Chapter 4 Distributive character of multiplication N-groups

This work has been published as "Distributive character of multiplication N-groups" in the journal "International Journal of Mathematics Trends and Technology", **69(6)**, **59-66**, **(2023)**.

4

Distributive character of multiplication N-groups

4.1 Introduction

Krull proposed the concept of a multiplication ring [71] and some important results like Nakayama Lemma and Principal Ideal Theorem. Mehdi [72] was the first to develop multiplication modules and studied direct sum of multiplication modules, faithful multiplication modules, projective multiplication modules and weak multiplication modules. However, Barnard [73], El Bast and Smith [74], Tuganbaev [75], and Atani and Ghaleh [76] all have thoroughly researched it in various ways. The relationship be-

tween the distributive module and multiplication module is established by Barnard. Jain [77] and Rajaee [78] studied generalized multiplication modules on arithmetical rings. The relationships between distributive modules and multiplication modules were also analyzed by Erdogdu [79] and Escoriza and Torrecillas [80]. Elaheh Khodadaapour and Tahereh Roodbarilor [59] studied the multiplication *N*-groups and cyclic *N*-groups in near-rings and their associations.

This chapter describes localized near-rings, localized *N*-groups and associated results with reference to *DN*-groups. The results of localized multiplication *N*-groups by defining multiplication *N*-groups with an example are established. The relationships between the multiplication *N*-groups and the locally cyclic *N*-groups and the *DN*-groups are established.

4.2 Localized N-groups

Definition 4.2.1. $H \subseteq N$ is called multiplicative closed if $p \in H$ implies $p^{-1} \in H$ or $1 \in H$ and $p, y \in H$ implies $py \in H$.

It is to be noted that for any $p \in H, pp^{-1} = p^{-1}p = 1 \in H$ and $p = (p^{-1})^{-1}$.

Let S be a multiplicative closed subset of a commutative near-ring N with identity.

Define "+" and "." in
$$(S^{-1}N, +, .)$$
 by-
$$s_1^{-1}n_1 + s_2^{-1}n_2 = (s_1s_2)^{-1}(s_2n_1 + s_1n_2)$$
and $(s_1^{-1}n_1).(s_2^{-1}n_2) = (s_1s_2)^{-1}(n_1n_2), \forall s_1, s_2 \in S, n_1, n_2 \in N.$
Then, for any $s_1^{-1}n_1, s_2^{-1}n_2, s_3^{-1}n_3 \in S^{-1}N$,
$$(s_1s_2)^{-1} \in S \text{ and } s_2n_1 + s_1n_2 \in N.$$
So, $(s_1s_2)^{-1}(s_2n_1 + s_1n_2) \in S^{-1}N$

$$\Rightarrow s_1^{-1}n_1 + s_2^{-1}n_2 \in S^{-1}N.$$
Now, $(s_1^{-1}n_1 + s_2^{-1}n_2) + s_3^{-1}n_3$

$$= (s_1s_2)^{-1}(s_2n_1 + s_1n_2) + s_3^{-1}n_3$$

$$= (s_1s_2s_3)^{-1}\{s_3(s_2n_1 + s_1n_2) + (s_1s_2)n_3\}[\text{ since } (N, .) \text{ is associative}]$$

$$= (s_1s_2s_3)^{-1}\{(s_2n_1 + s_1n_2)s_3 + (s_1s_2)n_3\}[\text{ since } S \subseteq N \text{ and } (N, .) \text{ is commutative}]$$

=
$$(s_1s_2s_3)^{-1}\{(s_2n_1)s_3 + (s_1n_2)s_3 + (s_1s_2)n_3\}$$
[by right distributive law]

$$=(s_1s_2s_3)^{-1}\{s_3(s_2n_1)+s_3(s_1n_2)+(s_1s_2)n_3\}[$$
 since $S\subseteq N$ and $(N,.)$ is commutative]

=
$$(s_1s_2s_3)^{-1}\{s_3(s_2n_1) + s_3(s_1n_2) + (s_1s_2)n_3\}$$
[since $(N, .)$ is commutative and has right

distributive property]

=
$$(s_1s_2s_3)^{-1}\{(s_2s_3)n_1\} + (s_1s_3)n_2 + (s_1s_2)n_3\}$$
 [since $(N,.)$ is associative and commu-

tative].

Similarly, it can be shown that $s_1^{-1}n_1 + (s_2^{-1}n_2 + s_3^{-1}n_3) = (s_1s_2s_3)^{-1}\{(s_2s_3)n_1\} + (s_1s_3)n_2\} + (s_1s_2)n_3\}.$

Therefore,
$$(s_1^{-1}n_1 + s_2^{-1}n_2) + s_3^{-1}n_3 = s_1^{-1}n_1 + (s_2^{-1}n_2 + s_3^{-1}n_3)$$
.

For any $s^{-1}x \in S^{-1}N$,

$$0 + s^{-1}x$$

$$= s^{-1}0 + s^{-1}x$$

 $= s^{-1}(0+x)$ [since $s^{-1} \in N, N$ has the right distributive property and (N, .) is commutative]

$$= s^{-1}x$$
.

Similarly, $s^{-1}x + 0 = s^{-1}x$.

Thus, the identity 0 of (N, +) is the identity of $(S^{-1}N, +)$.

For any $s^{-1}x \in S^{-1}N$, $-s^{-1}x$ is the inverse of $s^{-1}x$ as $s^{-1}x + (-s^{-1}x) = s^{-1}(x - x) = s^{-1}0 = 0 = (-s^{-1}x) + s^{-1}x$.

Also, $(S^{-1}N,.)$ is closed by definition.

Since *N* is commutative, $s_1^{-1}n_1(s_2^{-1}n_2s_3^{-1}n_3) = (s_1^{-1}n_1s_2^{-1}n_2)s_3^{-1}n_3$.

Now, for any $s, y \in S \subseteq N$,

$$s^{-1}, y^{-1}, s^{-1}y^{-1}, (sy)^{-1} \in S \subseteq N.$$

Therefore, $s^{-1}y^{-1}$

$$= (s^{-1}.1)(y^{-1}.1)$$
[since N has the unity]

$$= (sy)^{-1}(1.1)$$
[by hypothesis]

$$= (sy)^{-1}$$
[since N has the unity].

Therefore,
$$(s_1^{-1}n_1 + s_2^{-1}n_2).s_3^{-1}n_3$$

$$= (s_1 s_2)^{-1} (s_2 n_1 + s_1 n_2) s_3^{-1} n_3$$

=
$$(s_1s_2s_3)^{-1}(s_2n_1 + s_1n_2)n_3$$
 [since $(N,.)$ is associative]

$$=(s_1s_2s_3)^{-1}(s_2n_1n_3+s_1n_2n_3)$$

=
$$(s_1s_2s_3)^{-1} \cdot 1 \cdot (s_2n_1n_3 + s_1n_2n_3)$$
[since N has the unity]

=
$$(s_1s_2s_3)^{-1}.s_3^{-1}s_3.(s_2n_1n_3 + s_1n_2n_3)$$
 [by definition of S]

=
$$(s_1s_3s_2s_3)^{-1}(s_2s_3n_1n_3 + s_1s_3n_2n_3)$$
[since N has the right distributive property and

(N,.) is commutative]

$$= (s_1s_3)^{-1}(n_1n_3) + (s_2s_3)^{-1}(n_2n_3)$$

$$= s_1^{-1} n_1 . s_3^{-1} n_3 + s_2^{-1} n_2 . s_3^{-1} n_3.$$

The above conditions shows that $S^{-1}N$ is a near-ring, called localized near-ring.

Note that if $h \in H$, then $h^{-1}0 = 0$, where 0 is the identity of (N, +).

Let S be a multiplicative closed subset of a commutative near-ring N with identity.

Then as above $(S^{-1}N, +)$ is a group.

Define a map $S^{-1}N \times S^{-1}E \rightarrow S^{-1}E$ by

$$(s_1^{-1}n, s_2^{-1}e) \rightarrow (s_1s_2)^{-1}(ne)$$

i. e.
$$s_1^{-1}n.s_2^{-1}e = (s_1s_2)^{-1}(ne)$$
.

Then
$$(s_1^{-1}n_1 + s_2^{-1}n_2)(s^{-1}e)$$

$$= (s_1 s_2)^{-1} (s_2 n_1 + s_1 n_2) s^{-1} e$$

$$= (s_1 s_2 s)^{-1} (s_2 n_1 + s_1 n_2) e$$

$$=(s_1s_2s)^{-1}(s_2n_1e+s_1n_2e)$$

=
$$(s_1s_2)^{-1}s^{-1}(s_2n_1e + s_1n_2e)$$
 [as $(xy)^{-1} = x^{-1}y^{-1}$]

$$=(s_1s_2)^{-1}(s^{-1}s_2n_1e+s^{-1}s_1n_2e)[$$
 as $s^{-1} \in N$ and N is commutative]

$$= s_1^{-1}(s^{-1}n_1e) + s_2^{-1}(s^{-1}n_2e)$$
[by hypothesis]

=
$$(s_1^{-1}s^{-1})(n_1e) + (s_2^{-1}s^{-1})(n_2e)$$
[since *N* is commutative]

=
$$(s_1s)^{-1} (n_1e) + (s_2s)^{-1} (n_2e) [$$
 since $(xy)^{-1} = x^{-1}y^{-1}]$

=
$$(s_1^{-1}n_1.s^{-1}e) + (s_2^{-1}n_2.s^{-1}e)$$
[by hypothesis].

This shows that $S^{-1}E$ is an $S^{-1}N$ -group called localized N-group of E or simply $S^{-1}E$ is an N-group.

Definition 4.2.2. *Let S be a multiplicative closed subset of a commutative N with unity.*

If
$$A \le_N E$$
, then $S^{-1}A$ is called a $S^{-1}N$ -subgroup of $S^{-1}E$ if $n(s^{-1}a) = s^{-1}(na) \in S^{-1}A$,

for some $s \in S, a \in A, n \in N$.

This $S^{-1}N$ -subgroup is called localized N-subgroup of E or simply $S^{-1}A$ is an N-subgroup of E.

Definition 4.2.3. Let S be a multiplicative closed subset of a commutative N with unity. For $I \subseteq N$, $S^{-1}I$ is an ideal of $S^{-1}N$ if $S^{-1}I$ is an additive normal subgroup of $S^{-1}N$ and $s_1^{-1}x.s_2^{-1}n$, $s_1^{-1}n_1(s_2^{-1}n_2+s^{-1}x)-s_1^{-1}n_1s_2^{-1}n_2 \in S^{-1}I$, for some $s,s_1,s_2 \in S,n,n_1,n_2 \in N, x \in I$.

This ideal $S^{-1}I$ is called localized ideal of N or simply $S^{-1}I$ is an ideal of N.

Definition 4.2.4. *Let* $P \triangleleft N$ *be prime without unity.*

Then $S = N \setminus P$ is multiplicative closed subset of N because if $d, b \in S$, then $db \in N$ and $d, b \notin P$.

Also, P is prime, $db \notin P$ and so $db \in S$

and $1 \notin P$, $1 \in N \Rightarrow 1 \in S$.

Then $S^{-1}N$ is called localization of N at P and denoted by N_P .

Therefore, $N_P = (N \setminus P)^{-1}N = S^{-1}N$.

Localization of E at a prime ideal P, $E_P = S^{-1}E = (N \setminus P)^{-1}E$.

Lemma 4.2.1. SS = S if S is a multiplicative closed subset of N.

Proof: If $x \in SS$, then $x = s_1 s_2 \in S$, for some $s_1, s_2 \in S$.

So, $SS \subseteq S$.

Again, if $s \in S$, then s = 1.s [since N has identity].

Since $1 \in S$ and S is Multiplicative closed, therefore $s = 1.s \in SS$.

Thus, $S \subseteq SS$ and hence SS = S.

Lemma 4.2.2. Let S be a multiplicative closed subset of N and $I \triangleleft N$. Then $S^{-1}I \triangleleft S^{-1}N$.

Proof: Since $I \triangleleft N$, for any $x, y \in I$ and $n, n_1, n_2 \in N$, $xn \in I, n+x-n \in I$ and $n_1(n_2+x)-n_1n_2 \in I$.

Now, for any $s_1, s_2 \in S$,

$$s_1^{-1}x - s_2^{-1}y = (s_1s_2)^{-1}(s_2x - s_1y) \in S^{-1}I$$

and $s_1^{-1}n + s_2^{-1}x - s_1^{-1}n = (s_1s_2)^{-1}(s_2n + s_1x) + s_1^{-1}(-n) = (s_1s_2s_1)^{-1}[s_1(s_2n + s_1x) - s_1s_2n].$

Now, $s_1 \in S \Rightarrow s_1 \in N \Rightarrow s_1 x \in I$.

Also, $s_2 n \in N$ and so $s_1(s_2 n + s_1 x) - s_1 s_2 n \in I$.

Again, $s_1 s_2 s_1 \in S$ and therefore $(s_1 s_2 s_1)^{-1} [s_1 (s_2 n + s_1 x) - s_1 s_2 n] \in S^{-1}I$.

Now,
$$s_2^{-1}x.s_1^{-1}n = (s_2s_1)^{-1}(xn) \in S^{-1}I$$

and
$$s_1^{-1}n_1(s_2^{-1}n_2+s^{-1}x)-s_1^{-1}n_1s_2^{-1}n_2$$

$$= s_1^{-1} n_1 [(s_2 s)^{-1} (s n_2 + s_2 x)] - (s_1 s_2)^{-1} (n_1 n_2)$$

$$= (s_1s_2s)^{-1} n_1(sn_2 + s_2x) - (s_1s_2)^{-1}(n_1n_2)$$

=
$$(s_1s_2s)^{-1}[n_1(sn_2+s_2x)-s(n_1n_2)] \in S^{-1}I$$
 [since $s_2x \in I$].

This shows that $S^{-1}I$ is an ideal of $S^{-1}N$.

Since by **lemma 2.2.1**, maximal ideal in N with unity is prime ideal. So, $P \in Max(N)$ implies $S = N \setminus P$ is closed subset as shown earlier. Now, utilizing this idea, demonstrate some findings.

Lemma 4.2.3. Let $X \leq_N E$. Then $X_P \leq_N E_P$, $\forall P \in Max(N)$.

Proof: We have, $X_P = S^{-1}X, E_P = S^{-1}E$.

Since $X \leq_N E$, X is subgroup of E and so $NX \subseteq X$.

Now, $a, b \in X_P$ implies $a = s_1^{-1}x_1, b = s_2^{-1}x_2$, for some $s_1, s_2 \in S, x_1, x_2 \in X$.

So,
$$a - b = (s_1 s_2)^{-1} (s_2 x_1 - s_1 x_2)$$
.

Since $s_2x_1, s_1x_2 \in X$ and X is subgroup of E, $s_2x_1 - s_1x_2 \in X$.

Also, $s_1.s_2 \in S$ [since *S* is multiplicative closed].

Therefore, $a - b \in S^{-1}X$.

Also, let $y \in N_P.X_P$.

Then y = nx, for some $n \in N_P, x \in X_P$.

Therefore, $n = s_1^{-1} n_1$ and $x = s_2^{-1} x_1$, for some $n_1 \in N, x_1 \in X$

$$\Rightarrow nx = (s_1s_2)^{-1}(n_1x_1) \in S^{-1}X.$$

Thus, $y = nx \in X_P$.

Hence the result.

Lemma 4.2.4. *If* $E_P = 0$, $\forall P \in Max(N)$, then $\exists s \in S = N \setminus P$ such that $se = 0 \ \forall e \in E$.

Proof: $E_P = 0 \Rightarrow S^{-1}E = 0$.

So, for any $e \in E \exists s \in S \text{ such } s^{-1} \in S \text{ and } (s^{-1})^{-1}e = 0[\text{ Since } S \text{ is closed}]$.

Also $s = (s^{-1})^{-1}$.

Thus the result.

Theorem 4.2.1. E = 0 if and only if $E_P = 0$, $\forall P \in Max(N)$.

Proof: If E = 0, $\exists s \in (N \setminus P)^{-1}$ such that se = 0. So, $E_P = 0$.

Let $e \in E$.

Then, for any $n_1, n_2 \in Ann(e), n \in N$, $(n_1 - n_2)e = n_1e - n_2e = 0$ and $nn_1e = 0$.

So, $n_1 - n_2$, $nn_1 \in Ann(e)$.

Therefore, $Ann(e) \triangleleft N$.

Let $Ann(e) \triangleleft N$ be proper.

Then $\exists P \in Max(N)$ such that $Ann(e) \subseteq P$ [since every proper ideal in N is contained in a maximal ideal].

Since $E_P = 0$, $\exists s \in S = N \setminus P$ such that se = 0[by **lemma 4.2.4**].

Therefore, $s \in Ann(e) \subseteq P$

 \Rightarrow *s* \in *P*-which contradicts *s* \in *N* \ *P*.

Thus, Ann(e) = N

 \Rightarrow $ne = 0, \forall n \in \mathbb{N}.$

Since $1 \in N$, $1e = 0 \Rightarrow e = 0 \Rightarrow E = 0$.

Corollary 4.2.1. $A_P = B_P \Rightarrow A = B, \forall A, B \leq_N E, P \in Max(N).$

Proof: Let $a \in A$.

Then $s_1^{-1}a \in S^{-1}A$, for some $s_1 \in S = N \setminus P$

$$\Rightarrow s_1^{-1}a \in S^{-1}B[\text{ since } A_P = B_P]$$

$$\Rightarrow s_1^{-1}a = s_2^{-1}b$$
, for some $s_2 \in S, b \in B$

$$\Rightarrow s_1^{-1}a - s_2^{-1}b = 0$$

$$\Rightarrow (s_1s_2)^{-1}(s_2a - s_1b) = 0$$

$$\Rightarrow (s_2a - s_1b)_P = 0$$

$$\Rightarrow$$
 $(s_2a - s_1b) = 0$ [by using **theorem 4.2.1**]

$$\Rightarrow s_2 a = s_1 b$$

$$\Rightarrow s_2^{-1}s_2a = s_2^{-1}s_1b \in NB$$

$$\Rightarrow a \in NB \subseteq B$$
.

Thus, $A \subseteq B$.

Similarly, $B \subseteq A$.

Hence, A = B.

Lemma 4.2.5. *If* $I \triangleleft N$, then $I_P \triangleleft N_P$, $\forall P \in Max(N)$

Proof: As in **lemma 4.2.2** it can be proved the result.

Theorem 4.2.2. An ideal N-group E is a DN-group if and only if E_P is also a DN-group, $\forall P \in Max(N)$.

Proof: Since *E* is a *DN*-group, $(D \cap T) + (K \cap T) = (D + K) \cap T$, $\forall D, K, T \leq_N E$.

Now, to show $(D_P + K_P) \cap T_P = (D_P \cap T_P) + (K_P \cap T_P), \forall D_P, K_P, T_P \leq_N E E_P$.

It is enough to show that, $D_P + K_P = (D + K)_P$ and $D_P \cap K_P = (D \cap K)_P$.

Let $x \in D_P + K_P$

 \Rightarrow x = a + b, where $a \in D_P, b \in K_P$.

So, $a = s_1^{-1}a_1, b = s_2^{-1}b_1$ for some $a_1 \in D, b_1 \in K$ and $s_1, s_2 \in S$.

Therefore, $x = s_1^{-1}a_1 + s_2^{-1}b_1 = (s_1s_2)^{-1}(s_2a_1 + s_1b_2)$.

Since $D, K \leq_N E, s_2 a_1 \in D, s_1 b_2 \in K$.

Also, since *S* is multiplicative closed, $s_1, s_2 \in S \Rightarrow s_1.s_2 \in S$.

Therefore, $x \in S^{-1}(D+K)$.

$$\Rightarrow D_P + K_P \subseteq (D+K)_P$$
.

Let
$$y \in (D+K)_P = S^{-1}(D+K)$$
.

Then, $y = s^{-1}(x+b)$, for some $s \in S, x \in D, b \in K$.

Since $S^{-1}x$ is an ideal, $s^{-1}(x+b) - s^{-1}b \in S^{-1}x$

$$\Rightarrow y = s^{-1}(x+b) \in S^{-1}x + S^{-1}b \subseteq S^{-1}D + S^{-1}K = D_P + K_P.$$

Therefore, $(D+K)_P \subseteq D_P + K_P$.

Thus, $D_P + K_P = (D + K)_P$.

Again, let $x \in D_P \cap K_P = S^{-1}D \cap S^{-1}K$.

Then, $x = s_1^{-1}a = s_2^{-1}b$, for some $s_1, s_2 \in S, a \in D, b \in K$.

Since $s_1^{-1}, s_2^{-1} \in S = N \setminus P$ and $D, K \leq_N E, s_1^{-1} a \in D, s_2^{-1} b \in K$.

Therefore, $x \in D \cap K$.

Since $D \cap K \leq_N E$ and $S = N \setminus P \subseteq N$, $S(D \cap K) \subseteq D \cap K$ and so $D \cap K \subseteq S^{-1}(D \cap K)$.

Therefore, $x \in S^{-1}(D \cap K) = (D \cap K)_P$.

$$\Rightarrow D_P \cap K_p \subseteq (D \cap K)_P$$
.

So,
$$D_P \cap K_P = (D \cap K)_P$$
.

Thus,
$$(D_P + K_P) \cap T_P = (D + K)_P \cap T_P = [(D + K) \cap T]_P = [(D \cap T) + (K \cap T)]_P$$

$$= (D \cap T)_P + (K \cap T)_P = (D_P \cap T_P) + (K_P \cap T_P).$$

But by **lemma 4.2.3**, $D_P, K_P, T_P \leq_N E_P$.

Hence E_P is a DN-group.

Let E_P be DN-group, then for any $D, K, T \leq_N E$,

$$(D_P + K_P) \cap T_P = (D_P \cap T_P) + (K_P \cap T_P)$$

$$\Rightarrow ((D+K)\cap T)_P = ((D\cap T)+(K\cap T))_P$$

$$\Rightarrow$$
 $(D+K) \cap T = (D \cap T) + (K \cap T)$ [by corollary 4.2.1].

This shows that *E* is a *DN*-group.

Proposition 4.2.1. An ideal N-group E is generated finitely if and only if E_P is generated finitely, $\forall P \in Max(N)$.

Proof: Let
$$e_p \in E_P = S^{-1}E = (N \setminus P)^{-1}E$$
.

Then $e_P = s^{-1}e$, for some $s \in S, e \in E$.

Since E generated finitely, $e = n_1e_1 + n_2e_2 + \cdots + n_ne_n$, where $n_i \in N, e_i \in E, i = 1, 2, ...n$.

Since $S^{-1}n_1e_1$ is an ideal, $s^{-1}(n_1e_1 + n_2e_2) - s^{-1}n_2e_2 \in S^{-1}n_1e_1$

$$\Rightarrow s^{-1}(n_1e_1 + n_2e_2) = s_1^{-1}n_1e_1 + s_1^{-1}n_2e_2$$
, for some $s_1 \in S$

$$\Rightarrow s^{-1}(n_1e_1 + n_2e_2) = n_1(s_1^{-1}e_1) + n_2(s_2^{-1}e_2)$$
[since N is commutative], where $s = s_2$.

In the same way, it can be extended to a finite number n of steps, i. e

$$e_P = s^{-1}e = s^{-1}(n_1e_1 + n_2e_2 + n_3e_3 + \dots + n_ne_n) = n_1(s_1^{-1}e_1) + n_2(s_2^{-1}e_2) + n_3(s_3^{-1}e_3) + \dots + n_n(s_n^{-1}e_n),$$
 where $s_i \in S, e_i \in E$ and $n_i \in N$, for $i = 1, 2, 3, \dots n$.

This shows that E_P generated finitely.

Lemma 4.2.6. If E_P is a cyclic N-group, then $\frac{N_P}{I_P} \cong E_P$, for some $P \in Max(N)$.

Proof: Let E_P be cyclic N-group generated by e_p .

Now, let us define a function $\phi: N_P \to E_P$ by

$$\phi(n_p) = (ne)_p$$
, where $n \in N, e \in E$.

i. e.
$$\phi(s^{-1}n) = s^{-1}(ne)$$
, where $s \in S = N \setminus P$.

Clearly, ϕ is well defined and onto.

For any $m_p, n_p \in N_P$,

$$\phi(m_P+n_p)$$

$$= \phi(s_1^{-1}m + s_2^{-1}n)$$
, where $s_1, s_2 \in S$

$$= \phi((s_1s_2)^{-1})(s_2m + s_1n))$$

$$=(s_1s_2)^{-1}((s_2m+s_1n)e)$$

$$=(s_1s_2)^{-1}(s_2me+s_1ne)$$

$$= s_1^{-1}(me) + s_2^{-1}(ne)$$

$$=(me)_p+(ne)_p$$

$$= \phi(m_p) + \phi(n_p).$$

Also, for any $n_p \in N_p, x_p \in E_p$,

$$\phi(n_p x_p)$$

$$= \phi(s_1^{-1}n.s_2^{-1}x), \text{ where } s_1, s_2 \in S$$

$$= \phi((s_1 s_2)^{-1}(nx))$$

$$= (s_1 s_2)^{-1} (nxe)$$

$$= s_1^{-1}(n)s_2^{-1}(xe) = n_p\phi(x_p).$$

Therefore,
$$\frac{N_P}{ker\phi} \cong E_P$$
.

Since $ker\phi$ is an ideal, taking $ker\phi = I_p$,

$$\frac{N_P}{I_P} \cong E_P$$
, where I_p is an ideal of N_P .

4.3 Multiplication *N*-groups

Definition 4.3.1. *N* is referred to as arithmetical if *N* is considered as an *N*-group is a DN-group or $N_P = (N \setminus P)^{-1}N$ is uniserial, $\forall P \in Max(N)$.

Example 4.3.1. If $E = N = \{0, s, b, m\}$ is the Klein's 4-group given by the following table:-

Then (E, +, .) is a near-ring and N-group over itself.

$$P = \{0\}, L = \{0, s\}, E \leq_N E \text{ as } NP = P, NL = L \text{ and } NN = N \text{ such that } P \subset L \subset N.$$

$$We \text{ have, } P + L = L + P = L, P + E = E + P = E, L + E = E + L = E, P + P = P.$$

$$and (P + L) \cap E = L = (P \cap E) + (L \cap E), (P + E) \cap L = L = (P \cap L) + (E \cap L), (L + E) \cap L = L = (L \cap P) + (E \cap P), (L + P) \cap E = L = (L \cap E) + (P \cap E), ((E + P) \cap L = L = (E \cap L) + (P \cap L), (E + L) \cap P = P = (E \cap P) + (L \cap P).$$

Thus E is a DN-group and hence E is arithmetical.

Definition 4.3.2. *If an N-subgroup A of E has the form IE for some I* \triangleleft *N, it is referred to as multiplication.*

Definition 4.3.3. *E* is referred to as a multiplication *N*-group if *A* is multiplication $\forall A \leq_N E$.

Example 4.3.2. Example of a multiplication N-group.

Let $N = (E, +, .) = \{0, s, b, k\}$ be the Klein's 4-groups under the operations given below-

	0					0			
0	0	0	0	0	0	0	S	b	k
	0				S	S	0	k	b
b	0	S	k	b	b	b	k	0	S
k	0	S	b	k	k	k	b	S	0

Then (N, +, .) is a near-ring as well as N-group over itself.

We have,
$$D = \{0\}, K = \{0, s\}, E \leq_N E$$
.

Also,
$$D, K, N \triangleleft N$$
 such that $D = DE, K = KE$ and $E = NE$.

Thus E is a multiplication N-group.

Theorem 4.3.1. If $K \triangleleft N$ such that $K \subseteq J(N)$ and E is a multiplication N-group, then KE = 0 implies E = 0.

Proof: Let $x \in E$.

Since E is a multiplication N-group, therefore by definition of multiplication N-group,

Nx = JE, for some $J \triangleleft N$ [since Nx is a principal N-subgroup].

Now, KE = 0

$$\Rightarrow JKE = 0$$

 $\Rightarrow KJE = 0$ [since *N* is commutative]

$$\Rightarrow KNx = 0.$$

Since $x \in Nx$, $ax = 0 \forall a \in K$

$$\Rightarrow a^{-1}ax = 0$$
[since $a \in K \subseteq J(N)$]

 $\Rightarrow x = 0$ [since E is unitary]

$$\Rightarrow E = 0.$$

Definition 4.3.4. $(A_P : E_P) = \{ n_P \in N_P : n_P E_P \subseteq A_P \}$, for any $A_P \leq_N E_P$.

Definition 4.3.5. An $I_P \le_N N_P$ is called an ideal of N_P if $x_P - y_P \in I_P, n_P + x_P - n_P \in I_P, n_P (n_P' + y_P) - n_P n_P' \in I_P, \forall x_P, y_P \in I_P, n_P, n_P' \in N_P$.

Definition 4.3.6. E_P is referred to as a multiplication N-group if for every $A_P \leq_N E_P$, $A_P = I_P E_P$, for some $I_P \triangleleft N_P$.

Theorem 4.3.2. Every cyclic localized N-group is a localized multiplication N-group.

Proof: Let E_P be cyclic generated by e_P , for some $e \in E$.

Let $A_P \leq_N E_P$.

Now,
$$(A_P : E_P) = \{ n_P \in N_P : n_P E_P \subseteq A_P \}.$$

So,
$$(A_P:E_P)E_P\subseteq A_P$$
.

Let
$$a_P \in A_P \subseteq E_P$$

$$\Rightarrow a_P = n_P e_P$$
, for some $n \in N$.

Now, for any $m_P \in E_P$,

 $n_P m_P$

$$= n_P n'_P e_P$$
, for some $n' \in N$

$$= n'_P(n_P e_P)$$
[since N is commutative]

$$= n'_P a_P \in N_P A_P \subseteq A_P [$$
 since $A_P \leq_N E_P]$.

Therefore, $n_P E_P \subseteq A_P$

$$\Rightarrow n_P \in (A_P : E_P)$$

$$\Rightarrow a_P \in (A_P : E_P)E_P$$

$$\Rightarrow A_P \subseteq (A_P : E_P)E_P$$
.

Therefore, $A_P = (A_P : E_P)E_P$.

Let $x_P, y_P \in (A_P : E_P)$ and $n_P, n_P' \in N_P$.

Since $A_P \leq_N E_P$, for any $e \in E$, $(x_P - y_P)e_P = x_P e_P - y_P e_P \in A_P$.

Therefore, $(x_P - y_P)E_P \subseteq A_P$

$$\Rightarrow x_P - y_P \in (A_P : E_P).$$

Since *N* is commutative $n_P + x_P - n_P = x_P \in (A_P : E_P)$ and $n_P(n_P' + y_P) - n_P n_P' = n_P y_P$.

But, for any $e \in E$,

$$(n_P y_P)e_p = (y_P n_P)e_P = y_P(n_P e_P) \in y_P E_P \subseteq A_P.$$

Therefore, $n_P y_P \in (A_P : E_P)$.

Thus $(A_P : E_P)$ is an ideal of N_P and hence E_P is a multiplication N-group.

Theorem 4.3.3. Every localized multiplication N-group over local N is cyclic.

Proof: Let E_P be multiplication N-group over local N.

Therefore, $E_P = I_P E_P$, for some $I_P \triangleleft N_P$

$$\Rightarrow E_P = I_P E_P \subseteq N_P E_P \subseteq E_P$$
.

Therefore, $E_P = N_P E_P$.

So, for any $e \in E$,

$$N_P e_P \subseteq N_P E_P = E_P$$

$$\Rightarrow N_P e_P \subseteq E_P$$
.

Let $e_P \in E_P$ and $a \in N$.

Since *N* is local, *a* or 1 - a is invertible in it.

If *a* is invertible, then

 $a_P e_P \in N_P E_P$

 $\Rightarrow a_P e_P = n_n e_P$, for some $n \in N$

$$\Rightarrow (s_1^{-1}a)(s_2^{-1}e) = (s_3^{-1}n)(s_4^{-1}e), \text{ for some } s_1, s_2, s_3, s_4 \in S, n \in N$$

$$\Rightarrow (s_1s_2)^{-1}(ae) = (s_3s_4)^{-1}(ne)$$

$$\Rightarrow a^{-1}(s_1s_2)^{-1}(ae) = a^{-1}(s_3s_4)^{-1}(ne)$$

$$\Rightarrow$$
 $(s_1s_2)^{-1}(a^{-1}(ae)) = (s_3s_4)^{-1}(a^{-1}(ne))[$ since N is commutative]

$$\Rightarrow (s_1s_2)^{-1}(e) = (s_3s_4)^{-1}((a^{-1}n)e)$$

$$\Rightarrow (s_1 s_2)^{-1}(e) = (s_3^{-1}(a^{-1}n))(s_4^{-1}e)$$

$$\Rightarrow e_p \in N_P e_P$$

$$\Rightarrow E_P \subseteq N_P e_P$$
.

Thus, $E_P = N_P e_P$ and hence E_P is cyclic.

Theorem 4.3.4. Every localized multiplication N-group is also multiplication N-group.

Proof:

Let
$$M' \leq_N S^{-1}E = E_P$$
.

Then $\exists M \leq_N E$ such that $M' = S^{-1}M$.

Since *E* is a multiplication *N*-group, M = IE, for some $I \triangleleft N$.

Then
$$M' = S^{-1}(IE) = (SS)^{-1}(IE)$$
[using **lemma 4.2.1**].

So,
$$M' = (S^{-1}I)(S^{-1}E)$$
.

Also, by **lemma 4.2.2**, $S^{-1}I$ is an ideal of $S^{-1}N$.

Thus the result.

Corollary 4.3.1. Since every multiplication N-group over local N is cyclic and the localized N-group of a multiplication N-group is also a multiplication N-group, every localized multiplication N-group over local N is cyclic.

Theorem 4.3.5. If E is generated finitely, then E is multiplication if and only if E_P is multiplication, $\forall P \in Max(N)$.

Proof: Let *E* be multiplication.

So, by **theorem 4.3.4**, E_P is a multiplication N-group.

Conversely, let E_P be multiplication N-group.

Let $X \leq_N E$.

Then $X_P = I_P.E_P$, for some ideal I_P of N_P .

Therefore,
$$X_P = S^{-1}I.S^{-1}E = (SS)^{-1}(IE) = S^{-1}(IE) = (IE)_P$$
 [since $SS = S$].

So, by **corollary 4.2.1**, X = IE.

Hence *E* is a multiplication *N*-group.

Theorem 4.3.6. If $Ann(E) \subseteq P_i$ only, $P_i \in Max(N)$ such that each principal N-subgroup is an ideal and E_{P_i} is cyclic, then E_P is a multiplication N-group, for i = 1, 2 ... n.

Proof: Since E_{P_i} is cyclic, $E_{P_i} = (Ne_i)_{P_i}$, where $e_i \in E$, i = 1, 2, 3, ...n.

Let us choose $b_i \in (\bigcap_{i \neq j} P_i) \setminus P_i$, $i \neq j$, $i = 1, 2 \dots n$.

Let $X \leq_N E$ be cyclic and generated by $x = \sum_{i=1}^n b_i e_i$.

Now, $E_{P_1} = (Ne_1)_{P_1}$

$$\Rightarrow (N \setminus P_1)^{-1}E = (N \setminus P_1)^{-1}(Ne_1)$$

$$\Rightarrow (N \setminus P_1)E = Ne_1 \text{ [since } (N \setminus P_1)N \subseteq N \text{]}$$

$$\Rightarrow s_i e_i = n_i e_1$$
, for some $s_i \in N \setminus P_1, n_i \in N$.

Let $s = s_1 s_2 s_3 ... s_n$ and $s'_i = s_1 s_2 s_3 ... s_{i-1} s_{i+1} ... s_n$ such that $s = s_i s'_i$.

Therefore, $sx = s(b_1e_1 + b_2e_2 + ... b_ne_n)$.

Now, $s(b_1e_1 + b_2e_2 + \dots b_ne_n) - s(b_2e_2 + \dots b_ne_n) \in Sb_1e_1$

$$\Rightarrow$$
 $sx - s(b_2e_2 + \dots b_ne_n) = s'b_1e_1$, for some $s' \in S$

$$\Rightarrow (ss)^{-1}[sx - s(b_2e_2 + \dots b_ne_n)] = (ss)^{-1}(s'b_1e_1)$$

$$\Rightarrow (ss)^{-1}[sx - s(b_2e_2 + \dots b_ne_n)] = (ss)^{-1}(s'b_1e_1)$$

$$\Rightarrow s^{-1}(x) - s^{-1}(b_2e_2 + \dots b_ne_n)] = (ss)^{-1}(s'b_1e_1).$$

Since $s'b_1e_1 \in E$, $ss \in S$, $x \in X$, $b_2e_2 + \dots b_ne_n \in J(N)E$, therefore $E_P = X_P - (J(N)E)_P$.

Since $Ann(E) \subseteq P_i$ only, $Ann(E) \not\subseteq P$, $\forall P \in Max(N)$.

So, $\exists s \in Ann(E)$, but $s \notin P$

$$\Rightarrow$$
 $sE = 0$, for $s \in N$, but $s \notin P$

$$\Rightarrow E_P = 0$$
[since $s \in N \setminus P = S$].

So,
$$X_P = (J(N)E)_P$$

$$\Rightarrow X_P = S^{-1}(J(N)E)$$

$$\Rightarrow X_P = (SS)^{-1}(J(N)E)$$
[since SS=S]

$$\Rightarrow X_P = (S^{-1}J(N)).(S^{-1}E)$$

$$\Rightarrow X_P = J(N)_P.E_p$$
.

By lemma 4.2.5, $J(N)_P \triangleleft N_P[$ since $J(N) \triangleleft N]$.

This shows that E_P is a multiplication N-group.

Definition 4.3.7. *E* is called locally cyclic if E_P is cyclic, $\forall P \in Max(N)$.

Theorem 4.3.7. If E is generated finitely on local N, then E is multiplication if and only if it is locally cyclic N-group.

Proof : If *E* is a multiplication which generated finitely on local *N*, then by **theorem 4.3.5**, E_P is multiplication *N*-group, $\forall P \in Max(N)$.

Since *N* is local, E_P is cyclic *N*-group $\forall P \in Max(N)$ [by **theorem4.3.3**].

So, by definition E is locally cyclic N-group.

Conversely, suppose E is locally cyclic N-group.

Then E_P is cyclic, $\forall P \in Max(N)$.

So, E_P is multiplication N-group, $\forall P \in Max(N)$ [by **theorem 4.3.2**] and so E is multiplication [by **theorem 4.3.5**] .

Definition 4.3.8. Every N-subgroup of E is referred to as a principal ideal N-group if it is both principal and ideal.

Theorem 4.3.8. If E is principal DN-group over local N and every localized DN-group over local N is uniserial, then E is multiplication N-group.

Proof : Since *E* is a principal *DN*-group, every *N*-subgroup is principal and so generated finitely. Let $M \leq_N E$ generated finitely.

Since by **lemma 2.2.2**, N-subgroups of a DN-group are also ideal DN-groups, M is a DN-group.

Therefore, by **theorem** 4.2.2, M_P is a DN-group.

Since N is a local, M_P is an uniserial N-group[by hypothesis].

Since M generated finitely, M_P is also generated finitely by **proposition 4.2.1**].

So, for $m_P \in M_p$,

$$m_P = n_{1p}e_{1p} + n_{2p}e_{2p} + n_{3p}e_{3p} + \cdots + n_{np}e_{np}$$
, where $n_{iP} \in N_P, e_{iP} \in M_P$

$$\Rightarrow m_P \in N_p e_{1P} + N_p e_{2P} + N_p e_{3P} + \cdots + N_p e_{nP}.$$

Since M_P is uniserial, so any two of its N-subgroups are comparable, it may assume

$$N_p e_{1P} \subseteq N_p e_{2P} \subseteq N_p e_{3P} \subseteq \cdots \subseteq N_p e_{nP}$$
.

Therefore, $m_P \in N_P e_{nP}$

$$\Rightarrow M_P \subseteq N_P e_{nP}$$
.

Since M_P is N-subgroup and $e_{nP} \in M_P, N_P e_{nP} \subseteq M_P$.

Therefore, $M_P = N_P e_{nP}$

 $\Rightarrow M_P$ is cyclic

 \Rightarrow *M* is locally cyclic.

So, by **theorem 4.3.7**, *M* is a multiplication *N*-group and hence *E* is multiplication.

Definition 4.3.9. A local near-ring is referred to as convey if it is strongly regular.

Theorem 4.3.9. If E is an ideal DN-group that generated finitely over a convey N with inverse property and every ideal DN-group over a strongly regular near-ring is Bezout, then E is a multiplication N-group.

Proof: Let $M \leq_N E$. Since *E* generated finitely, *M* generated finitely.

Since N-subgroups of an ideal DN-group are also ideal DN-group, M is an ideal DN-group.

So, by **theorem 4.2.2**, M_P is also DN-group.

Since M generated finitely, M_P is also generated finitely [by **proposition 4.2.1**].

Since N is convey, M_P is an ideal DN-group over a strongly regular near-ring.

By hypothesis, M_P is a Bezout N-group.

So, every generated finitely *N*-subgroup is cyclic.

Since M_P generated finitely, M_P is cyclic.

So, by definition *M* is locally cyclic.

Thus by **theorem 4.3.7**, M is a multiplication N-group.

Hence E is multiplication.

Proposition 4.3.1. If N is an arithmetical, then $\forall Q \in Max(N)$, $\frac{N_Q}{I_Q}$ is an uniserial N-group.

Proof: Let *N* be an arithmetical.

Then by definition, N_Q is uniserial, $\forall Q \in Max(N)$.

Now, to show for any sub factors (ideals of $\frac{N_Q}{I_Q}$) $\bar{X_Q} = \frac{N_Q}{I_{1p}}$ and $\bar{Y_Q} = \frac{N_Q}{I_{2p}}$, $\bar{X_Q} \subseteq \bar{Y_Q}$ or $\bar{Y_Q} \subseteq \bar{X_Q}$. Since I_{1p} , I_{2p} are ideals of the uniserial N-group N_Q , $I_{1p} \subseteq I_{2p}$ or $I_{2p} \subseteq I_{1p}$. Let $\bar{a} \in \bar{X_Q}$.

Then $a \in I_{1p}$

 $\Rightarrow a \in I_{2p}$

 $\Rightarrow \bar{a} \in Y_O$.

Therefore, $\bar{X_Q} \subseteq \bar{Y_Q}$.

Thus, if $I_{1p} \subseteq I_{2p}$, then $\overline{X_Q} \subseteq \overline{Y_Q}$.

Similarly, if $I_{2p} \subseteq I_{1p}$, then $\overline{Y}_Q \subseteq \overline{X}_Q$.

This shows the result.

Theorem 4.3.10. *If E is a multiplication ideal N-group that generated finitely and N is an arithmetical local near-ring, then E is a DN-group.*

Proof: E_P is also multiplication N-group as E is a multiplication N-group[by theorem 4.3.4].

Also, by **theorem 4.3.3**, E_P is cyclic.

So, by **lemma 4.2.6**, $\frac{N_P}{I_P} \cong E_P \ \forall P \in Max(N)$.

Since N is a arithmetical local, $\frac{N_P}{I_P}$ is an uniserial N-group[by **proposition 4.3.1**].

So, E_P is an uniserial N-group

 $\Rightarrow E_P$ is a DN-group[since uniserial N-group is DN-group]

 $\Rightarrow E$ is a *DN*-group[by **theorem 4.2.2**].

4.4 Conclusion

To extend the notions of near -ring groups to localized near-ring groups and multiplication modules to multiplication near-ring groups, are the prime objectives of this chapter. Defining related definitions of localized N-groups and multiplication N-groups, some lemmas and theorems are derived. The theorem 4.2.2 describes the relationship between DN-groups and localized DN-groups. Theorems 4.3.4 to 4.3.10 demonstrate the connection among DN-groups, multiplication N-groups and localized multiplication N-groups. The results obtained here will be used in the subsequent chapters.