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6 
Optimizing Plant Epidemic Control: A 

Mathematical Model Integrating Susceptible 

and Infectives Plants, and Herbivores with 

Pesticide Intervention 

 

6.1 Introduction  

Research on infectious diseases is an important component of biomathematics, as it enables 

researchers to study the impact of different epidemiological factors on ecosystems. This branch 
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of mathematics has made significant advances over the years. Mathematical ecology and 

mathematical epidemiology are two distinct topics in biology and applied mathematics. 

Ecological epidemiological models, a significant field in biological mathematics, emerged as a 

result of numerous research attempts to integrate simultaneous research in ecology and 

epidemiological models. For many years, infectious diseases posed a serious threat to plant 

populations, which in turn endangered animal and human health as well as the environment [76]. 

Recently, mathematicians and ecologists have teamed up to study epidemiology and ecology 

from a mathematical perspective [139]. As a result, several mathematical model equations have 

emerged, which are now essential resources for studying plant disease populations and 

developing strategies to control them, including the use of pesticides and natural enemies [2]. In 

mathematical modelling, we first express a real-world problem as a formula and then solve it 

mathematically. Next, we translate the outcome into a real-world language [110]. Ecosystems, 

epidemiology, cancer, diabetes, HIV, and demographics are just a few of the many biological 

fields that have benefited from mathematical modelling in the life sciences [56, 104, 137].  

 

Plants and herbivores interact in a natural environment that is dynamic and complex, the result of 

millions of years of evolution. In order to protect themselves from herbivores, plants utilise a 

wide variety of defence mechanisms in these interactions [204], including physical and chemical 

defences, mimicry, and indirect defences. These interactions are critical in ecosystem formation, 

have an impact on the evolutionary processes of herbivores and plants, and preserve ecological 

balance in the natural world. The numerous ways in which plants and herbivores interact are 

fundamental to the dynamics of ecosystems. Herbivorous animals, such as birds, mammals, and 

insects, obtain the majority of their nutrition from plant tissues. By ingesting plant material, 

herbivores engage in this direct interaction, which can result in a variety of consequences for the 

plants. A variety of defence mechanisms have evolved in plants to repel herbivores and 

safeguard themselves [122]. These barriers may be physical or chemical in nature. Certain plants, 

for instance, are capable of producing bitter-tasting or toxic compounds that discourage 

herbivores from consuming them. Certain plant species have evolved physical barriers such as 

thorns, spines, or tough leaves, which render them less attractive or more challenging for 

herbivores to ingest. Herbivores and plants engage in a dynamic and ever-changing interaction. 

This frequently results in a co-evolutionary "arms race," wherein herbivores evolve mechanisms 
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that overcome the defences that plants develop in response to their presence. The continuous 

nature of this process gives rise to an ever-evolving dynamic between the two. In addition, plants 

are capable of interacting with one another and other organisms to defend against herbivore 

attacks [5]. Herbivore-induced injury to a single plant can result in the emission of volatile 

organic compounds (VOCs), which function as chemical messengers for adjacent plants. By 

informing adjacent plants of potential herbivore threats, these volatile organic compounds 

(VOCs) enable them to activate their own defence mechanisms. Additionally, certain plant 

VOCs, such as parasitoid wasps and predatory insects, attract natural herbivore enemies [11]. 

These herbivore-controlling natural adversaries contribute to an intricate web of ecosystem 

interactions [7, 114]. 

 

Herbivores have both direct and indirect impacts on ecosystems, leading to significant 

consequences. The possibility of trophic cascades is an important indirect consequence. 

Modifications in herbivore populations can initiate a series of interconnected consequences 

across the entire ecosystem. When the number of predators decreases, the number of herbivores 

can increase without any restrictions, resulting in excessive grazing and a decrease in plant 

richness and variety [166]. Consequently, this has an impact on other species that rely on these 

plants for nutrition and shelter, triggering a sequence of ecological transformations. In contrast, 

the presence of predators can play a role in controlling herbivore numbers, thereby ensuring a 

stable equilibrium within the ecosystem [28]. Herbivores are also essential for the process of 

nutrient cycling in ecosystems. They actively participate in nutrient redistribution by ingesting 

plant material and excreting waste. They actively participate in the redistribution of nutrients. 

Herbivores absorb plant nutrients into their bodies, which they then excrete into the environment 

through their waste and urine [44]. The process of recycling nutrients can have an impact on the 

availability of nutrients in the soil, which in turn benefits the growth of nearby plants. Herbivores 

can sometimes impact the nitrogen levels in plant tissues, which in turn affects the quality of 

plants as a food source for higher trophic levels [106]. In addition, herbivores have the ability to 

establish mutually advantageous associations with plants [169]. For example, certain herbivores, 

such as bees and butterflies, play the role of pollinators for flowering plants. These insects 

unintentionally transport pollen between the flowers while searching for nectar or pollen, which 

helps plants reproduce. The plants reciprocate by offering the herbivores an important source of 
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nourishment. Furthermore, animals that consume fruit play a critical role in plant seed dispersal. 

These animals help to spread and colonize plant species by ingesting fruits and excreting seeds in 

various areas. These mutually beneficial partnerships emphasise the complex network of 

interactions between herbivores and plants in ecosystems.  

 

Plants, herbivores, and pesticides engage in complex interactions that manifest in diverse ways. 

Pesticides are chemical compounds designed to manage or eradicate pests, such as herbivorous 

insects and other organisms that consume plants. Pesticides, when sprayed on plants, function as 

a means of protection. The application of the treatment might vary and include sprays, dusts, or 

systemic methods [58]. Herbivores, when consuming these treated plants, may ingest the 

pesticides, resulting in direct poisoning. This can inflict harm upon herbivores, resulting in a 

spectrum of consequences ranging from physical pain to mortality. Furthermore, pesticide 

residues may remain on plant surfaces or within plant tissues, exposing herbivores to these 

chemicals long after they have consumed them. These residues may have sublethal effects or 

gradually accumulate over time. An essential element of this connection is the possibility of 

unintended consequences. Pesticides can harm non-targeted organisms, including beneficial 

insects and wildlife that interact with herbivores. Collateral damage can disrupt ecosystems and 

have far-reaching ecological consequences. Over time, certain herbivorous pests may acquire 

resistance to pesticides, thus requiring the use of more potent or alternative chemicals. This 

resistance is a result of genetic alterations in the pest population. Furthermore, pesticides may 

occasionally affect the plants themselves. Exposure to pesticides can cause phytotoxicity when 

plants show visible damage or strain. This emphasises the significance of careful consideration 

when selecting and administering insecticides.  

 

The ecological impacts of pesticides are a crucial factor to take into account in agricultural and 

pest management practices. Pesticides are chemical substances created to manage or eradicate 

pests, with the capacity to not only affect the intended pests but also the wider ecosystem. These 

chemicals can enter water bodies through runoff from fields, contaminating aquatic ecosystems. 

Pesticide residues present in water can have detrimental effects on aquatic organisms, such as 

fish and aquatic invertebrates, causing disturbances in the delicate equilibrium of these 

vulnerable ecosystems. In addition, pesticides have the ability to remain in the soil for long 
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periods of time, which can have an impact on soil quality and the well-being of species that were 

not the intended target. In response to these environmental concerns, the adoption of integrated 

pest management (IPM) tactics has gained significant popularity in the field of agriculture. 

Integrated Pest Management (IPM) is a comprehensive strategy that seeks to effectively control 

pests while reducing the environmental consequences of pesticide application. This method 

integrates a range of strategies, including biological control, cultural practices, and the cautious 

application of pesticides as a final option. Biological control refers to the use of natural 

predators, parasites, or pathogens to manage and control pest populations. Cultural practices 

include crop rotation, the deliberate selection of pest-resistant crop varieties, and habitat 

management to promote the presence of beneficial creatures that feed on pests. The core 

principle of Integrated Pest Management (IPM) is to employ pesticides solely when deemed 

essential, opting for the least harmful alternatives, thereby reducing their adverse effects on non-

target organisms and the ecosystem [95]. 

 

6.2 Mathematical model formulation and description 

In our mathematical model, we have taken into account three distinct populations, namely the 

plant populations and the herbivores population. The plant and herbivore populations have been 

further classified into two subpopulations and single population, respectively. These 

subpopulations include the susceptible plants, denoted by 𝑋1(𝑡), and the infected plants, denoted 

by 𝑋2(𝑡). The herbivore population is denoted by the variable 𝑌(𝑡). Our model aims to analyse 

the dynamics of these populations and their interactions. By studying the behaviour of these 

populations, we can gain valuable insights into the ecological processes that govern their growth 

and survival. Pesticides represented by 𝑍(𝑡) are utilised as a control mechanism in the model and 

are administered to both the susceptible and infected plants. The main goal of pesticide treatment 

is to reduce the occurrence of diseases among plant populations. Through the application of 

pesticides, we can protect our crops and guarantee their enduring health and productivity. In the 

absence of this regulatory mechanism, there is a significant danger of losing entire crops to the 

detrimental effects of diseases and pests. It is essential that we persist in the responsible and 

efficient use of pesticides to protect our food supply and promote sustainable agriculture. In the 

present study, a model is developed based on a series of assumptions. The model has been 

formulated on the basis of these assumptions: 
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A. At any given time 𝑡, the plant populations can be classified into two distinct categories, 

namely the susceptible plants denoted as 𝑋1(𝑡) and the infected plants denoted as 𝑋2(𝑡). 

The sum of these two categories represents the total biomass of the plant populations, 

which is expressed as 𝑋1(𝑡) + 𝑋2(𝑡). Additionally, assuming that 𝑁(𝑡) represents the 

total biomass of the plant populations, it follows that 𝑋1(𝑡) + 𝑋2(𝑡) = 𝑁(𝑡). This 

mathematical relationship provides a useful framework for understanding the dynamics 

of plant populations and their susceptibility to infection. 

B. In the realm of plant classifications, the population of susceptible plants, denoted as 𝑋1, is 

subject to the logistic law of growth, characterized by an intrinsic growth rate denoted as 

𝑟, and an environmental carrying capacity denoted as 𝐾. As a result, the alteration of 

biomass within the susceptible plant populations can be expressed as a differential 

equation in the following manner: 

 

𝑑𝑋1

𝑑𝑡
= r𝑋1 (1 −

𝑋1+𝑋2

𝐾
).         (6.1) 

 

C. The spread of the disease among susceptible plants primarily occurs due to their direct 

interaction with infected plants, with the force of infection denoted as 𝛽. Herbivores 

represented by 𝑌(𝑡), are a common threat to plants, consuming both susceptible and 

infected ones. However, infected plants are considerably more susceptible to herbivores 

due to their weakened state, making them easier prey. In contrast, predation of 

susceptible plants requires some handling time [99]. Consequently, we assume that 

herbivores prey on susceptible plants at a rate following a Holling type I functional 

response, expressed as 𝑎𝑋1𝑌 with 𝑎 representing the maximum capture rate. 

Additionally, herbivores target infected plants with a Holling type I functional response 

denoted as 𝑑𝑋2𝑌 where 𝑑 signifies the maximum capture rate. Furthermore, we take into 

account the application of pesticides, denoted as 𝑍(𝑡), to both susceptible and infected 

plants. The application rates follow Holling type I responses, characterized by 𝑏𝑋1𝑍 for 

susceptible plants and 𝑒𝑋2𝑍 for infected plants. Here, 𝑏 represents the contact rate 

between susceptible plants and pesticides, while 𝑒 signifies the contact rate between 

infected plants and pesticides. Additionally, we consider that both susceptible and 
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infected plants experience a natural death rate denoted as 𝑐. As a result, we can separate 

the rate of change for susceptible and infected plants as follows: 

 

𝑑𝑋1

𝑑𝑡
= r𝑋1 (1 −

𝑋1+𝑋2

𝐾
) − 𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1,     (6.2) 

𝑑𝑋2

𝑑𝑡
=  𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2.       (6.3) 

 

D. Pesticides can have diverse impacts on herbivorous animals that consume plants treated 

with these chemicals. These effects can be direct or indirect and vary depending on the 

specific pesticide, application method, and ecosystem. It is hypothesised that herbivores 

feeding on plants sprayed with pesticides can negatively impact other herbivores. This 

interaction between herbivores and pesticides can be classified as a Holling type I 

response occurring at a rate denoted by 𝑓𝑌𝑍, with 𝑓 denoting the degree to which 

herbivores engage with plants that have been subjected to pesticide application. This 

dynamic interaction can result in adverse outcomes for herbivores, potentially leading to 

mortality occurring at a rate denoted by 𝑔. Therefore, the rate of change for the 

herbivores population is as follows: 

 

    
𝑑𝑌

𝑑𝑡
= 𝑎𝑋1𝑌 + 𝑑𝑋2𝑌 − 𝑓𝑌𝑍 − 𝑔𝑌.                   (6.4) 

 

E. Pesticides are utilised in both susceptible and infected plant populations, with the 

understanding that their use has an impact on both groups. To implement disease control 

measures, we assume the application of a general pesticide denoted as 𝑍(𝑡). This 

pesticide is employed to reduce disease levels in the plant populations at a rate described 

by the equation −𝜌𝑍 + 𝛿, where 𝜌 represents the rate at which pesticides is being used 

and 𝛿 is the constant amount of pesticides used. Hence, the rate of change of pesticides is 

given as follows: 

 

       
𝑑𝑍

𝑑𝑡
= −𝜌𝑍 + 𝛿.          (6.5) 
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Taking into account all the aforementioned assumptions, we formulate our ultimate eco-epidemic 

system in the following manner: 

 

 
𝑑𝑋1

𝑑𝑡
= r𝑋1 (1 −

𝑋1+𝑋2

𝐾
) − 𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1 

 
𝑑𝑋2

𝑑𝑡
=  𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2 

            
𝑑𝑌

𝑑𝑡
= 𝑎𝑋1𝑌 + 𝑑𝑋2𝑌 − 𝑓𝑌𝑍 − 𝑔𝑌        

 
𝑑𝑍

𝑑𝑡
= −𝜌𝑍 + 𝛿.             (6.6) 

 

subject to the initial conditions: 𝑋1(0) > 0, 𝑋2(0) > 0, 𝑌(0) > 0 and 𝑍(0) > 0.      (6.7) 

 

6.3 Preliminaries 

In this section, the aim is to demonstrate the positivity, boundedness and Existence and 

Uniqueness of the model for the solutions of system (6.6). 

 

6.3.1 Positivity of solutions 

In order for system (6.6) to possess biological significance and be well-defined, it is necessary 

that any solutions originating from positive initial data will consistently maintain their positivity 

for all time intervals where 𝑡 > 0. This crucial aspect will be established through the application 

of the following theorem. 

 

Theorem 6.1: Let the parameters for model (6.6) be positive constants. A non-negative solution 

(𝑋1(𝑡), 𝑋2(𝑡), 𝑌(𝑡), 𝑍(𝑡) ) for model (6.6) exists for all states variables with positive initial 

conditions (𝑋1(0) > 0, 𝑋2(0) > 0, 𝑌(0) > 0, 𝑍(0) > 0) for all 𝑡 ≥ 0. 

 

Proof: From the first equation of model (6.6), we have, 

 

  
𝑑𝑋1

𝑑𝑡
= 𝑋1 [r (1 −

𝑋1+𝑋2

𝐾
) − 𝛽𝑋2 − 𝑎𝑌 − 𝑏𝑍 − 𝑐].        (6.8) 

 

Let 𝑙(𝑋1, 𝑋2, 𝑌, 𝑍) = r (1 −
𝑋1+𝑋2

𝐾
) − 𝛽𝑋2 − 𝑎𝑌 − 𝑏𝑍. Then the equation (6.8) becomes: 
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𝑑𝑋1

𝑑𝑡
= 𝑋1[𝑙(𝑋1, 𝑋2, 𝑌, 𝑍) − 𝑐]. 

 

By separation of variable method, we have, 

 

  
𝑑𝑋1

𝑋1
= [𝑙(𝑋1, 𝑋2, 𝑌, 𝑍) − 𝑐]𝑑𝑡.  

Hence, 

  ln 𝑋1(𝑡) = ∫ [𝑙(𝑋1(𝜖), 𝑋2(𝜖), 𝑌(𝜖), 𝑍(𝜖)) − 𝑐]𝑑𝜖 + 𝐶0
𝑡

0
 

So that 

  𝑋1(𝑡) = 𝐶1 + 𝑒
∫ [𝑙(𝑋1(𝜖),𝑋2(𝜖),𝑌(𝜖),𝑍(𝜖))−𝑐]𝑑𝜖
𝑡
0 > 0 (∵  𝐶1 = 𝑒𝐶0).      (6.9) 

We conclude that 𝑋1(𝑡) > 0 ∀ 𝑡 ≥ 0. Next, we consider 𝑋2(𝑡) ∀ 𝑡 ≥ 0. From the second 

equation of the model (6.6), we have, 

 

  
𝑑𝑋2

𝑑𝑡
=  𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2 ≥ −(𝑑𝑌 + 𝑒𝑍 + 𝑐)𝑋2.  

 

The integration of the above inequality gives 𝑋2(𝑡) ≥ 𝑋2(0)𝑒
∫ [−(𝑑𝑌(𝑠)+𝑒𝑍(𝑠)+𝑐)]𝑑𝑠
𝑡
0 . Since 

𝑋2(0) > 0 from the initial condition, we conclude that 𝑋2(𝑡) ≥ 𝑋2(0)𝑒
∫ [−(𝑑𝑌(𝑠)+𝑒𝑍(𝑠)+𝑐)]𝑑𝑠
𝑡
0 >

0 ∀ 𝑡 ≥ 0. Similarly, using the same argument, it can be shown that 𝑌(𝑡) ≥

𝑌(0)𝑒∫ [−(𝑓𝑍(𝑠)+𝑔)]𝑑𝑠
𝑡
0 > 0 and 𝑍(𝑡) ≥ 𝑍(0)𝑒−𝜌𝑡 > 0. Thus, the solutions of system (6.6) remain 

positive for all 𝑡 ≥ 0, meaning that the model is meaningful and well posed. This completes the 

proof of the theorem. 

 

6.3.2 Boundedness of solutions 

 

Theorem 6.2: All solutions of the system (6.6) which initiate in 𝑅+
4  are uniformly bounded. 

 

Proof: Define a function 𝑊(𝑡) = 𝑋1(𝑡) + 𝑋2(𝑡) + 𝑌(𝑡) + 𝑍(𝑡). Then, on taking the derivative 

with respect to time 𝑡,we get: 
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𝑑𝑊

𝑑𝑡
=

𝑑𝑋1

𝑑𝑡
+
𝑑𝑋2

𝑑𝑡
+
𝑑𝑌

𝑑𝑡
+
𝑑𝑍

𝑑𝑡
.          (6.10) 

By substituting the model equations (6.6) in (6.10), one gets: 

 

 
𝑑𝑊

𝑑𝑡
≤ r𝑋1 (1 −

𝑋1

𝐾
) − 𝑏𝑋1𝑍 − 𝑐𝑋1 − 𝑒𝑋2𝑍 −  𝑐𝑋2 − 𝑓𝑌𝑍 − 𝑔𝑌 − 𝜌𝑍 + 𝛿. 

or 

 
𝑑𝑊

𝑑𝑡
≤ r𝑋1 −  𝑐𝑋2 − 𝑔𝑌 − 𝜌𝑍 ≤ (𝑟 + 1)𝑋1 − (𝑋1 + 𝑐𝑋2 + 𝑔𝑌 + 𝜌𝑍) ≤ �̂�(𝑟 + 1) − ℎ𝑊 

Where, �̂� = 𝑚𝑎𝑥(𝑋1(0), 𝐾) and ℎ = 𝑚𝑖𝑛{1 + 𝑐 + 𝑔 + 𝜌}. 

 

The equation 
𝑑𝑊

𝑑𝑡
+ ℎ𝑊 ≤ �̂�(𝑟 + 1) has a solution 𝑊 ≤

�̂�

ℎ
(𝑟 + 1)(1 − 𝑒−ℎ𝑡).  

 

As 𝑡 → ∞, we have 𝑊 ≤
�̂�

ℎ
(𝑟 + 1), implying that the solution is bounded for 0 ≤ 𝑊 ≤

�̂�

ℎ
(𝑟 + 1). Thus, all the solutions of the system (6.6) are confined in the region: Ω =

{(𝑋1, 𝑋2, 𝑌, 𝑍) ∈ 𝑅+
4 : 𝑊 ≤

�̂�

ℎ
(𝑟 + 1) + 𝜔} for all 𝜔 > 0 and 𝑡 → ∞. 

 

6.3.3 Existence and Uniqueness of the system 

In this section, the existence and uniqueness of the solutions of the eco-epidemic system (6.6) in 

the region Π × (0, 𝑇] are investigated. 

Here, Π = {(𝑋1, 𝑋2, 𝑌, 𝑍) ∈ ℝ
4: 𝑚𝑎𝑥{|𝑋1|, |𝑋2|, |𝑌|, |𝑍|} ≤ 𝜑}, for sufficiently large 𝜑. 

 

Theorem 6.3: For each 𝑆0 = [𝑋1(0), 𝑋2(0), 𝑌(0), 𝑍(0)] ∈ Π, there exists a unique solution 𝑆(𝑡) ∈ Π 

of the eco-epidemic system (6.6), which is defined for all 𝑡 ≥ 0. 

 

Proof: Define a mapping 𝐺(𝑆) = (𝐺1(𝑆), 𝐺2(𝑆), 𝐺3(𝑆), 𝐺4(𝑆)), in which: 

𝐺1(𝑆) = r𝑋1 (1 −
𝑋1+𝑋2

𝐾
) − 𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1,   

         𝐺2(𝑆) = 𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2,        (6.11) 

            𝐺3(𝑆) = 𝑎𝑋1𝑌 + 𝑑𝑋2𝑌 − 𝑓𝑌𝑍 − 𝑔𝑌 , 

            𝐺4(𝑆) = −𝜌𝑍 + 𝛿.   
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For each 𝑆, 𝑆̅ ∈ Π, it follows from (6.6) that: 

‖𝐺(𝑆) − 𝐺(𝑆̅)‖ = |𝐺1(𝑆) − 𝐺1(𝑆̅)| + |𝐺2(𝑆) − 𝐺2(𝑆̅)| + |𝐺3(𝑆) − 𝐺3(𝑆̅)| + |𝐺4(𝑆) − 𝐺4(𝑆̅)|.  

               (6.12) 

Now, 

 

|𝐺1(𝑆) − 𝐺1(𝑆̅)| 

= |r𝑋1 (1 −
𝑋1+𝑋2

𝐾
) − 𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1 − r𝑋1̅̅ ̅ (1 −

𝑋1̅̅̅̅ +𝑋2̅̅̅̅

𝐾
) + 𝛽𝑋1̅̅ ̅ 𝑋2̅̅ ̅ + 𝑎𝑋1̅̅ ̅ �̅� +

𝑏𝑋1̅̅ ̅ �̅� + 𝑐𝑋1̅̅ ̅|, 

= |𝑟(𝑋1 − 𝑋1̅̅ ̅) −
r𝑋1(𝑋1+𝑋2)

𝐾
− 𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1 +

r𝑋1̅̅̅̅ (𝑋1̅̅̅̅ +𝑋2̅̅̅̅ )

𝐾
+ 𝛽𝑋1̅̅ ̅ 𝑋2̅̅ ̅ + 𝑎𝑋1̅̅ ̅ �̅� +

𝑏𝑋1̅̅ ̅ �̅� + 𝑐𝑋1̅̅ ̅|, 

≤ |𝑟(𝑋1 − 𝑋1̅̅ ̅)| +
r

𝐾
|𝑋1

2 − 𝑋1̅̅ ̅
2
| + (

𝑟

𝐾
+ 𝛽) |𝑋1𝑋2 − 𝑋1̅̅ ̅ 𝑋2̅̅ ̅| + 𝑎|𝑋1𝑌 − 𝑋1̅̅ ̅ �̅�| + 𝑏|𝑋1𝑍 − 𝑋1̅̅ ̅ �̅�| +

𝑐|𝑋1 − 𝑋1̅̅ ̅|, 

≤ 𝑟|(𝑋1 − 𝑋1̅̅ ̅)| +
2r

𝐾
𝜑|𝑋1 − 𝑋1̅̅ ̅| + (

𝑟

𝐾
+ 𝛽)𝜑|𝑋1 − 𝑋1̅̅ ̅ | + (

𝑟

𝐾
+ 𝛽)𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑎𝜑|𝑋1 −

𝑋1̅̅ ̅ | + 𝑎𝜑|𝑌 − �̅� | + 𝑏𝜑|𝑋1 − 𝑋1̅̅ ̅ | + 𝑏𝜑|𝑍 − �̅� | + 𝑐|𝑋1 − 𝑋1̅̅ ̅|. 

 

|𝐺2(𝑆) − 𝐺2(𝑆̅)| 

= |𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2 − 𝛽𝑋1̅̅ ̅ 𝑋2̅̅ ̅ + 𝑑𝑋2̅̅ ̅�̅� + 𝑒𝑋2̅̅ ̅�̅� + 𝑐𝑋2̅̅ ̅|, 

≤ 𝛽𝜑|𝑋1 − 𝑋1̅̅ ̅| + 𝛽𝜑|𝑋2 − 𝑋2̅̅ ̅| + 𝑑𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑑𝜑|𝑌 − �̅� | + 𝑒𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑒𝜑|𝑍 − �̅� | +

𝑐|𝑋2 − 𝑋2̅̅ ̅ |. 

 

|𝐺3(𝑆) − 𝐺3(𝑆̅)| 

= |𝑎𝑋1𝑌 + 𝑑𝑋2𝑌 − 𝑓𝑌𝑍 − 𝑔𝑌 − 𝑎𝑋1̅̅ ̅ �̅� − 𝑑𝑋2̅̅ ̅�̅� + 𝑓�̅� �̅� + 𝑔�̅�|, 

≤ 𝑎𝜑|𝑋1 − 𝑋1̅̅ ̅ | + 𝑎𝜑|𝑌 − �̅� | + 𝑑𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑑𝜑|𝑌 − �̅� | + 𝑓𝜑|𝑌 − �̅� | + 𝑓𝜑|𝑍 − �̅� | +

𝑔|𝑌 − �̅� |. 

 

|𝐺4(𝑆) − 𝐺4(𝑆̅)| = |−𝜌𝑍 + 𝛿 + 𝜌�̅� − 𝛿| ≤ 𝜌|𝑍 − �̅�|. 
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Then equation (6.12) becomes: 

‖𝐺(𝑆) − 𝐺(𝑆̅)‖ 

≤ 𝑟|(𝑋1 − 𝑋1̅̅ ̅)| +
2r

𝐾
𝜑|𝑋1 − 𝑋1̅̅ ̅| + (

𝑟

𝐾
+ 𝛽)𝜑|𝑋1 − 𝑋1̅̅ ̅ | + (

𝑟

𝐾
+ 𝛽)𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑎𝜑|𝑋1 −

𝑋1̅̅ ̅ | + 𝑎𝜑|𝑌 − �̅� | + 𝑏𝜑|𝑋1 − 𝑋1̅̅ ̅ | + 𝑏𝜑|𝑍 − �̅� | + 𝑐|𝑋1 − 𝑋1̅̅ ̅| + 𝛽𝜑|𝑋1 − 𝑋1̅̅ ̅| + 𝛽𝜑|𝑋2 − 𝑋2̅̅ ̅| +

𝑑𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑑𝜑|𝑌 − �̅� | + 𝑒𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑒𝜑|𝑍 − �̅� | + 𝑐|𝑋2 − 𝑋2̅̅ ̅ | + 𝑎𝜑|𝑋1 − 𝑋1̅̅ ̅ | +

𝑎𝜑|𝑌 − �̅� | + 𝑑𝜑|𝑋2 − 𝑋2̅̅ ̅ | + 𝑑𝜑|𝑌 − �̅� | + 𝑓𝜑|𝑌 − �̅� | + 𝑓𝜑|𝑍 − �̅� | + 𝑔|𝑌 − �̅� | + 𝜌|𝑍 − �̅�|, 

≤ {𝑟 + (
3𝑟

𝐾
+ 2𝛽 + 2𝑎 + 𝑏)𝜑 + 𝑐} |𝑋1 − 𝑋1̅̅ ̅ | + {(

𝑟

𝐾
+ 2𝛽 + 2𝑑 + 𝑒)𝜑 + 𝑐} |𝑋2 − 𝑋2̅̅ ̅ | +

{(2𝑎 + 2𝑑 + 𝑓)𝜑 + 𝑔}|𝑌 − �̅� | + {(𝑏 + 𝑒 + 𝑓)𝜑 + 𝜌}|𝑍 − �̅�|, 

≤ 𝐻0‖𝑆 − 𝑆̅‖. 

 

Where: 

𝐻0 = 𝑚𝑎𝑥 {𝑟 + (
3𝑟

𝐾
+ 2𝛽 + 2𝑎 + 𝑏)𝜑 + 𝑐, (

𝑟

𝐾
+ 2𝛽 + 2𝑑 + 𝑒)𝜑 + 𝑐, (2𝑎 + 2𝑑 + 𝑓)𝜑 + 𝑔,

(𝑏 + 𝑒 + 𝑓)𝜑 + 𝜌}.  

Hence, 𝐺(𝑆) satisfies the Lipschitz condition with respect to 𝑆, which implies the existence and 

uniqueness of solution of the system (6.6). 

 

6.4 Equilibria and Stability 

The eco-epidemic model (6.6) has the following four equilibrium points: 

I. The trivial equilibrium point 𝑃1 = (0,0,0,
𝛿

𝜌
), which always exists. From an ecological 

perspective, the concept of trivial equilibrium holds significance as it ensures that no 

population will face simultaneous extinction. This underscores the importance of 

maintaining a balance in the ecosystem, as it allows for the survival and sustainability of 

various plants and animal species over time. 

II. The axial equilibrium point, denoted as 𝑃2 = (𝐾, 0,0,
𝛿

𝜌
), which represents a state in 

which the population of healthy plants not only sustains but also thrives and is always 

feasible. 

III. The disease-free equilibrium point 𝑃3 = (
𝑓𝛿+𝑔𝜌

𝑎𝜌
, 0,

𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎2
,
𝛿

𝜌
), represents 

a state in which plants are free from any disease. This state is of utmost importance in the 
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field of agriculture as it ensures the health and well-being of plant crops. Additionally, it 

creates an environment where herbivores can safely feed on plants without the risk of 

disease transmission, ensuring their well-being. 

Now, we aim to determine the basic reproduction number 𝑅0 of System (6.6) at the 

disease-free equilibrium point 𝑃3. Let us introduce matrices 𝐹 and 𝑉 in the following 

manner: 

  𝐹 = [
𝛽(𝑓𝛿+𝑔𝜌)

𝑎𝜌
0

0 0
] and 𝑉 = [

𝐾𝑑𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑑𝑟(𝑓𝛿+𝑔𝜌)+𝐾𝑎2(𝑒𝛿+𝑐𝜌)

𝐾𝜌𝑎2
0

0 0
]. 

 

Using the next generation matrix method developed by Van den Driessche and 

Watmough [47], the basic reproduction number, denoted as 𝑅0, can be determined as the 

spectral radius of the next generation operator 𝐹𝑉−1. Hence, 𝑅0 = 𝜎(𝐹𝑉−1) =

𝐾𝛽𝑎(𝑓𝛿+𝑔𝜌)

𝐾𝑑𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑑𝑟(𝑓𝛿+𝑔𝜌)+𝐾𝑎2(𝑒𝛿+𝑐𝜌)
. 𝑅0 holds a pivotal role in the field of epidemiology 

and disease modelling, particularly when it comes to understanding the dynamics of 

infectious diseases within populations of susceptible individuals, such as plants, in this 

context. It serves as a fundamental concept for assessing the contagiousness and potential 

for disease transmission [46]. It can be defined as the average rate of infection within the 

susceptible plant population resulting from a multitude of secondary infections. 

 

IV. The coexistence equilibrium point 𝑃4 = (𝑋1
∗, 𝑋2

∗, 𝑌∗, 𝑍∗), where: 

𝑋1
∗ =

𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌)

𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟)
,  

𝑋2
∗ =

(𝑓𝛿+𝑔𝜌)(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))−𝑎𝜌(𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌))

𝑑𝜌(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))
, 

𝑌∗ =
𝛽𝜌(𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌))−(𝑐𝜌+𝑒𝛿)(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))

𝑑𝜌(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))
,  

𝑍∗ =
𝛿

𝜌
. 

 

The coexistence equilibrium between plants and herbivores represents a state in which plant 

species and herbivorous have developed strategies to coexist within an ecosystem, with neither 

group dominating the other. This equilibrium is maintained through a combination of factors, 
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including herbivore feeding preferences, plant defence mechanisms, and the influence of 

predators and resource availability, ultimately promoting biodiversity and ecosystem stability. 

 

Now, the local stability of the system (6.6) is investigated. The Jacobian matrix 𝐽  is given as 

follows: 

𝐽 =

[
 
 
 
 𝐽11

−(𝛽𝐾+𝑟)𝑋1

𝐾
−𝑎𝑋1 −𝑏𝑋1

𝛽𝑋2 𝐽22 −𝑑𝑋2 −𝑒𝑋2
𝑎𝑌 𝑑𝑌 𝐽33 −𝑓𝑌
0 0 0 −𝜌 ]

 
 
 
 

,        (6.13) 

 

Where, 𝐽11 = 𝑟 (1 −
2𝑋1+𝑋2

𝐾
) − 𝛽𝑋2 − 𝑎𝑌 − 𝑏𝑍 − 𝑐, 

 𝐽22 = 𝛽𝑋1 − 𝑑𝑌 − 𝑒𝑍 − 𝑐, 

 𝐽33 = 𝑎𝑋1 + 𝑑𝑋2 − 𝑓𝑍 − 𝑔. 

 

The eigenvalues of the Jacobian matrix 𝐽 evaluated at the trivial point 𝑃1 (0,0,0,
𝛿

𝜌
) are given by 

𝑟 − (𝑐 +
𝑏𝛿

𝜌
), −(𝑐 +

𝑒𝛿

𝜌
), −(𝑔 +

𝑓𝛿

𝜌
) and −𝜌. Consequently, when 𝑟 − (𝑐 +

𝑏𝛿

𝜌
) > 0 and for all 

parameter values, the equilibrium point 𝑃1 is classified as a saddle point with three-dimensional 

stable manifolds and a one-dimensional unstable manifold. Conversely, when 𝑟 − (𝑐 +
𝑏𝛿

𝜌
) < 0, 

all eigenvalues are negative, indicating that 𝑃1 is a stable equilibrium point.  

 

Remark: In practical terms, the health and survival of a plant population hinge on a delicate 

balance between two critical factors: birth rate and natural death rate. The birth rate refers to the 

rate at which new plants are born or seeds are germinated, while the natural death rate represents 

the rate at which plants in the population naturally die off due to various factors such as aging, 

disease, predation, or adverse environmental conditions. When the birth rate of plants is less than 

its natural death rate, the plant population is at risk of decline and potential extinction, especially 

if adverse conditions persist. Even though mathematically the equilibrium point seems stable, it 

signifies a precarious situation for the population because it suggests that the population cannot 

sustain itself in the long run under these conditions. Therefore, it highlights the vulnerability of 
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the plant population to adverse environmental factors and underscores the necessity for 

conservation measures or strategies to secure its survival. 

 

Theorem 6.4: If 𝛽𝐾 < 𝑐 +
𝑒𝛿

𝜌
, 𝑎𝐾 < 𝑔 +

𝑓𝛿

𝜌
, then 𝑃2 (𝐾, 0,0,

𝛿

𝜌
) is locally asymptotically stable. 

 

Proof: The Jacobian matrix 𝐽(𝑃2) of the model (3) around 𝑃1 is as follows: 

𝐽(𝑃2) =

[
 
 
 
 
 − (𝑟 + 𝑐 +

𝑏𝛿

𝜌
) −(𝛽𝐾 + 𝑟) −𝑎𝐾 −𝑏𝐾

0 𝛽𝐾 − (𝑐 +
𝑒𝛿

𝜌
) 0 0

0 0 𝑎𝐾 − (𝑔 +
𝑓𝛿

𝜌
) 0

0 0 0 −𝜌 ]
 
 
 
 
 

, 

The eigenvalues of 𝐽(𝑃2) consists of −(𝑟 + 𝑐 +
𝑏𝛿

𝜌
), 𝛽𝐾 − (𝑐 +

𝑒𝛿

𝜌
), 𝑎𝐾 − (𝑔 +

𝑓𝛿

𝜌
) and −𝜌. In 

order for 𝑃2 to be stable, it is necessary that both 𝛽𝐾 − (𝑐 +
𝑒𝛿

𝜌
) and 𝑎𝐾 − (𝑔 +

𝑓𝛿

𝜌
) are less than 

zero. This can be simplified to the conditions 𝛽𝐾 < 𝑐 +
𝑒𝛿

𝜌
 and 𝑎𝐾 < 𝑔 +

𝑓𝛿

𝜌
. Consequently, we 

conclude that 𝑃2 exhibits local stability when 𝛽𝐾 < 𝑐 +
𝑒𝛿

𝜌
 and 𝑎𝐾 < 𝑔 +

𝑓𝛿

𝜌
. 

 

Theorem 6.5: The disease-free equilibrium point 𝑃3 (
𝑓𝛿+𝑔𝜌

𝑎𝜌
, 0,

𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎2
,
𝛿

𝜌
) is 

locally asymptotically stable whenever R0 < 1 and is unstable when R0 > 1. 

 

Proof: The disease-free equilibrium point 𝑃3 demonstrates local asymptotic stability when all the 

real parts of the eigenvalues (𝜑) are negative. Here, the Jacobian matrix corresponding to the 

system (6.6) centered around 𝑃3 is as follows: 

 

𝐽(𝑃3) =

[
 
 
 
 
 

−𝑟(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎

−(𝐾𝛽+𝑟)(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎

−(𝑓𝛿+𝑔𝜌)

𝜌

−𝑏(𝑓𝛿+𝑔𝜌)

𝑎𝜌

0 𝐽22(𝑃3) 0 0
𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎
𝐽32(𝑃3) 0

𝑓[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2

0 0 0 −𝜌 ]
 
 
 
 
 

. 
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Here, 

 𝐽22(𝑃3) =
𝐾𝑎[𝛽(𝑓𝛿+𝑔𝜌)−𝑎(𝑒𝛿+𝑐𝜌)]−𝑑[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2
, 

 𝐽32(𝑃3) =
𝑑[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2
. 

The characteristic equation of the above Jacobian matrix 𝐽(𝑃2) is given by: 

(−𝜌 − 𝜒 ) (
𝐾𝑎[𝛽(𝑓𝛿+𝑔𝜌)−𝑎(𝑒𝛿+𝑐𝜌)]−𝑑[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2
− 𝜒) (𝜒2 + 𝑐1𝜒 + 𝑐2) = 0. 

We can see the eigenvalues of 𝐽(𝑃3) are: 

 𝜒1 = −𝜌 < 0, 𝜒2 =
𝐾𝑎[𝛽(𝑓𝛿+𝑔𝜌)−𝑎(𝑒𝛿+𝑐𝜌)]−𝑑[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2
. 

To achieve stability in the system, it is necessary that the value of 𝜒2 remains less than zero,  

i.e., 𝜒2 < 0, 

⇒
𝐾𝑎[𝛽(𝑓𝛿+𝑔𝜌)−𝑎(𝑒𝛿+𝑐𝜌)]−𝑑[𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌)]

𝐾𝜌𝑎2
< 0, 

⇒
𝐾𝛽𝑎(𝑓𝛿+𝑔𝜌)

𝐾𝑑𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑑𝑟(𝑓𝛿+𝑔𝜌)+𝐾𝑎2(𝑒𝛿+𝑐𝜌)
< 1, 

⇒ R0 < 1. 

Now, the other eigenvalues can be determined by solving the quadratic equation of degree 2 

provided below: 

    𝑐1𝜒
2 + 𝑐2𝜒 + 𝑐3 = 0                                                    (6.14) 

with coefficients 𝑐1 = 1, 𝑐2 =
𝑟(𝑓𝛿+𝑔𝜌)

𝐾𝜌𝑎
, 𝑐3 =

(𝑓𝛿+𝑔𝜌)(𝐾𝑎(𝑟𝜌−𝑐𝜌−𝑏𝛿)−𝑟(𝑓𝛿+𝑔𝜌))

𝐾𝜌2𝑎
. 

 

Therefore, 𝜒3 =
−𝑟(𝑓𝛿+𝑔𝜌)−√(𝑟(𝑓𝛿+𝑔𝜌))

2
+4𝐾𝑎[(𝑓𝛿+𝑔𝜌)(𝐾𝑎(𝑐𝜌+𝑏𝛿−𝑟𝜌)+𝑟(𝑓𝛿+𝑔𝜌))]

2𝐾𝜌𝑎
, 

    𝜒4 =
−𝑟(𝑓𝛿+𝑔𝜌)+√(𝑟(𝑓𝛿+𝑔𝜌))

2
+4𝐾𝑎[(𝑓𝛿+𝑔𝜌)(𝐾𝑎(𝑐𝜌+𝑏𝛿−𝑟𝜌)+𝑟(𝑓𝛿+𝑔𝜌))]

2𝐾𝜌𝑎
. 

 

The eigenvalues 𝜒3 and 𝜒4 have negative real parts. Hence, the disease-free equilibrium point 𝑃3 

is locally asymptotically stable whenever R0 < 1 and is unstable when R0 > 1. 
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Theorem 6.6: The coexistence equilibrium point 𝑃4(𝑋1
∗, 𝑋2

∗, 𝑌∗, 𝑍∗) is locally asymptotically 

stable if [164]: 

𝑀2 > 0, 𝑀3 > 0, 𝑀4 > 0, 𝑀1𝑀2 −𝑀3 > 0 and (𝑀1𝑀2 −𝑀3)𝑀3 −𝑀1
2𝑀4 > 0.   (6.15) 

With 

𝑀1 = −(𝑇11 + 𝑇22 + 𝑇33) + 𝜌, 

𝑀2 = 𝑇11𝑇22 + 𝑇11𝑇33 + 𝑇22𝑇33 − 𝜌(𝑇11 + 𝑇22 + 𝑇33) + (𝑎
2𝑋1

∗ + 𝑑2𝑋2
∗)𝑌∗ +

𝛽(𝐾𝛽+𝑟)𝑋1
∗𝑋2

∗

𝐾
, 

𝑀3 = 𝜌(𝑇11𝑇22 + 𝑇11𝑇33 + 𝑇22𝑇33) + 𝑑
2(𝜌 − 𝑇11)𝑋2

∗𝑌∗ + 𝑎2(𝜌 − 𝑇22)𝑋1
∗𝑌∗ − 𝑇11𝑇22𝑇33 +

                           
[𝐾𝛽𝑑𝑎𝑌∗+(𝐾𝛽+𝑟)(𝛽𝜌−𝛽𝑇33−𝑎𝑑𝑌

∗)]𝑋1
∗𝑋2

∗

𝐾
, 

𝑀4 = 𝑎𝜌[𝛽𝑑𝑋2
∗ − 𝑎𝑇22]𝑋1

∗𝑌∗ − 𝜌𝑇11(𝑇22𝑇33 + 𝑑
2𝑋2

∗𝑌∗) −
𝜌(𝐾𝛽+𝑟)(𝛽𝑇33+𝑎𝑑𝑌

∗)𝑋1
∗𝑋2

∗

𝐾
. 

 

Here, 

𝑋1
∗ =

𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌)

𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟)
,  

𝑋2
∗ =

(𝑓𝛿+𝑔𝜌)(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))−𝑎𝜌(𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌))

𝑑𝜌(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))
, 

𝑌∗ =
𝛽𝜌(𝐾𝑎(𝑒𝛿+𝑐𝜌)+𝐾𝑑𝑟𝜌−𝐾𝑑(𝑏𝛿+𝑐𝜌)−(𝐾+𝑟)(𝑓𝛿+𝑔𝜌))−(𝑐𝜌+𝑒𝛿)(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))

𝑑𝜌(𝐾𝛽𝜌𝑎+𝑟𝑑𝜌−𝑎𝜌(𝐾+𝑟))
,  

𝑍∗ =
𝛿

𝜌
. 

 

Proof: The computation of the Jacobian matrix 𝐽(𝑃4) at the coexistence equilibrium point 𝑃4 is 

performed in the following manner: 

  𝐽(𝑃4) = 𝐽(𝑋1
∗, 𝑋2

∗, 𝑌∗, 𝑍∗) =

[
 
 
 
 𝑇11

−(𝛽𝐾+𝑟)𝑋1
∗

𝐾
−𝑎𝑋1

∗ −𝑏𝑋1
∗

𝛽𝑋2
∗ 𝑇22 −𝑑𝑋2

∗ −𝑒𝑋2
∗

𝑎𝑌∗ 𝑑𝑌∗ 𝑇33 −𝑓𝑌∗

0 0 0 −𝜌 ]
 
 
 
 

.    (6.15) 

Where: 

  𝑇11 = 𝑟 (1 −
2𝑋1

∗+𝑋2
∗

𝐾
) − 𝛽𝑋2

∗ − 𝑎𝑌∗ − 𝑏𝑍∗ − 𝑐, 

  𝑇22 = 𝛽𝑋1
∗ − 𝑑𝑌∗ − 𝑒𝑍∗ − 𝑐, 

  𝑇33 = 𝑎𝑋1
∗ + 𝑑𝑋2

∗ − 𝑓𝑍∗ − 𝑔. 
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The characteristic equation in 𝜃 for the Jacobian matrix 𝐽(𝑃4) is given by: 

 

|𝐽(𝑃4) − 𝜃𝐼| = |
|

𝑇11 − 𝜃
−(𝛽𝐾+𝑟)𝑋1

∗

𝐾
−𝑎𝑋1

∗ −𝑏𝑋1
∗

𝛽𝑋2
∗ 𝑇22 − 𝜃 −𝑑𝑋2

∗ −𝑒𝑋2
∗

𝑎𝑌∗ 𝑑𝑌∗ 𝑇33 − 𝜃 −𝑓𝑌∗

0 0 0 −𝜌 − 𝜃

|
| = 0.     (6.16) 

Which gives,  

𝜃4 +𝑀1𝜃
3 +𝑀2𝜃

2 +𝑀3𝜃 +𝑀4 = 0.        (6.17) 

Recognising that 𝑀1 > 0, then by applying the Routh–Hurwitz criterion in conjunction with the 

conditions outlined in (6.15), we conclude that the coexistence equilibrium 𝑃4 of system (6.6) 

exhibits local asymptotic stability if 𝑀2 > 0, 𝑀3 > 0, 𝑀4 > 0, 𝑀1𝑀2 −𝑀3 > 0 and (𝑀1𝑀2 −

𝑀3)𝑀3 −𝑀1
2𝑀4 > 0 [164]. Conversely, if any of these conditions are not satisfied, the 

coexistence equilibrium 𝑃4 is determined to be unstable. 

 

6.5 Permanence of the System 

From a biological point of view, the permanence of a system is a crucial factor in ensuring the 

long-term survival of all populations within it, thereby preventing any of them from facing 

extinction. To achieve this uniform persistence, we have implemented the methodology 

described by Das et al.  [38]. 

 

Definition 6.1: The system (6.6) is said to be permanent if ∃ 𝑁 ≥ 𝑛 > 0,  such that for any 

solution of (𝑋1(𝑡), 𝑋2(𝑡), 𝑌(𝑡), 𝑍(𝑡)) of system (6.6), (𝑋1(0), 𝑋2(0), 𝑌(0), 𝑍(0)) > 0, 

 

   𝑛 ≤ lim
𝑡→∞

𝑖𝑛𝑓(𝑋1(𝑡)) ≤ lim
𝑡→∞

𝑠𝑢𝑝(𝑋1(𝑡)) ≤ 𝑁, 

    

   𝑛 ≤ lim
𝑡→∞

𝑖𝑛𝑓(𝑋2(𝑡)) ≤ lim
𝑡→∞

𝑠𝑢𝑝(𝑋2(𝑡)) ≤ 𝑁, 

 

   𝑛 ≤ lim
𝑡→∞

𝑖𝑛𝑓(𝑌(𝑡)) ≤ lim
𝑡→∞

𝑠𝑢𝑝(𝑌(𝑡)) ≤ 𝑁, 

 

   𝑛 ≤ lim
𝑡→∞

𝑖𝑛𝑓(𝑍(𝑡)) ≤ lim
𝑡→∞

𝑠𝑢𝑝(𝑍(𝑡)) ≤ 𝑁. 
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Definition 6.2: A population is said to be uniformly persistent if ∃ 𝛿 > 0, which is independent 

of 𝑋1(0) where 𝑋1(0) > 0, such that: 

   lim
𝑡→∞

𝑖𝑛𝑓(𝑋1(𝑡)) > 𝛿. 

 

Theorem 6.7: The system (6.6) is uniformly persistent if the following condition is satisfied: 

 𝛽𝑋1̂ − 𝑑�̂� − (
𝑒𝛿+𝑐𝜌

𝜌
) > 0 holds.      (6.18) 

Proof: We will prove this theorem by the method of Lyapunov average function. Let the average 

Lyapunov function for the system (6.6) be 𝜎(𝑉) = 𝑋1
𝑝1𝑋2

𝑞1𝑌𝑟1𝑍𝑠1, where 𝑝1, 𝑞1, 𝑟1, 𝑠1 are 

positive constants. Clearly, 𝜎(𝑉) is non-negative function defined in 𝐷 of 𝑅+
4 ,  

where 𝑅+
4 = {(𝑋1, 𝑋2, 𝑌, 𝑍): 𝑋1 > 0, 𝑋2 > 0, 𝑌 > 0, 𝑍 > 0}. 

Then, we have: 

Ψ(𝑉) =
�̇�(𝑉)

𝜎(𝑉)
= 𝑝1

𝑋1̇

𝑋1
+ 𝑞1

𝑋2̇

𝑋2
+ 𝑟1

�̇�

𝑌
+ 𝑠1

�̇�

𝑍
, 

Ψ(𝑉) = 𝑝1 (r (1 −
𝑋1+𝑋2

𝐾
) − 𝛽𝑋2 − 𝑎𝑌 − 𝑏𝑍 − 𝑐) + 𝑞1(𝛽𝑋1 − 𝑑𝑌 − 𝑒𝑍 −  𝑐) + 𝑟1(𝑎𝑋1 +

𝑑𝑋2 − 𝑓𝑍 − 𝑔) + 𝑠1 (−𝜌 +
𝛿

𝑍
).            (6.19) 

 

To establish the uniform persistence of the system, it is sufficient to show that Ψ(𝑉) > 0 for a 

suitable selection of positive values for 𝑝1, 𝑞1, 𝑟1, 𝑠1 > 0: 

 Ψ(𝑃1) = 𝑝1 [𝑟 − (
𝑏𝛿+𝑐𝜌

𝜌
)] − 𝑞1 (

𝑒𝛿+𝑐𝜌

𝜌
) − 𝑟1 (

𝑓𝛿+𝑔𝜌

𝜌
) > 0,             (6.20) 

 Ψ(𝑃2) = −𝑝1 (
𝑏𝛿+𝑐𝜌

𝜌
) + 𝑞1 [𝛽𝐾 − (

𝑒𝛿+𝑐𝜌

𝜌
)] + 𝑟1 [𝑎𝐾 − (

𝑓𝛿+𝑔𝜌

𝜌
)] > 0,    (6.21) 

 Ψ(𝑃3) = 𝑞1 [𝛽𝑋1̂ − 𝑑�̂� − (
𝑒𝛿+𝑐𝜌

𝜌
)] > 0.        (6.22) 

We observed that, when increasing the value of 𝑝1, while (𝑏𝛿 + 𝑐𝜌) < 𝜌 and 𝑝1[𝑟𝜌 −

(𝑏𝛿 + 𝑐𝜌)] > 𝑞1(𝑒𝛿 + 𝑐𝜌) + 𝑟1(𝑓𝛿 + 𝑔𝜌), then Ψ(𝑃1) can be made positive. Thus, the 

inequality (6.20) holds. If 𝐾(𝛽𝑞1 + 𝑎𝑟1)𝜌 > 𝑝1(𝑏𝛿 + 𝑐𝜌) + 𝑞1(𝑒𝛿 + 𝑐𝜌) + 𝑟1(𝑓𝛿 + 𝑔𝜌), then 

Ψ(𝑃2) is positive. Thus, the inequality (6.21) holds. If the inequality in Equation (6.20) holds, 

then (6.22) is satisfied. 
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6.6 Sensitivity Analysis 

We aim to understand the various factors contributing to disease transmission and prevalence. 

This knowledge can help us reduce plant infections and decrease herbivore populations' 

mortality caused by diseases. Sensitivity analysis provides insights into the significance of each 

parameter in disease transmission. This information is not only vital for designing experiments 

but also for incorporating data and simplifying complex nonlinear models [152]. Sensitivity 

analysis is a common tool for assessing how model predictions respond to variations in 

parameter values, as data collection and assumed parameter values often involve some degree of 

uncertainty. It helps identify parameters that strongly influence the basic reproduction number 

and should be the focus of intervention strategies. When a parameter undergoes a change, 

sensitivity indices enable us to quantify the relative impact on a variable [74]. By examining 

these indices, we can identify which parameters play a more critical role in disease transmission 

and prevalence. 

 

Definition 6.3: The normalized forward sensitivity index of the basic reproduction number 𝑅0, 

which is differentiable with respect specific parameter ℎ, is precisely defined as follows: 

 

    𝛾ℎ
𝑅0 = 

ℎ

𝑅0

𝜕𝑅0

𝜕ℎ
. 

 

6.6.1 Sensitivity Analysis Results: 

In this study, we used MATLAB to perform sensitivity analyses in order to investigate the 

dynamics of infectious disease transmission within the plant and herbivore populations. We 

implemented our eco-epidemiological model using computational approaches, specifically 

MATLAB's robust numerical solvers and visualisation tools, to study how parameter variations 

affect model outcomes. In this MATLAB implementation, we evaluated how changes in 

important factors, such as the infection rate (β), affected the basic reproduction number (𝑅0) and 

final state values of population variables. This computational technique enabled us to efficiently 

explore a wide range of situations while gaining vital insights into the underlying mechanisms 

that drive disease development. 
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Table 6.1: Parameters and its Values. 

Parameters Values 

𝑟 0.1 

𝐾 100 

𝛽 0.01 𝑡𝑜 0.05 (50 𝑣𝑎𝑙𝑢𝑒𝑠) 

𝑎 0.02 

𝑏 0.01 

𝑐 0.1 

𝑑 0.01 

𝑒 0.02 

𝑓 0.01 

𝑔 0.01 

𝜌 0.05 

𝛿 0.1 

 

The simulation explores the dynamics of a population system governed by a set of parameters, 

including growth rates, carrying capacity, infection rates, and various birth and death rates. By 

varying the infection rate (𝛽), the model examines how different levels of contagiousness 

influence the final state populations of 𝑋1, 𝑋2, 𝑌, and 𝑍. The results illustrate complex 

interdependencies among these populations, revealing how changes in infection rates affect the 

equilibrium states. Key parameters such as 𝑟, 𝐾 and 𝛿 influence the system's stability and 

responses to external factors, highlighting the intricate ecological relationships embedded within 

the population dynamics. These findings provide insights into the system's resilience to 

infections and the effectiveness of control measures in managing population dynamics under 

varying environmental conditions. 
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Figure 6.1: Variations in the Basic Reproduction Number (𝑹𝟎) with Infection 

Rate (𝜷) 

 

Figure 6.1 depicting the variation of 𝑅0 with parameter 𝛽 offers critical insights into the 

dynamics of disease transmission. As the infection rate (𝛽) increases, indicating a higher 

likelihood of populations becoming infected upon contact with infectious population, the basic 

reproduction number (𝑅0) also rises. This escalation signifies an elevated potential for disease 

spread throughout the population, with each infected ones, on average, infecting more 

susceptible populations. Conversely, a decrease in 𝛽 leads to a reduction in 𝑅0, suggesting a 

lower risk of disease dissemination. Understanding this relationship is important for devising 

effective control strategies, as interventions targeting the control of 𝑅0 by moderating 𝛽 can 

substantially mitigate disease transmission. Peaks and troughs in the graph denote points where 

𝑅0 reaches maximum and minimum values, respectively, representing distinct levels of disease 

transmissibility. This detailed analysis of 𝑅0 variations elucidate the intricate interplay between 

the infection rate and the potential for disease propagation, guiding the formulation of targeted 

interventions to curb infectious disease outbreaks. 
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Figure 6.2: Final State Population Dynamics against Infection Rate (𝜷) 

 

Figure 6.2 illustrates the final state population dynamics of variables 𝑋1, 𝑋2, 𝑌, and 𝑍 against the 

infection rate (𝛽) in a system governed by the specified parameter values. As the infection rate 

(𝛽) increases, there is a discernible trend in the final populations of the system's constituents. 

Notably, 𝑋1 and 𝑋2 populations exhibit a gradual decline, indicating a decrease in the population 

of the two interacting plant species over time. Conversely, 𝑌 population and pesticides 𝑍 show 

an upward trajectory, suggesting an increase in the population of the herbivores and pesticides, 

respectively. This dynamic interplay among the populations 𝑋1,𝑋2,𝑌 and Control measure 𝑍 

reflects the intricate ecological relationships encoded within the system's dynamics, as 

influenced by the parameters 𝑟 = 0.1, 𝐾 = 100,  𝑎 = 0.02, 𝑏 = 0.01, 𝑐 = 0.1, 𝑑 = 0.01, 𝑒 =

0.02, 𝑓 = 0.01, 𝑔 = 0.01, 𝜌 = 0.05 and 𝛿 = 0.1. These parameter values shape the behavior of 

the system, governing the growth, interaction, and equilibrium of the populations over time. 
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6.7 Analysis of Optimal Control 

In this particular section of our study, we focus on the utilisation of Pontryagin's Maximum 

Principle, a mathematical framework used for solving optimal control problems [200]. The 

objective is to identify and understand the crucial conditions necessary for optimally controlling 

the impact of plant inoculation. The fundamental model, denoted as system (6.6), undergoes 

expansion to incorporate a dynamic control parameter known as 𝑢(𝑡). This parameter represents 

the control measure implemented during the process of plant inoculation, which aims to prevent 

the occurrence of plant diseases. 

 

The introduced control measure, 𝑢(𝑡), plays a pivotal role in regulating the transmission rate 

from infected plants to susceptible ones. Moreover, it exerts influence over the populations of 

herbivores in the ecological system under consideration. The resulting model, shaped by the 

incorporation of this time-dependent control variable, captures the intricate dynamics involved in 

preventing plant diseases. Through the exploration and application of Pontryagin's Maximum 

Principle, our goal is to determine the optimal strategies and conditions for effectively managing 

the impact of plant inoculation within this complex ecological context. Consider  𝑢(𝑡) ∈ 𝑈  to be 

a control variable on plant inoculation to reduce plant disease. Then, the resulting model is 

outlined below: 

 

𝑑𝑋1

𝑑𝑡
= r𝑋1 (1 −

𝑋1+𝑋2

𝐾
) − (1 − 𝑢)𝛽𝑋1𝑋2 − 𝑎𝑋1𝑌 − 𝑏𝑋1𝑍 − 𝑐𝑋1, 

𝑑𝑋2

𝑑𝑡
= (1 − 𝑢)𝛽𝑋1𝑋2 − 𝑑𝑋2𝑌 − 𝑒𝑋2𝑍 −  𝑐𝑋2,     

𝑑𝑌

𝑑𝑡
= 𝑎𝑋1𝑌 + 𝑑𝑋2𝑌 − 𝑓𝑌𝑍 − 𝑔𝑌,          (6.23) 

𝑑𝑍

𝑑𝑡
= −𝜌𝑍 + 𝛿. 

 

Here, 𝑈 = {𝑢|𝑢(𝑡) 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 ,0 ≤ 𝑢(𝑡)  ≤ 𝑢𝑚𝑎𝑥 < ∞, t ∈ [0, 𝑡𝑓]} represents an admissible 

control set. The objective functional 𝐽∗ is defined within a feasible range of control variable 𝑢(𝑡) 

applied over the finite time interval (0, 𝑡𝑓)  given by: 

 𝐽∗(𝑢) = min
𝑢
∫ (𝐴𝑋1(𝑡) + 𝐵𝑋2(𝑡) +

1

2
𝐵1𝑢

2(𝑡)) 𝑑𝑡
𝑡𝑓
0

,                 (6.24) 
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In the given scenario, 𝑡𝑓 represents the final time, 𝐴 and 𝐵 are positive constants and it denote 

the costs associated with susceptible and infected plants, respectively, and 𝐵1 serves as relative 

cost weights for the control measure. The objective function 𝐽∗(𝑢) is formulated to minimize the 

number of infected plants while also minimizing the cost of the control 𝑢(𝑡). Therefore, we are 

in pursuit of an optimal control 𝑢∗(𝑡) that achieves these dual objectives. Consequently, the 

optimal controls 𝑢∗(𝑡) exist in such a way that: 

 

  𝐽∗(𝑢∗ ) = 𝑚𝑖𝑛{𝐽∗(𝑢)}          (6.25) 

 

Here, we shall first show the existence of an optimal control (6.25) for the system (6.23). This is 

supported by the following theorem. 

 

Theorem 6.8: There exists an optimal control 𝑢∗(𝑡) such that 𝐽∗(𝑢∗(t) ) = 𝑚𝑖𝑛{𝐽∗(𝑢(𝑡))} 

subject to the control system (6.6) with initial conditions. 

Proof: The integrand of the objective functional 𝐴𝑋1(𝑡) + 𝐵𝑋2(𝑡) +
1

2
𝐵1𝑢

2(𝑡) is a convex 

function of the control variable 𝑢(𝑡). Both the control and state variables are non-negative, and 

the system (6.6) satisfies Lipchitz conditions with respect to the state variables due to the 

boundedness of state solutions. As a result, we can conclude that there exists an optimal control 

[207]. 

 

To achieve an optimal solution, the initial step involves determining the Lagrangian and 

Hamiltonian for the given problem outlined in equations (6.23) to (6.24). The Lagrangian 

associated with this optimal control problem is given by: 

 𝐿(𝑋1, 𝑋2, 𝑢) = 𝐴𝑋1(𝑡) + 𝐵𝑋2(𝑡) +
1

2
𝐵1𝑢

2(𝑡).                  (6.26) 

We aim to obtain the minimum values of the Lagrangian. To achieve this, we define the 

Hamiltonian for the control problem as follows: 

 𝐻(𝑋1, 𝑋2, 𝑢, 𝜆𝑋1 , 𝜆𝑋2 , 𝜆𝑌, 𝜆𝑍, 𝑡) = 𝐿(𝑋1, 𝑋2, 𝑢) + 𝜆𝑋1(𝑡)
𝑑𝑋1(𝑡)

𝑑𝑡
+ 𝜆𝑋2(𝑡)

𝑑𝑋2(𝑡)

𝑑𝑡
+

              𝜆𝑌(𝑡)
𝑑𝑌(𝑡)

𝑑𝑡
+ 𝜆𝑍(𝑡)

𝑑𝑍(𝑡)

𝑑𝑡
.            (6.27) 
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Where 𝜆𝑋1, 𝜆𝑋2, 𝜆𝑌 and 𝜆𝑍 are adjoint variables or co-state variables to be determined. The 

formulated model must satisfy the necessary conditions established by Pontryagin's Maximum 

[127]. The application of Pontryagin's Maximum Principle typically transforms the system of 

equations (6.23) and (6.24) into a point-wise minimization problem of the Hamiltonian 𝐻, with 

respect to the control variable 𝑢(𝑡). 

 

Theorem 6.9: Let 𝑋1 
∗ (𝑡), 𝑋2

∗(𝑡), 𝑌∗(𝑡), 𝑍∗(𝑡) represent the optimal state solutions corresponding 

to the optimal control variable 𝑢∗(𝑡) for the optimal control problem (6.23) – (6.24). This 

implies the existence of adjoint variables 𝜆𝑋1, 𝜆𝑋2, 𝜆𝑌 and 𝜆𝑍 satisfying: 

 

𝑑𝜆𝑋1

𝑑𝑡
= 𝜆𝑋1 [𝑟 (

2𝑋1+𝑋2

𝐾
− 1) + 𝑏𝑍 + 𝑐] + 𝛽(1 − 𝑢)(𝜆𝑋1 −  𝜆𝑋2)𝑋2 + 𝑎(𝜆𝑋1 −  𝜆𝑌)𝑌 − 𝐴,  

𝑑𝜆𝑋1

𝑑𝑡
=

𝑟𝑋1

𝐾
𝜆𝑋1 + 𝛽(1 − 𝑢)(𝜆𝑋1 −  𝜆𝑋2)𝑋1 + 𝑑(𝜆𝑋2 −  𝜆𝑌)𝑌 + 𝜆𝑋2(𝑒𝑍 + 𝑐) − 𝐵, 

𝑑𝜆𝑌

𝑑𝑡
= 𝑎(𝜆𝑋1 −  𝜆𝑌)𝑋1 + 𝑑(𝜆𝑋2 −  𝜆𝑌)𝑋2 + 𝜆𝑌(𝑓𝑍 + 𝑔), 

𝑑𝜆𝑍

𝑑𝑡
= 𝑏𝑋1𝜆𝑋1 + 𝑒𝑋2𝜆𝑋2 + 𝑓𝑌𝜆𝑌 + 𝜌𝜆𝑍, 

with transversality conditions 𝜆𝑋1(𝑡𝑓),  𝜆𝑋2(𝑡𝑓),  𝜆𝑌(𝑡𝑓),  𝜆𝑍(𝑡𝑓) = 0. 

 

Furthermore, the optimal control variable 𝑢∗ minimizes 𝐽∗ over the region 𝑈 and it is given by: 

𝑢∗(𝑡) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝜆𝑋2−𝜆𝑋1

𝐵1
, 𝑢𝑚𝑎𝑥) , 0). 

 

Proof: To derive both the transversality conditions and the adjoint equations, we utilise 

Hamiltonian (6.27). The adjoint equations are derived through the application of Pontryagin's 

Maximum Principle. 

 

𝑑𝜆𝑋1

𝑑𝑡
= −

𝜕𝐻

𝜕𝑋1
, 
𝑑𝜆𝑋2

𝑑𝑡
= −

𝜕𝐻

𝜕𝑋2
, 
𝑑𝜆𝑌

𝑑𝑡
= −

𝜕𝐻

𝜕𝑌
 and 

𝑑𝜆𝑍

𝑑𝑡
= −

𝜕𝐻

𝜕𝑍
  

with 𝜆𝑋1(𝑡𝑓),  𝜆𝑋2(𝑡𝑓),  𝜆𝑌(𝑡𝑓),  𝜆𝑍(𝑡𝑓) = 0. 

 

The optimality of the control problem is determined by 
𝜕𝐻

𝜕𝑢
= 0 on the interior of the control set. 
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Hence, we get 𝐵1𝑢(𝑡) + 𝜆𝑋1𝛽𝑋1𝑋2 − 𝜆𝑋2𝛽𝑋1𝑋2 = 0. 

 

This implies that 𝑢(𝑡) =
𝛽(𝜆𝑋2−𝜆𝑋1)𝑋1𝑋2

𝐵1
(= 𝑢∗(𝑡)), say. 

 

Using the property of control space, we obtain: 

 

𝑢∗(𝑡) = 0 if  
𝛽(𝜆𝑋2−𝜆𝑋1)𝑋1𝑋2

𝐵1
≤ 0, 

 

𝑢∗(𝑡) =
𝛽(𝜆𝑋2−𝜆𝑋1)𝑋1𝑋2

𝐵1
 if 0 <

𝛽(𝜆𝑋2−𝜆𝑋1)𝑋1𝑋2

𝐵1
< 𝑢𝑚𝑎𝑥, 

 

𝑢∗(𝑡) = 𝑢𝑚𝑎𝑥 if 
𝛽(𝜆𝑋2−𝜆𝑋1)𝑋1𝑋2

𝐵1
≥ 𝑢𝑚𝑎𝑥. 

 

So, the optimal control is characterized as 𝑢∗(𝑡) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝜆𝑋2−𝜆𝑋1

𝐵1
, 𝑢𝑚𝑎𝑥) , 0). This 

represents the characterization of the optimal control. 

 

6.7.1 Optimal Control Analysis Results: 

Optimal control analysis is the use of mathematical frameworks such as Pontryagin's Maximum 

Principle in the derivation of dynamic system management techniques. MATLAB plays a crucial 

role in these tests, enabling the integration of theoretical concepts into numerical simulations. 

Plots and graphs are used to illustrate the numerical solutions of differential equations describing 

system dynamics and the derivation of optimal control techniques. This method allows for the 

investigation of system behaviour, the assessment of various control inputs, and the identification 

of the most effective solutions to complex control problems. In the end, MATLAB 

implementation helps to fully comprehend optimal control systems and supports informed 

decisions on control techniques and system optimization. 
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Table 6.2: Parameters and its Values 

Parameters Values 

𝑟 0.1 

𝐾 100 

𝛽 0.01 

𝑎 0.02 

𝑏 0.01 

𝑐 0.1 

𝑑 0.01 

𝑒 0.02 

𝑓 0.01 

𝑔 0.01 

𝜌 0.05 

𝛿 0.1 

𝐴 1 

𝐵 1 

𝐵1 1 

The parameter values provided offer a comprehensive insight into the dynamics of the plant 

epidemic system (6.6) under consideration. With a growth rate (𝑟) of 0.1 and a carrying capacity 

(𝐾) of 100, the system's behaviour is being influenced by the interplay of birth and death rates of 

populations 𝑋1 and 𝑋2. Additionally, the rate at which pesticides is being used (𝜌) and the 

constant amount of pesticides used (𝛿) of pesticides 𝑍 are crucial factors at 0.05 and 0.1, 

respectively. These parameters encapsulate the intricate relationships within the system, shaping 

its stability and persistence over time. Initial conditions (𝑋1(0) = 50, 𝑋2(0) = 50, 𝑌(0) =

10, 𝑍(0) = 5) further describe the starting state of each population, offering a foundation for 

understanding its evolution. 
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    Figure 6.3: Dynamics of Ecological Variables and Optimal Control Profile 

 

Figure 6.3 provides a comprehensive visualisation of the system's behavior and the 

corresponding optimal control strategy. The upper subplot depicts the trajectories of ecological 

variables (𝑋1, 𝑋2, 𝑌, 𝑍) over time, showcasing their dynamic evolution based on the given 

differential equations and initial conditions. The lower subplot illustrates the optimal control 

profile, representing the control measure's magnitude applied to mitigate plant diseases. The 

trajectory of the optimal control reveals how the control strategy varies over time to minimise the 

number of infected plants while minimising the control cost, as dictated by the objective 

function. This visualisation allows for a holistic understanding of the system's dynamics and the 

effectiveness of the optimal control strategy in managing plant inoculation within the ecological 

context. 
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      Figure 6.4: Phase Portrait: State Space Dynamics Visualisation 

 

Figure 6.4 illustrates the system's dynamical behavior in its state space, depicting the trajectories 

of the system's state variables over time. Each curve represents a unique initial condition, 

demonstrating how the system evolves over time. Important insights into the stability, 

equilibrium points, and qualitative behavior of the system can be gained by analysing the shape 

and direction of these trajectories. In the phase portrait, stable equilibrium points correspond to 

attracting regions, whereas unstable equilibrium points are associated with repelling regions. 

Additionally, closed trajectories can identify limit cycles or other types of periodic behaviour. 

Overall, the phase portrait provides a comprehensive visual representation of the system's 

dynamics, aiding in the understanding of its behaviour and stability properties. 

 

6.8. Discussion 

Rigorous mathematical frameworks and computational approaches were employed in this study 

to analyze the dynamics of infectious disease transmission within ecological systems and identify 

optimal control measures for managing disease spread. The study aimed to comprehend the 
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intricate relationships among key factors influencing disease spread and population size changes. 

Additionally, effective strategies were developed to mitigate disease incidence. 

6.8.1 Mathematical Analysis of Disease Dynamics: 

The analysis began with the formulation of a comprehensive mathematical model (6.6) 

describing the dynamics of susceptible plants (𝑋1), infected plants (𝑋2), and the herbivores 

populations (𝑌), as well as the Pesticides (𝑍) as control measure. Leveraging techniques from 

differential equations and dynamical systems theory, we examined the stability and equilibrium 

points of the model, elucidating the conditions under which disease outbreaks occur and 

identifying critical thresholds for disease control. Through sensitivity analysis, we quantified the 

relative impact of each model parameter on disease transmission and prevalence. By calculating 

normalized forward sensitivity indices, we assessed the sensitivity of the basic reproduction 

number (𝑅0) to variations in parameters such as the infection rate (𝛽). This analysis provided 

valuable insights into the factors driving disease dynamics and highlighted parameters that are 

key targets for intervention strategies. 

 

6.8.2 Optimal Control Framework: 

To devise optimal control strategies for managing disease spread, Pontryagin's Maximum 

Principle, a robust mathematical framework for solving optimal control problems, was 

employed. Our base model was extended to include a dynamic control parameter 𝑢(𝑡) 

representing the implementation of control measures, such as plant inoculation, aimed at 

reducing disease transmission. The optimal control problem aimed to minimise the number of 

infected plants while minimising the cost associated with the control measure 𝑢(𝑡). Through 

rigorous mathematical analysis, including the derivation of Hamiltonians and adjoint equations, 

we determined optimal control profiles that achieve these dual objectives. The characterisation of 

optimal controls (𝑢∗(𝑡)) was based on the interplay between state variables, adjoint variables, 

and maximum allowable control magnitudes. 
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6.8.3 Computational Implementation and Analysis: 

Utilising computational techniques, particularly leveraging MATLAB's numerical solvers and 

visualization tools, the implemented mathematical models were used to explore the dynamics of 

disease and investigate optimal strategies for disease control. Through numerical solutions of 

differential equations and simulations of various control scenarios, valuable insights were gained 

into how different measures can effectively mitigate the spread of disease. 

 

6.9 Conclusion 

The present study utilised advanced mathematical modelling, computer analysis, and 

optimisation tools to investigate the dynamics of infectious diseases in ecological systems. By 

conducting thorough analysis of stability characteristics, equilibrium points, and sensitivity to 

parameter modifications, crucial thresholds have been discovered that determine the persistence 

and elimination of diseases. Additionally, we have identified the main factors that drive 

transmission and prevalence. By utilising Pontryagin's Maximum Principle, optimal control 

methods have been developed aiming to minimise the burden of disease while optimising control 

expenditures. These strategies provide practical insights into the effectiveness of various 

intervention measures. The integration of multiple disciplines has enhanced our comprehension 

of the patterns and changes in disease occurrence, providing essential direction for public health 

policy based on solid data and focused intervention tactics. These findings are extremely 

significant resources in the ongoing fight against infectious diseases, providing policymakers and 

public health professionals with the necessary tools and knowledge to protect human health and 

ecological integrity. This study used rigorous mathematical frameworks and computational 

approaches to analyse the dynamics of infectious disease transmission within ecological systems 

and to develop optimal control mechanisms for managing the spread of diseases. Our work 

aimed to understand the complex relationships between important factors that influence the 

spread of disease and changes in population size. Additionally, effective methods aimed at 

reducing the prevalence of the disease were developed. 

 

 


