3_163)+

ep=s
..nu(s;'e,), where s; € S,e; € E andn; € N, fori=1,2,3,...n.

This shows that Ep generated finitely.
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Lemma 4.2.6. If Ep is a cyclic N-group, then ]IL: = Ep, for some P € Max(N).

Proof : Let Ep be cyclic N-group generated by e),.
Now, let us define a function ¢ : Np — Ep by
¢(np) = (ne),, wherenc N,e c E.
i.e.¢(s7'n) =s"!(ne),wheres € S =N\ P.
Clearly, ¢ is well defined and onto.

For any m,,n, € Np,

¢(mp+np)

= ¢(s;'m+s5'n), where 51,5, €S
= ¢((s152) ") (s2m +s1m))

= (s152) " ((s2m+s1n)e)

= (s152) " Y(spme + s ne)

= sl_l (me) + sz_l (ne)

= (me)p +(ne),

= 0(mp)+9(np).

Also, for any n, € N,,x, € Ep,

¢ (npxp)

= d)(sfln.sglx), where 51,57 € §

= ¢((s152) ! (nx))

= (s152) " (nxe)

=57 (n)s;" (xe) =y (xp).
Therefore, k]ev_zp = Ep.

Since ker¢ is an ideal, taking ker¢ = I,,,

1;’—£ =~ Ep, where I, is an ideal of Np.
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4.3 Multiplication N-groups

Definition 4.3.1. N is referred to as arithmetical if N is considered as an N-group is a

DN-group or Np = (N\ P)"'N is uniserial, ¥ P € Max(N).

Example 4.3.1. If E = N = {0,s,b,m} is the Klein’s 4-group given by the following

table.-

B owv O
oo o oo
» »n O Olw
B owvw olc
8 o=« OB
B o«v o+
5 o »v OO
o8 Ow|ln
» © 3 oo
©ow o 3|8

Then (E,+,.) is a near-ring and N-group over itself.
P={0},L=1{0,s}, E <y E as NP = P,NL = L and NN = N such that P C L C N.
We have, P4 L=L+P=LP+E=E+P=EL+E—=E+L=E,P+P=P.
and (P+L)NE = L= (PNE)+(LNE),(P+E)NL=L=(PNL)+(ENL),(L+E)N
P=P=(LNP)+(ENP),(L+P)NE=L=(LNE)+(PNE),(E4+P)NL=L=
(ENL)+(PNL),(E+L)NP=P=(ENP)+(LNP).

Thus E is a DN-group and hence E is arithmetical.

Definition 4.3.2. Ifan N-subgroup A of E has the form IE for some I <IN, it is referred

to as multiplication.

Definition 4.3.3. E is referred to as a multiplication N-group if A is multiplication

VA <y E.

Example 4.3.2. Example of a multiplication N-group.

LetN = (E,+,.) ={0,s,b,k} be the Klein’s 4-groups under the operations given below-

.]0 s b k +/0 s b k
00 0 0 0 0/0 s b k
s|0 0 s s s|{s O k b
b|0 s k b b(b k 0 s
k|0 s b k kik b s 0
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Then (N,+,.) is a near-ring as well as N-group over itself.
We have, D = {0},K = {0,s},E <y E.
Also, D,K, N <\ N such that D = DE,K = KE and E = NE.

Thus E is a multiplication N-group.

Theorem 4.3.1. If K < N such that K C J(N) and E is a multiplication N-group, then

KE =0 implies E = 0.

Proof: Letx € E.
Since FE is a multiplication N-group, therefore by definition of multiplication N-group,
Nx = JE, for some J <1 N[ since Nx is a principal N-subgroup] .
Now, KE =0
=JKE =0
= KJE = Q[ since N is commutative]
= KNx=0.
Since x € Nx,ax =0Va € K
= a lax=0[sinceae K C J(N)]
= x = 0[ since E is unitary]

=FE=0.
Definition 4.3.4. (Ap: Ep) = {np € Np : npEp C Ap}, for any Ap <y Ep.

Definition 4.3.5. An Ip <y Np is called an ideal of Np if xp —yp € Ip,np+xp —np €

Ip,np(n}) —|—yp) — npn}) € Ip,Vxp,yp € Ip,np,n}) € Np.

Definition 4.3.6. Ep is referred to as a multiplication N-group if for every Ap <y Ep,

Ap = IpEp, for some Ip <| Np.
Theorem 4.3.2. Every cyclic localized N-group is a localized multiplication N-group.

Proof : Let Ep be cyclic generated by ep, for some e € E.
Let Ap <y Ep.
Now, (Ap : Ep) = {np € Np :npEp C AP}.

SO, (AP . EP)EP gAp.




Letap € Ap CEp

= ap = npep, for some n € N.

Now, for any mp € Ep,

npmp

= npnpep, for some n’ € N

= np(npep)| since N is commutative]

= npap € NpAp C Ap[ since Ap <y Ep] .

Therefore, npEp C Ap

=np € (Ap: Ep)

=ap € (Ap:Ep)Ep

= Ap C (Ap : Ep)Ep.

Therefore, Ap = (Ap : Ep)Ep.

Let xp,yp € (Ap : Ep) and np,n), € Np.

Since Ap <y Ep, for any e € E, (xp — yp)ep = xpep — ypep € Ap.
Therefore, (xp —yp)Ep C Ap

=xp—yp € (Ap: Ep).

Since N is commutative np +xp —np = xp € (Ap : Ep) and np(n}, + yp) — npnp = npyp.
But, for any e € E,

(npyp)e, = (ypnp)ep = yp(npep) € ypEp C Ap.

Therefore, npyp € (Ap : Ep).

Thus (Ap : Ep) is an ideal of Np and hence Ep is a multiplication N-group.
Theorem 4.3.3. Every localized multiplication N-group over local N is cyclic.

Proof : Let Ep be multiplication N-group over local V.
Therefore, Ep = IpEp, for some Ip <{ Np
= Ep =IpEp C NpEp C Ep.
Therefore, Ep = NpEp.
So, forany e € E,
Npep C NpEp = Ep

= Npep C Ep.

[55]




Letep € Epanda € N.

Since N is local, a or 1 —a is invertible in it.

If a is invertible, then

apep € NpEp

= apep = npep, for some n € N

= (sl_la)(sz_le) = (sgln)(sgle), for some s1,52,53,54 € S,n € N

= (slsz)_l(ae) = (S3S4)_1(l’l€)

= a”(s152) 7! (ae) = a~(s354) ' (ne)

= (s152) '

= (s152)7'(e) = (s352) "' ((a""n)e)

(&)= (s3'(a"n))(sye)

= ep € Npep

a'(ae)) = (s354) "' (a~"(ne))[ since N is commutative]
)

= (s152)~

= Ep C Npep.

Thus, Ep = Npep and hence Ep is cyclic.
Theorem 4.3.4. Every localized multiplication N-group is also multiplication N-group.

Proof :
Let M' <yS™'E = Ep.
Then 3 M <y E such that M’ = S~ M.
Since E is a multiplication N-group, M = IE, for some I </ N.
Then M’ = SY(IE) = (SS)~'(IE)[ using lemma 4.2.1] .
So, M' = (S7'I)(S7'E).
Also, by lemma 4.2.2, S~!] is an ideal of S™'N.

Thus the result.

Corollary 4.3.1. Since every multiplication N-group over local N is cyclic and the lo-
calized N-group of a multiplication N-group is also a multiplication N-group, every

localized multiplication N-group over local N is cyclic.
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Theorem 4.3.5. If E is generated finitely, then E is multiplication if and only if Ep is

multiplication, ¥V P € Max(N).

Proof : Let E be multiplication.
So, by theorem 4.3.4, Ep is a multiplication N-group.
Conversely, let Ep be multiplication N-group.
LetX <y E.
Then Xp = Ip.Ep, for some ideal Ip of Np.
Therefore, Xp = S~'1.S7'E = (SS)"'(IE) = STY(IE) = (IE)p [ since SS = S] .
So, by corollary 4.2.1, X = /E.

Hence E is a multiplication N-group.

Theorem 4.3.6. If Ann(E) C P, only, P, € Max(N) such that each principal N-subgroup

is an ideal and Ep, is cyclic, then Ep is a multiplication N-group, fori=1,2...n.

Proof : Since Ep, is cyclic, Ep = (Ne;)p, where ¢; € E, i =1,2,3,...n.
Let us choose b; € (N B)\ P i # j,i=1,2..
Let X <y E be cyclic and generated by x =Y , bje;.
Now, Ep, = (Nej)p,
= (N\P)'E=(N\P))"(Ney)
= (N\ P,)E = Ne, [ since (N\ P;)N C N|
= s;e; = njey, for some s; € N\ P;,n; €N.
Let s = 515253...5, and s} = 515253 ...8_15;+1 - ..y such that s = s;s.
Therefore, sx = s(byey + brer + ... byey).
Now, s(bie; + brea+...bye,) — s(brex + ... bye,) € Shyeg
= sx —s(byes +...bye,) = s'brey,for some s’ € S
= (s5) " sx — s(byer + ... bpen)] = (ss) "1 (s'brer)
= (s5) " sx —s(byer +...byen)] = (ss) " (s'brer)
= s (x) —s Hbrea+...bpe,)] = (ss) "' (s'brey).
Since s'biey € E,ss € S,x € X,byey +...bye, € J(N)E, therefore Ep = Xp — (J(N)E)p.

Since Ann(E) C P; only, Ann(E) € P,¥ P € Max(N).
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So, 3s € Ann(E), but s € P
=sE=0,forse N,buts &P

= Ep=0[sincesc N\ P=].

So, Xp = (J(N)E)p

= Xp=S"1(J(N)E)

= Xp = (SS)"!(J(N)E)| since SS=S]

= Xp=(S"'J(N)).(S7'E)

= Xp=J(N)p.E,.

By lemma 4.2.5, J(N)p < Np[ since J(N) < N] .

This shows that Ep is a multiplication N-group.
Definition 4.3.7. E is called locally cyclic if Ep is cyclic, V P € Max(N).

Theorem 4.3.7. If E is generated finitely on local N, then E is multiplication if and

only if it is locally cyclic N-group.

Proof : If E is a multiplication which generated finitely on local N, then by theo-
rem 4.3.5, Ep is multiplication N-group, V P € Max(N).
Since N is local, Ep is cyclic N-group VP € Max(N)[ by theorem4.3.3] .
So, by definition E is locally cyclic N-group.
Conversely, suppose E is locally cyclic N-group.
Then Ep is cyclic, V P € Max(N).
So, Ep is multiplication N-group, V P € Max(N)[ by theorem 4.3.2] and so E is multi-

plication [ by theorem 4.3.5] .

Definition 4.3.8. Every N-subgroup of E is referred to as a principal ideal N-group if

it is both principal and ideal.

Theorem 4.3.8. IfE is principal DN-group over local N and every localized DN-group

over local N is uniserial, then E is multiplication N-group.

Proof : Since E is a principal DN-group, every N-subgroup is principal and so

generated finitely. Let M <j E generated finitely.
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Since by lemma 2.2.2, N-subgroups of a DN-group are also ideal DN-groups, M is a
DN-group.

Therefore, by theorem 4.2.2, Mp is a DN-group.

Since N is a local, Mp is an uniserial N-group| by hypothesis] .

Since M generated finitely, Mp is also generated finitely[ by proposition 4.2.1] .
So, for mp € M,

mp = nypep+nyperp+n3pesp+ -+ nypenp, where nip € Np,eip € Mp

= mp € Npe1p+Nperp+ Npesp+- -+ Npepp.

Since Mp is uniserial, so any two of its N-subgroups are comparable, it may assume
Npeip C Nperp C Npesp -+ C Npeyp.

Therefore, mp € Npe,p

= Mp C Npeyp.

Since Mp is N-subgroup and e,p € Mp,Npe,p C Mp.

Therefore, Mp = Npe,p

= Mp is cyclic

= M is locally cyclic.

So, by theorem 4.3.7, M is a multiplication N-group and hence E is multiplication.

Definition 4.3.9. A local near-ring is referred to as convey if it is strongly regular.

Theorem 4.3.9. IfE is an ideal DN-group that generated finitely over a convey N with
inverse property and every ideal DN-group over a strongly regular near-ring is Bezout,

then E is a multiplication N-group.

Proof : Let M <y E. Since E generated finitely, M generated finitely.
Since N-subgroups of an ideal DN-group are also ideal DN-group, M is an ideal DN-
group.
So, by theorem 4.2.2, Mp is also DN-group.
Since M generated finitely, Mp is also generated finitely [ by proposition 4.2.1] .
Since N is convey, Mp is an ideal DN-group over a strongly regular near-ring.

By hypothesis, Mp is a Bezout N-group.
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So, every generated finitely N-subgroup is cyclic.
Since Mp generated finitely, Mp is cyclic.

So, by definition M is locally cyclic.

Thus by theorem 4.3.7, M is a multiplication N-group.

Hence E is multiplication.

Proposition 4.3.1. If N is an arithmetical, then ¥ Q € Max(N), %Q is an uniserial N-
group.
Proof : Let N be an arithmetical.
Then by definition, Ny is uniserial, V Q € Max(N).
Now, to show for any sub factors (ideals of %) Xp = 1]% and Yy = %,X_Q CYp or
Yo C Xp. Since I, I, are ideals of the uniserial N-group Ng, 11, C b, or by, C I .
Let a € Xp.
Thena € Iy,
=ach)
=aeYy.
Therefore, Xy C Yp.
Thus, if 11, C b, then Xp C Yp.
Similarly, if I, C I, then Yy C Xp.
This shows the result.
Theorem 4.3.10. If Eis a multiplication ideal N-group that generated finitely and N is

an arithmetical local near-ring, then E is a DN-group.

Proof : Ep is also multiplication N-group as E is a multiplication N-group[ by
theorem 4.3.4] .
Also, by theorem 4.3.3, Ep is cyclic.
So, by lemma 4.2.6, J2 = Ep VP € Max(N).
Since N is a arithmetical local, %’ is an uniserial N-group| by proposition 4.3.1] .
So, Ep is an uniserial N-group
= Ep is a DN-group] since uniserial N-group is DN-group]

= E is a DN-group| by theorem 4.2.2] .
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4.4 Conclusion

To extend the notions of near -ring groups to localized near-ring groups and mul-
tiplication modules to multiplication near-ring groups, are the prime objectives of this
chapter. Defining related definitions of localized N-groups and multiplication N-groups,
some lemmas and theorems are derived. The theorem 4.2.2 describes the relationship
between DN-groups and localized DN-groups. Theorems 4.3.4 to 4.3.10 demonstrate
the connection among DN-groups, multiplication N-groups and localized multiplication

N-groups. The results obtained here will be used in the subsequent chapters.
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