Chapter 5 Intuitionistic fuzzy aspects of DN-groups and weak DN-groups

This work is communicated for publication in the journal "Mathematical Forum", ISSN 0972-9852..

5

Intuitionistic Fuzzy aspects of DN-groups and weak DN-groups

5.1 Introduction

Hadi and Semeein [9] introduced and investigated fuzzy distributive modules as an expanded idea of distributive modules. They established the result between the fuzzy distributive module and the distributive of fuzzy singleton. Sharma [81] has studied the notions of intuitionistic fuzzy modules in many ways. Introducing intuitionistic fuzzy submodules of a module, Sharma proved that the intersection of two fuzzy submodules of a module is also a fuzzy submodule. Davvaz, Wieslaw and Jun [82] presented

intuitionistic fuzzy submodules of modules and utilizing this notion, numerous scholars such as Isaac [83], Rahman [84], and Sharma [85] investigated it in many ways. They derived different operations on intuitionistic fuzzy sets, intuitionistic (T,S)-fuzzy submodule of a module, intuitionistic fuzzy H_{ν} -submodules of a module and the relationship between fuzzy submodule, and intuitionistic fuzzy submodule of a module. Devi [86] developed the concept of intuitionistic fuzzy N-subgroups and ideals of N-group and discussed the association between intuitionistic fuzzy ideals and fuzzy ideals, which is being investigated by several scholars in various fields.

In **Chapter 4**, *DN*-groups, uniserial *N*-groups and Bezout *N*-groups are discussed thoroughly. In this chapter, the concept of *DN*-groups extended to intuitionistic fuzzy and intuitionistic fuzzy weak *DN*-groups and uniserial *N*-groups to intuitionistic fuzzy uniserial *N*-groups.

The core concepts employed in this chapter are found in [28, 6, 7]. Here, in general, $\gamma, \lambda \in [0, 1]$ with $\gamma + \lambda \le 1$.

Introducing the notion of IF DN-groups, the associated outcomes of the (γ, λ) -cut of intuitionistic fuzzy sets, intuitionistic fuzzy DN-groups and intuitionistic fuzzy weak DN-groups are examined. Finally, the correlations among the intuitionistic fuzzy concepts of uniserial N-groups, DN-groups and weak DN-groups are derived.

5.2 Intuitonistic fuzzy *DN*-groups

Definition 5.2.1. *E is called an IF DN-group if* $(P+H) \cap C = (P \cap C) + (H \cap C)$, \forall *IF N-subgroups P,H,C of E.*

Definition 5.2.2. Let $B = \langle \phi_B, \psi_B \rangle$ be an IF N-subgroup, then $(\gamma,\lambda)B$ is called an N-subgroup of $(\gamma,\lambda)E$ if $s-y, ns \in (\gamma,\lambda)B$, for any $s,y \in (\gamma,\lambda)B$ and $n \in N$.

Definition 5.2.3. Let $B = \langle \phi_B, \psi_B \rangle$ be an IF N-subgroup, then $(\gamma,\lambda)B$ is said to be an ideal of $(\gamma,\lambda)E$ if $p-q,m+p-m \in E$ and $n(p+m)-nm \in (\gamma,\lambda)B$, for any $p,q \in (\gamma,\lambda)B$, $m \in E$, $n \in N$.

Lemma 5.2.1. Let E be a commutative N-group and every principal N-subgroup is an ideal, then the sum of two subgroups of $(\gamma,\lambda)E$ is also a subgroup.

Proof : Let $(\gamma,\lambda)P$ and $(\gamma,\lambda)B$ be subgroups of $(\gamma,\lambda)E$.

Let
$$p, q \in {}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}B$$
.

Then
$$p = s_1 + y_1, q = s_2 + y_2$$
, for some $s_1, s_2 \in {}^{(\gamma, \lambda)}P, y_1, y_2 \in {}^{(\gamma, \lambda)}B$.

Since *E* is commutative and ${}^{(\gamma,\lambda)}P, {}^{(\gamma,\lambda)}B \subseteq E$,

$$p-q = (s_1 - s_2) + (y_1 - y_2) \in {}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}B.$$

Since every principal N-subgroup is an ideal,

$$n(s_1 + y_1) - ny_1 \in Ns_1$$
, for $n \in N$.

Also, $ny_1 \in Ny_1$.

So,
$$n(s_1 + y_1) - ny_1 + ny_1 \in Ns_1 + Ny_1$$
.

$$\Rightarrow np = n(s_1 + y_1) \in Ns_1 + Ny_1 \in N^{(\gamma,\lambda)}P + N^{(\gamma,\lambda)}B \subseteq {}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}B.$$

Thus the result.

Proposition 5.2.1. If $P = \langle \phi_P, \psi_P \rangle$ and $B = \langle \phi_B, \psi_B \rangle$ are IF N-subgroups of E, then

i.
$$(\gamma,\lambda)(P+B) = (\gamma,\lambda)P + (\gamma,\lambda)B$$
 with $\gamma + \lambda = 1$.

ii.
$$(\gamma,\lambda)(P\cap B) = (\gamma,\lambda)P\cap (\gamma,\lambda)B$$
.

Proof: (i). Let $s \in {}^{(\gamma,\lambda)}(P+B)$.

Then $\phi_{P+B}(s) \ge \gamma$ and $\psi_{P+B}(s) \le \lambda$.

Now, $\phi_{P+B}(s) \ge \gamma$

$$\Rightarrow \bigvee \{\phi_P(r) \land \phi_B(t) : r, t \in E, s = r + t\} \geq \gamma$$

$$\Rightarrow \phi_P(r_1) \land \phi_B(t_1) \ge \gamma$$
, for some $r, t \in E$ such that $s = r_1 + t_1$.

Since
$$\phi_P(r_1), \phi_B(t_1) \ge \phi_P(r_1) \land \phi_B(t_1) \ge \gamma$$

$$\Rightarrow \phi_P(r_1) \ge \gamma$$
 and $\phi_B(t_1) \ge \gamma$, for some $r_1, t_1 \in E$ such that $s = r_1 + t_1$

$$\Rightarrow \psi_P(r_1) \le 1 - \phi_P(r_1) = 1 - \gamma = \lambda$$
 and $\psi_B(t_1) \le 1 - \phi_B(t_1) = 1 - \gamma = \lambda$ [Since $\gamma + \lambda = 1 - \gamma = \lambda$]

1]

$$\Rightarrow r_1 \in {}^{(\gamma,\lambda)}P$$
 and $t_1 \in {}^{(\gamma,\lambda)}B$

$$\Rightarrow$$
 $s = r_1 + t_1 \in {}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}B.$

Converselr, let $s \in {}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}B$.

Then s = r + t, for some $r \in {(\gamma, \lambda)}P$, $t \in {(\gamma, \lambda)}B$

$$\Rightarrow \phi_P(r) \ge \gamma, \psi_P(r) \le \lambda, \phi_B(r) \ge \gamma, \psi_B(r) \le \lambda$$

$$\Rightarrow \phi_P(r) \land \phi_B(r) \ge \gamma \text{ and } \psi_P(r) \lor \psi_B(r) \le \lambda$$

$$\Rightarrow \bigvee \{\phi_P(r) \land \phi_B(r) \geq \gamma : s = r + t\} \text{ and } \land \{\psi_P(r) \lor \psi_B(r) \leq \lambda : s = r + t\}$$

$$\Rightarrow s \in {}^{(\gamma,\lambda)}(P+B).$$

Thus the result.

(ii). Let
$$s \in {}^{(\gamma,\lambda)}(P \cap B)$$

$$\Rightarrow \phi_{P \cap B}(s) \geq \gamma$$
 and $\psi_{P \cap B}(s) \leq \lambda$.

But $P \cap B \subseteq P, B$.

So
$$\phi_P(s), \phi_B(s) \ge \phi_{P \cap B}(s) \ge \gamma$$
 and $\psi_P(s), \psi_B(s) \le \psi_{P \cap B}(s) \le \lambda$.

Thus,
$$s \in {}^{(\gamma,\lambda)}P$$
 and $s \in {}^{(\gamma,\lambda)}B$

$$\Rightarrow s \in {}^{(\gamma,\lambda)}P \cap {}^{(\gamma,\lambda)}B.$$

Conversely, let $s \in {}^{(\gamma,\lambda)}P \cap {}^{(\gamma,\lambda)}B$

$$\Rightarrow s \in {}^{(\gamma,\lambda)}P \text{ and } s \in {}^{(\gamma,\lambda)}B$$

$$\Rightarrow \phi_P(s) \ge \gamma, \psi_P(s) \le \lambda \text{ and } \phi_B(s) \ge \gamma, \psi_B(s) \le \lambda$$

$$\Rightarrow \phi_P(s) \land \phi_B(s) \ge \gamma \text{ and } \psi_P(s) \lor \psi_B(s) \le \lambda$$

$$\Rightarrow \phi_{P \cap B}(s) \ge \gamma$$
 and $\psi_{P \cap B}(s) \le \lambda$

$$\Rightarrow s \in {}^{(\gamma,\lambda)}(P \cap B).$$

Thus the result.

Definition 5.2.4. If $P = \langle \phi_P, \psi_P \rangle$ and $B = \langle \phi_B, \psi_B \rangle$ are IF N-subgroups of E, then $(\gamma,\lambda)P = (\gamma,\lambda)B$ if and only if $\phi_P(s) = \phi_B(s) \geq \gamma$ and $\psi_P(s) = \psi_B(s) \leq \lambda$, $\forall s \in E$.

Lemma 5.2.2. If $P = \langle \phi_P, \psi_P \rangle$ and $M = \langle \phi_M, \psi_M \rangle$ are IF N-subgroups of E, then P = M if and only if $(\gamma, \lambda)P = (\gamma, \lambda)M$.

Proof: It is clear from the definition.

Proposition 5.2.2. If $L = \langle \phi_L, \psi_L \rangle$ is an IF N-subgroup of E, then $(\gamma, \lambda)L$ is also an N-subgroup of $(\gamma, \lambda)E$.

Proof: By definition, $(\gamma,\lambda)L$ is a subset of $(\gamma,\lambda)E$.

For any $n \in N$, $s, y \in {(\gamma, \lambda)}L$,

$$\phi_L(s), \phi_L(y) \geq \gamma, \psi_L(s), \psi_L(y) \leq \lambda.$$

Therefore, $\phi_L(ns) \ge \phi_L(s) \ge \gamma$ and $\psi_L(ns) \le \psi_L(s) \le \lambda$ [since L is an IF N-subgroup].

Also, $ns \in E$.

Therefore, $ns \in {}^{(\gamma,\lambda)}L$.

Again, $s - y \in E$ such that $\phi_L(s - y) \ge \phi_L(s) \land \phi_L(y) \ge \gamma \land \gamma = \gamma$ and $\psi_L(s - y) \le \psi_L(s) \lor \psi_L(y) \le \lambda \lor \lambda = \lambda$.

So,
$$s - y \in {}^{(\gamma,\lambda)}L$$
.

This shows that $(\gamma,\lambda)L$ is an *N*-subgroup of $(\gamma,\lambda)E$.

Theorem 5.2.1. *E* is an *IF DN*-group if and only if $(\gamma,\lambda)E$ is a *DN*-group with $\gamma,\lambda\in(0,1], \gamma+\lambda=1$.

Proof: Let *E* be an IF *DN*-group and X, I, L be *N*-subgroups of $(\gamma,\lambda)E$ such that

$$\phi_{P}(h) = \begin{cases} 1, & h \in X \\ 0, & h \notin X \end{cases}, \ \psi_{P}(h) = \begin{cases} 0, & h \in X \\ 1, & h \notin X \end{cases},$$

$$\phi_{M}(h) = \begin{cases} 1, & h \in I \\ 0, & h \notin I \end{cases}, \ \psi_{M}(h) = \begin{cases} 0, & h \in I \\ 1, & h \notin I \end{cases},$$

$$\phi_{T}(h) = \begin{cases} 1, & h \in L \\ 0, & h \notin L \end{cases}, \ \psi_{T}(h) = \begin{cases} 0, & h \in L \\ 1, & h \notin L \end{cases}$$

where $\gamma, \lambda \in (0, 1], \gamma + \lambda = 1$.

Now, if $s \in {}^{(\gamma,\lambda)}P$, then either $s \in X$ or $s \notin X$.

If $s \notin X$, then $\phi_P(s) = 0 \ge \gamma$ and $\psi_P(s) = 1 \le \lambda$ [since $\phi_P(s) \ge \gamma$, $\psi_P(s) \le \lambda$]-which is a contradiction as $\gamma, \lambda \in (0, 1]$.

Thus,
$$(\gamma,\lambda)P = X$$
.

Similarly,
$${}^{(\gamma,\lambda)}M = I, {}^{(\gamma,\lambda)}T = L.$$

Claim P, M, T are IF N-subgroups of E.

Since X is a subgroup of (E, +), for any $s, y \in X, n \in N$,

$$s - y \in X$$
 and $ns \in X$

$$\Rightarrow \phi_P(s-y) = 1 = \phi_P(s) \land \phi_P(y)$$
 and $\phi_P(ns) = 1 = \phi_P(s)$ [since $s, y \in X, \phi_P(s) = 0$

$$1, \phi_P(y) = 1$$
].

Similarly,
$$\psi_P(s-y) = \psi_P(s) \vee \psi_P(y)$$
 and $\psi_P(ns) = \psi_P(s)$.

This shows that *P* ia an IF *N*-subgroup.

Similarly, M and T are IF N-subgroups of E.

Since E is an IF DN-subgroup, therefore

$$(P+M)\cap T=(P\cap T)+(M\cap T)$$

$$\Rightarrow$$
 $(\gamma,\lambda)[(P+M)\cap T] = (\gamma,\lambda)[(P\cap T) + (M\cap T)]$ [using **lemma 5.2.2**]

$$\Rightarrow$$
 $(\gamma,\lambda)(P+M)\cap(\gamma,\lambda)T=(\gamma,\lambda)(P\cap T)+(\gamma,\lambda)(M\cap T)[$ using **proposition 5.2.1**]

$$\Rightarrow ({}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}M) \cap {}^{(\gamma,\lambda)}T = ({}^{(\gamma,\lambda)}P \cap {}^{(\gamma,\lambda)}T) + ({}^{(\gamma,\lambda)}M \cap {}^{(\gamma,\lambda)}T)[$$
 using **proposition**

5.2.1]

$$\Rightarrow$$
 $(X+I) \cap L = (X \cap L) + (I \cap L).$

Thus, $(\gamma,\lambda)E$ is a *DN*-group.

Conversely, suppose $(\gamma,\lambda)E$ is a *DN*-group.

Let P, M, T are IF N-subgroups of E.

Then by **proposition 5.2.2**, $(\gamma,\lambda)P$, $(\gamma,\lambda)M$, $(\gamma,\lambda)T$ are *N*-subgroups of $(\gamma,\lambda)E$.

Since $(\gamma,\lambda)E$ is a *DN*-group,

$$({}^{(\gamma,\lambda)}P + {}^{(\gamma,\lambda)}M) \cap {}^{(\gamma,\lambda)}T = ({}^{(\gamma,\lambda)}P \cap {}^{(\gamma,\lambda)}T) + ({}^{(\gamma,\lambda)}M \cap {}^{(\gamma,\lambda)}T)$$

$$\Rightarrow$$
 $(\gamma,\lambda)[(P+M)\cap T] = (\gamma,\lambda)[(P\cap T)+(M\cap T)]$ [using **proposition 5.2.1**]

$$\Rightarrow (P+M) \cap T = (P \cap T) + (M \cap T)$$
[using **lemma 5.2.2**].

Thus E is an IF DN-group.

Definition 5.2.5. *E is called an IF uniserial N-group if any two of its IF N-subgroups are comparable to each other.*

Theorem 5.2.2. *An IF uniserial N-group is an IF DN-group.*

Proof: Let E be an IF uniserial N-group.

Let
$$P = \langle \phi_P, \psi_P \rangle, B = \langle \phi_B, \psi_B \rangle, T = \langle \phi_T, \psi_T \rangle$$
 be IF N-subgroups of E.

Since E is an IF uniserial N-group, any two of its IF N-subgroups are comparable to each other.

So, it may assume $P \subseteq B \subseteq T$.

Thus, $\phi_P \leq \phi_B \leq \phi_T$ and $\psi_P \geq \psi_B \geq \psi_T$.

Therefore, $P + B = \langle \phi_{P+B}, \psi_{P+B} \rangle$, where

$$\phi_{P+B}(s) = \bigvee \{ \phi_P(a) \land \phi_B(q) : a, q \in E, s = a+q \} \text{ and } \psi_{P+B}(s) = \bigwedge \{ \psi_P(a) \lor \psi_B(q) : a, q \in E, s = a+q \}, \forall s \in E.$$

So,
$$(P+B) \cap T = \langle \phi_{P+B} \wedge \phi_T, \psi_{P+B} \vee \psi_T \rangle$$
.

Now,
$$P \cap T = \langle \phi_P \wedge \phi_T, \psi_P \vee \psi_T \rangle = \langle \phi_P, \psi_P \rangle = P$$
 and $B \cap T = \langle \phi_B \wedge \phi_T, \psi_B \vee \psi_T \rangle = \langle \phi_B, \psi_B \rangle = B$.

Therefore, $(P \cap T) + (B \cap T) = P + B$.

Again, for any $s, a, q \in E$,

 $\phi_{P+B}(s)$

$$= \vee \{\phi_P(a) \wedge \phi_B(q) : s = a + q\}$$

$$\leq \vee \{\phi_T(a) \wedge \phi_T(q) : s = a + q\}$$

$$\leq \bigvee \{\phi_T(a+q) : s = a+q\}$$
 [Since *T* is an IF *N*-subgroup]

$$= \phi_T(s).$$

Therefore, $\phi_{P+B} \wedge \phi_T = \phi_{P+B}$.

Similarly, $\psi_{P+B} \vee \psi_T = \psi_{P+B}$.

Thus,
$$(P+B) \cap T = P+B$$
.

Hence the result.

Definition 5.2.6. $Ann(E) = \{n \in N : ns = 0, \forall s \in E\}.$

Lemma 5.2.3. If $E = E_1 + E_2$ is commutative with E_1, E_2 being unitary DN-groups such that $Ann(E_1) + Ann(E_2) = N$, then $E = E_1 + E_2$ is a DN-group.

Proof : Let P, M, T be N-subgroups of $E = E_1 + E_2$.

Then $P = P_1 + P_2$, $M = M_1 + M_2$, $T = T_1 + T_2$, for some subsets P_1 , M_1 , T_1 of E_1 and P_2 , M_2 , T_2 of E_2 .

Since $Ann(E_1) + Ann(E_2) = N$ and $1 \in N$, then $\exists n_1 \in Ann(E_1), n_2 \in Ann(E_2)$ such that $n_1 + n_2 = 1$.

Now, for any $a_1 \in P_1$,

$$1.a_1 = (n_1 + n_2)a_1$$

 $\Rightarrow a_1 = n_1 a_1 + n_2 a_1$ [since E_1 is unitary].

But, $a_1 \in P_1 \subseteq E_1$

 $\Rightarrow a_1 \in E_1$

 $\Rightarrow n_1 a_1 = 0$ [since $n_1 \in Ann(E_1)$].

Therefore, $n_2a_1 = a_1 \in P_1$.

But $n_2a_1 \in NP_1$.

Therefore, $NP_1 \subseteq P_1$.

This shows that P_1 is an N-subgroup of E_1 .

Similarly, it can be shown that M_1, T_1 are N-subgroups of E_1 and P_2, M_2, T_2 are N-subgroups of E_2 .

Now, $(P+M)\cap T$

$$= [(P_1 + P_2) + (M_1 + M_2)] \cap (T_1 + T_2)$$

$$= [(P_1 + M_1) \cap T_1] + [(P_2 + M_2)] \cap T_2]$$

$$= [(P_1 \cap T_1) + (M_1 \cap T_1)] + [(P_2 \cap T_2) + (M_2 \cap T_2)][$$
 since E_1, E_2 are DN -groups]

$$= [(P_1 + P_2) \cap (T_1 + T_2)] + [(M_1 + M_2) \cap (T_1 + T_2)]$$

$$= (P \cap T) + (M \cap T).$$

This shows that $E = E_1 + E_2$ is a *DN*-group.

Theorem 5.2.3. Let E, K be unitary IF DN-subgroups and Ann(E) + Ann(K) = N with $(\gamma,\lambda)E = E, (\gamma,\lambda)K = K$, then E + K is an DN-group with $\gamma,\lambda \in (0,1], \gamma + \lambda = 1$.

Proof : Since E, K are unitary IF DN-groups and Ann(E) + Ann(K) = N, by **theorem 5.2.1**, $(\gamma,\lambda)E$, $(\gamma,\lambda)K$ are also DN-groups with $\gamma + \lambda = 1$ and $\gamma,\lambda \in (0,1]$.

Since E, K are unitary, $(\gamma, \lambda)E, (\gamma, \lambda)K$ are also unitary.

Also, by hypothesis $Ann({}^{(\gamma,\lambda)}E + Ann({}^{(\gamma,\lambda)}K = N.$

Therefore, By **lemma 5.2.3**, ${}^{(\gamma,\lambda)}E + {}^{(\gamma,\lambda)}K$ is a *DN*-group with $\gamma,\lambda \in (0,1], \gamma + \lambda = 1$. So, E+K is an *DN*-group with $\gamma,\lambda \in (0,1], \gamma + \lambda = 1$.

5.3 Intuitionistic fuzzy weak *DN*-groups

Definition 5.3.1. *E* is said to be a weak DN-group if and only if $(P+M) \cap T = (P \cap T) + (M \cap T)$, for all ideals P, M, T of E.

Definition 5.3.2. *E is referred to as an IF weak DN-group if and only if* $(P+M) \cap T = (P \cap T) + (M \cap T)$, *for all IF ideals P,M,T of E.*

Definition 5.3.3. $^{(\gamma,\lambda)}E$ is said to be a weak DN-group if and only if $(P+M) \cap T = (P \cap T) + (M \cap T)$, for all ideals P,M,T of $^{(\gamma,\lambda)}E$.

Theorem 5.3.1. If E is an IF weak DN-group, then $(\gamma,\lambda)E$ is also a weak DN-group with $\gamma,\lambda\in(0,1], \gamma+\lambda\leq 1$.

Proof: Let X, I, L be ideals of $(\gamma, \lambda)E$ and defined as in **theorem 5.2.1.**

Then as above, ${}^{(\gamma,\lambda)}P = X, {}^{(\gamma,\lambda)}M = I, {}^{(\gamma,\lambda)}T = L$ with $\gamma,\lambda \in (0,1], \gamma + \lambda = 1$.

Claim P, M, T are IF ideals of E.

Since *X* is an ideal of $(\gamma,\lambda)E$, therefore *X* is normal subgroup of (E,+) and $n(s+e)-ne \in X$, $\forall n \in N, s \in X, e \in E$

$$\Rightarrow \phi_P\{n(s+e)-ne\}=1=\phi_P(s)[\text{ since }s\in X].$$

Also, since *X* is normal subgroup of (E, +), s - a, $s + a \in X$, $\forall s, a \in X$.

$$\Rightarrow \phi_P(s-a) = 1, \phi_P(s+a) = 1$$

$$\Rightarrow \phi_P(s-a) = 1 \land 1 = \phi_P(s) \land \phi_P(a)$$
 and $\phi_P(s+a) = 1 = \phi_P(a+s)[$ since $s, a \in X].$

Again, $n \in N, s \in X$,

 $ns \in X$

$$\Rightarrow \phi_P(ns) = 1 = \phi_P(s).$$

Now, $s, a \in X$

$$\Rightarrow a + s - a \in X$$

$$\Rightarrow \phi_P(a+s-a) = 1 = \phi_P(s).$$

Similarly, it can be shown that

$$\psi_P(s-a) = \psi_P(s) \lor \psi(a), \psi_P(ns) = \psi_P(s), \psi_P(a+s-a) = \psi_P(s), \psi_P(n(s+a)-ns) = \psi_P(a).$$

This shows that P is an IF ideal of E.

Similarly, M, T are IF ideals of E.

Since E is an IF weak DN-group,

$$(P+M)\cap T$$

$$= (P \cap T) + (M \cap T)$$

$$\Rightarrow$$
 $(\gamma,\lambda)[(P+M)\cap T] = (\gamma,\lambda)[(P\cap T) + (M\cap T)]$ [using **lemma 5.2.2**]

$$\Rightarrow$$
 $(\gamma,\lambda)(P+M)\cap(\gamma,\lambda)T=(\gamma,\lambda)(P\cap T)+(\gamma,\lambda)(M\cap T)[$ using **proposition 5.2.1**]

$$\Rightarrow ((\gamma,\lambda)P + (\gamma,\lambda)M) \cap (\gamma,\lambda)T = ((\gamma,\lambda)P \cap (\gamma,\lambda)T) + ((\gamma,\lambda)M \cap (\gamma,\lambda)T)[$$
 using **proposition**

5.2.1]

$$\Rightarrow$$
 $(X+I) \cap L = (X \cap L) + (I \cap L).$

Thus, $(\gamma,\lambda)E$ is a weak *DN*-group with $\gamma,\lambda\in(0,1],\gamma+\lambda\leq 1$.

Lemma 5.3.1. If $P = \langle \phi_P, \psi_P \rangle$ is an IF ideal of E, then $(\gamma, \lambda)P$ is also an ideal of $(\gamma, \lambda)E$.

Proof: Let $P = \langle \phi_P, \psi_P \rangle$ be an IF ideal of E.

So,
$$(\gamma,\lambda)P \subseteq E$$
.

Let $s, a \in {}^{(\gamma,\lambda)}P$.

Then, $\phi_P(s) \ge \gamma$, $\psi_P(s) \le \lambda$, $\phi_P(a) \ge \gamma$, $\psi_P(a) \le \lambda$.

Since *P* is an IF ideal of *E* and $s, a \in E$, therefore

$$\phi_P(s-a) \ge \phi_P(s) \land \phi_P(a) \ge \gamma \land \gamma = \gamma \text{ and } \psi_P(s-a) \le \psi_P(s) \lor \psi_P(a) \le \lambda \lor \lambda = \lambda.$$

Therefore, $s - a \in {}^{(\gamma,\lambda)}P$.

Also, if $a \in E$ and $s \in {(\gamma,\lambda)}P$, then $s, a \in E$.

Therefore, $\phi_P(a+s-a) \ge \phi_P(s) \ge \gamma$ and $\psi_P(a+s-a) \le \psi_P(s) \le \lambda$.

So,
$$a + s - a \in {}^{(\gamma,\lambda)}P$$
.

Again, if $a \in E$, $s \in {(\gamma,\lambda)}P$ and $n \in N$, then $s, a \in E$.

Therefore, $\phi_P(n(s+a)-na) \ge \phi_P(s) \ge \gamma$ and $\psi_P(n(s+a)-na) \le \psi_P(s) \le \lambda$.

Thus, $n(s+a) - na \in {}^{(\gamma,\lambda)}P$.

Thus, $^{(\gamma,\lambda)}P$ is an ideal of $^{(\gamma,\lambda)}E$.

Theorem 5.3.2. If $(\gamma,\lambda)E$ is a weak DN-group, then $(\gamma,\lambda)(D\cap M) + (\gamma,\lambda)T = ((\gamma,\lambda)D + (\gamma,\lambda)T)\cap ((\gamma,\lambda)M + (\gamma,\lambda)T)$, for all ideals $(\gamma,\lambda)D, (\gamma,\lambda)M, (\gamma,\lambda)T$ of $(\gamma,\lambda)E$ with $T\subseteq M$.

Proof: Let
$$s \in {}^{(\gamma,\lambda)}(D \cap M) + {}^{(\gamma,\lambda)}T$$
.

Then s = y + m, where $y \in (\gamma, \lambda)(D \cap M), m \in (\gamma, \lambda)T$

$$\Rightarrow$$
 $y \in {}^{(\gamma,\lambda)}D$ and ${}^{(\gamma,\lambda)}M, m \in {}^{(\gamma,\lambda)}T$

$$\Rightarrow s = y + m \in ({}^{(\gamma,\lambda)}D + {}^{(\gamma,\lambda)}T) \cap ({}^{(\gamma,\lambda)}M + {}^{(\gamma,\lambda)}T).$$

Again, let
$$y \in ({}^{(\gamma,\lambda)}D + {}^{(\gamma,\lambda)}T) \cap ({}^{(\gamma,\lambda)}M + {}^{(\gamma,\lambda)}T)$$
.

Since Sum of two ideals of ${}^{(\gamma,\lambda)}E$ is also an ideal and ${}^{(\gamma,\lambda)}E$ is a weak DN-group, therefore

$$y \in [(\gamma,\lambda)D \cap ((\gamma,\lambda)M + (\gamma,\lambda)T)] + [(\gamma,\lambda)T \cap ((\gamma,\lambda)M + (\gamma,\lambda)T)]$$

$$\Rightarrow y \in [(\gamma,\lambda)D \cap (\gamma,\lambda)M] + (\gamma,\lambda)T)][\text{ since } T \subseteq M].$$
Thus, $(\gamma,\lambda)(D \cap M) + (\gamma,\lambda)T = ((\gamma,\lambda)D + (\gamma,\lambda)T) \cap ((\gamma,\lambda)M + (\gamma,\lambda)T).$

Theorem 5.3.3. If $(\gamma,\lambda)E$ is a weak DN-group with $\gamma + \lambda = 1$, then E is an IF weak DN-group.

Proof: Let D, M, T be IF ideals of E, then by **lemma 5.3.1**, $(\gamma, \lambda)D, (\gamma, \lambda)M, (\gamma, \lambda)T$ are ideals of $(\gamma, \lambda)E$.

Since $(\gamma,\lambda)E$ is a weak *DN*-group,

$$((\gamma,\lambda)D + (\gamma,\lambda)M) \cap (\gamma,\lambda)T = ((\gamma,\lambda)D \cap (\gamma,\lambda)T) + ((\gamma,\lambda)M \cap (\gamma,\lambda)T)$$

$$\Rightarrow$$
 $(\gamma,\lambda)[(D+M)\cap T] = (\gamma,\lambda)[(D\cap T) + (M\cap T)][$ using **proposition 5.2.1**]

$$\Rightarrow$$
 $(D+M) \cap T = (D \cap T) + (M \cap T)]$ [using **lemma 5.2.2**]

 \Rightarrow E is an IF weak DN-group.

5.4 Conclusion

The main goal of this chapter is to extend the notion of distributive near-ring groups to intuitionistic fuzzy distributive near-ring groups as well as intuitionistic fuzzy weak distributive near-ring groups. Some lemmas and theorems related to IF *N*-subgroups, IF *DN*-groups and IF weak *DN*-groups are studied. The **theorem** 5.2.2 describes the

relationships between IF <i>DN</i> -groups and IF uniserial <i>DN</i> -groups. Theorems 5.3.1 to
5.3.2 illustrate the association between IF weak <i>DN</i> -group and weak <i>DN</i> -group.