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7 
A Mathematical Analysis of Plant-Pesticide 

Interaction: Existence, Uniqueness, and 

Optimal Control 

 

7.1 Introduction 

The study of plant epidemic models in connection with pesticide application is a critical 

component of agricultural research, particularly in relation to the preservation of crop fitness and 

the guarantee of food safety. If not effectively controlled, plant epidemics caused by various 

diseases like fungus, bacteria, and viruses can cause enormous losses in agricultural production. 

Pesticide application is one of the primary methods used in the management of these epidemics 
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[203]. Despite this, optimisation is essential when it comes to the use of pesticides, taking into 

account their effectiveness, costs, and environmental impacts. 

 

Mathematical modelling is essential for understanding plant disease dynamics and the impact of 

pesticide use. These models are critical tools for predicting disease spread and formulating 

effective containment strategies [89]. By simulating different situations, they offer valuable 

insights into the influence of various factors on disease progression and the effectiveness of 

control strategies. A standard plant epidemic model includes the following basic components: an 

infection rate, which indicates the rate at which a disease can spread from infected to healthy 

plants; plant growth and mortality rates that affect overall population dynamics; and the 

consequences of pesticide application, which can limit virus transmission but also impact plant 

well-being [195]. Mathematical models incorporate these elements to help academics and 

practitioners predict disease outbreaks and optimise pesticide use. This ultimately contributes to 

the development of more sustainable and effective plant disease management strategies [42]. 

 

Uniqueness and the existence of solutions are crucial elements of these models. For a model to 

be credible and useful, it must produce a unique solution that stays valid over time. To ensure 

reliability, a significant amount of mathematics is required to ensure that, given specific starting 

points and parameters, the answers to the differential equations describing the epidemic's spread 

are unambiguous. Essentially, this means proving that the model equations have solutions that 

not only exist but are also unique for the given inputs. This process is necessary to ensure that 

the model can accurately predict the spread of the disease and help develop effective control 

strategies [159]. 

 

Another factor to consider is how pesticide applications can be efficiently managed. The optimal 

control theory provides us with a method for determining which approach to the application of 

pesticides will minimise the impact of an epidemic while taking into account factors like cost-

effective constraints, environmental concerns, and other factors [76]. To put it another way, this 

process entails formulating an objective function that aims to decrease both the number of 

infected plants and the amount of pesticide used, and then identifying control variables that 

optimize this function. 
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In conclusion, using the uniqueness and existence theorems along with the best control strategies 

in plant epidemic models while pesticides are being applied gives us a complete way to deal with 

plant diseases. It provides a comprehensive comprehension of the most effective methods for 

utilising these chemicals, thereby ensuring that agricultural practices are sustainable and have 

minimal environmental impact. This field is not only profoundly mathematical but also highly 

relevant to the practical administration of agriculture. 

 

7.2 Mathematical model 

At any given time 𝑡, let 𝑆(𝑡) represent the susceptible population and 𝐼(𝑡) represent the infected 

population of plants. The total biomass of the plant populations, indicated by 𝑁(𝑡), is equal to 

the sum of 𝑆(𝑡) and 𝐼(𝑡), i.e., 𝑆(𝑡) + 𝐼(𝑡) = 𝑁(𝑡). Let 𝑃(𝑡) denote the amount of pesticides 

used in the population under consideration. Next, we present the following model:  

 

 
𝑑𝑆

𝑑𝑡
= 𝑎1𝑆(1 − 𝑏1𝑆) −

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 −  𝜇𝑆      

 
𝑑𝐼

𝑑𝑡
= 

𝛽1𝑆𝐼

1+𝛾1𝐼
−  𝜇𝐼 − 

𝛽2𝐼𝑃

1+𝛾2𝑃
           (7.1) 

                
𝑑𝑃

𝑑𝑡
= −𝛼𝑃          

  

Where: 

𝑎1: The natural growth of susceptible plant population. 

1

𝑏1
: The carrying capacity of plants. 

𝛽1: The contact rate of susceptible and infected plants. 

𝛾1: The catching rate of disease by susceptible plants. 

𝑐: The proportion of susceptible plants damages by pesticides. 

𝜇: The natural death rate of plant populations. 

𝛽2: The contact rate of pesticides and infected plants. 

𝛾2: The handling rate of infected plants by the use of pesticide. 
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𝛼: The rate at which pesticides is being used. 

Biologically, our focus is strictly on the dynamics of system (7.1) within the closed octant 𝑅+
3 . 

Consequently, we take into account the initial conditions 𝑆(0) ≡  𝑆0 > 0, 𝐼(0) ≡  𝐼0 > 0 and 

𝑃(0) ≡  𝑃0 > 0.  

 

The model above represents plant population dynamics under pesticide application. The 

remaining assumptions are specified in Chapter 4 of this Thesis. 

 

7.3 Existence and uniqueness of solutions 

 

This section presents the formulation of the existence and uniqueness theorem for the three 

equations of system (7.1) and the proof of the theorem. To formulate and demonstrate the 

theorem, the system of equations is approached as follows: 

 

𝑦1
′ = 𝑓1(𝑡, 𝑦1, 𝑦2, …… . , 𝑦𝑛), 𝑦1(𝑡0) = 𝑦10 

𝑦2
′ = 𝑓2(𝑡, 𝑦1, 𝑦2, …… . , 𝑦𝑛), 𝑦2(𝑡0) = 𝑦20
 .             .           .             .           .           .          
 .             .           .             .           .           .          
 .             .           .             .           .           .          
𝑦𝑛
′ = 𝑓𝑛(𝑡, 𝑦1, 𝑦2, …… . , 𝑦𝑛), 𝑦𝑛(𝑡0) = 𝑦𝑛0}

 
 

 
 

            (7.2) 

 

We may write equation (7.2) in the compact form as: 

 

   𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0          (7.3) 

 

Theorem 7.1: [159] 

Let 𝐷 denote the region: 

|𝑡 − 𝑡0| ≤ 𝑎, ‖𝑦 − 𝑦0‖ ≤ 𝑏, 𝑦 = (𝑦1, 𝑦2, …… . , 𝑦𝑛)

𝑦0 = (𝑦10, 𝑦20, . . . , 𝑦𝑛0)
}         (7.4) 

and suppose that 𝑓(𝑡, 𝑦) satisfies the Lipschitz condition: 

 ‖𝑓(𝑡, 𝑦1) − 𝑓(𝑡, 𝑦2)‖ ≤ 𝐾‖𝑦1 − 𝑦2‖           (7.5) 
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whenever the pairs (𝑡, 𝑦1) and (𝑡, 𝑦2) belong to 𝐷, where 𝐾 is a positive constant. 

 

Then there exists a constant 𝛿 >  0 such that there exists a unique continuous vector solution 

𝑦(𝑡) of the system (7.3) in the interval |𝑡 − 𝑡0| < 𝛿. 

 

Remark: It is important to note that condition (7.5) is satisfied by the requirement that 
𝜕𝑓𝑖

𝜕𝑦𝑗
, 𝑖, 𝑗 =

1,2, … , 𝑛 is continuous and bounded in D. 

 

Proof: From (7.4), we have, 

 

𝐷 =  (𝑆, 𝐼, 𝑃, 𝑡)
Where

|𝑆 − 𝑆0| ≤ 𝑐1, |𝐼 − 𝐼0| ≤ 𝑐2, |𝑃 − 𝑃0| ≤ 𝑐3, |𝑡 − 𝑡0| ≤ 𝑐4  
}         (7.6) 

 

From the system (7.1), 

 

Let 𝑓1 = 𝑎1𝑆(1 − 𝑏1𝑆) −
𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 −  𝜇𝑆           (7.7) 

      𝑓2 =
𝛽1𝑆𝐼

1+𝛾1𝐼
−  𝜇𝐼 − 

𝛽2𝐼𝑃

1+𝛾2𝑃
             (7.8) 

      𝑓3 = −𝛼𝑃                (7.9) 

 

By theorem (7.1), it is sufficient to show that |
𝜕𝑓𝑖

𝜕𝑦𝑗
| are bounded in order to establish the existence 

and uniqueness of the system (7.1). 

 

Consider the partial derivatives: 

 

𝜕𝑓1

𝜕𝑆
= 𝑎1 −  2𝑎1𝑏1𝑆 −

𝛽1𝐼

1+𝛾1𝐼
− 𝑐𝑃 − 𝜇, 

𝜕𝑓1

𝜕𝐼
= − 

𝛽1𝑆

(1+𝛾1𝐼)2
, 
𝜕𝑓1

𝜕𝑃
= − 𝑐𝑆      (7.10) 

𝜕𝑓2

𝜕𝑆
=

𝛽1𝐼

1+𝛾1𝐼
, 
𝜕𝑓2

𝜕𝐼
=

𝛽1𝑆

(1+𝛾1𝐼)2
− 𝜇 −

𝛽2𝑃

1+𝛾2𝑃
, 
𝜕𝑓2

𝜕𝑃
= − 

𝛽2𝐼

(1+𝛾2𝑃)2
       (7.11) 

𝜕𝑓3

𝜕𝑆
= 0, 

𝜕𝑓3

𝜕𝐼
= 0, 

𝜕𝑓3

𝜕𝑃
= −𝛼           (7.12) 
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Now, by substituting (7.6) into (7.10) - (7.12), we have, 

 

|
𝜕𝑓1

𝜕𝑆
| = |𝑎1 −  2𝑎1𝑏1𝑆 −

𝛽1𝐼

1+𝛾1𝐼
− 𝑐𝑃 − 𝜇|

≤ |𝑎1 −  2𝑎1𝑏1(𝑆0 + 𝑐1) −
𝛽1(𝐼0+𝑐2)

1+𝛾1(𝐼0+𝑐2)
− 𝑐(𝑃 + 𝑐3) − 𝜇| < ∞,

|
𝜕𝑓1

𝜕𝐼
| = | 

−𝛽1𝑆

(1+𝛾1𝐼)2
| ≤ | 

𝛽1(𝑆0+𝑐1)

(1+𝛾1(𝐼0+𝑐2))2
| < ∞, |

𝜕𝑓1

𝜕𝑃
| = |− 𝑐𝑆| ≤ | 𝑐(𝑆0 + 𝑐1)| < ∞}

 
 

 
 

     (7.13) 

 

|
𝜕𝑓2

𝜕𝑆
| = |

𝛽1𝐼

1+𝛾1𝐼
| ≤ |

𝛽1(𝐼0+𝑐2)

1+𝛾1(𝐼0+𝑐2)
| < ∞,

|
𝜕𝑓2

𝜕𝐼
| = |

𝛽1𝑆

(1+𝛾1𝐼)2
− 𝜇 −

𝛽2𝑃

1+𝛾2𝑃
| ≤ |

𝛽1(𝑆0+𝑐1)

(1+𝛾1(𝐼0+𝑐2))2
− 𝜇 −

𝛽2(𝑃+𝑐3)

1+𝛾2(𝑃+𝑐3)
| < ∞,

|
𝜕𝑓2

𝜕𝑃
| = |− 

𝛽2𝐼

(1+𝛾2𝑃)2
| ≤ | 

𝛽2(𝐼0+𝑐2)

(1+𝛾2(𝑃+𝑐3))2
| < ∞ }

 
 

 
 

      (7.14) 

 

|
𝜕𝑓3

𝜕𝑆
| = 0, |

𝜕𝑓3

𝜕𝐼
| = 0, |

𝜕𝑓3

𝜕𝑃
| = |−𝛼| = |𝛼| < ∞}                   (7.15) 

 

Clearly, equations (7.10) - (7.12) are bounded in 𝐷. Hence, by Theorem (7.1), there exists a 

unique solution of the system (7.1), i.e., there exists a unique solution of equations (7.10) - (7.12) 

that satisfies equation (7.6). 

 

7.4 Application of Optimal Control to Plant epidemic system 

 

The time-dependent control is introduced into the model equations (7.1) with the intention of 

preventing the spread of disease from one plant population to another and distinguishing the 

susceptible plant population from the affected plant population. In order to achieve optimal 

control over the effects of plant inoculation, the goal is to identify and comprehend the critical 

circumstances that are required. The primary model, which is referred to as system (7.1), is 

extended in order to integrate a dynamic control parameter, which is denoted by 𝑢(𝑡) [76]. This 

parameter represents the control measure that executes throughout the plant inoculation process. 

The purpose of this control measure is to reduce the risk of plant disease. 
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Consider the variable 𝑢(𝑡) ∈ 𝑈 as a control variable on plant inoculation in order to limit the 

incidence of plant disease. When time-dependent control is incorporated into the updated model 

(7.1), the following equation is obtained: 

 

𝑑𝑆

𝑑𝑡
= 𝑎1𝑆(1 − 𝑏1𝑆) −

(1−𝑢)𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 −  𝜇𝑆      

𝑑𝐼

𝑑𝑡
= 

(1−𝑢)𝛽1𝑆𝐼

1+𝛾1𝐼
−  𝜇𝐼 − 

𝛽2𝐼𝑃

1+𝛾2𝑃
          (7.16)  

            
𝑑𝑃

𝑑𝑡
= −𝛼𝑃           

 

Here, 𝑈 = {𝑢|𝑢(𝑡) 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 ,0 ≤ 𝑢(𝑡)  ≤ 𝑢𝑚𝑎𝑥 < ∞, t ∈ [0, 𝑡𝑓]} represents an admissible 

control set. The objective functional 𝐽 is defined within a feasible range of the control variable 

𝑢(𝑡) applied over the finite time interval (0, 𝑡𝑓) is given by: 

 

 𝐽(𝑢) = min
𝑢
∫ (𝐵𝐼(𝑡) +

1

2
𝐵1𝑢

2(𝑡)) 𝑑𝑡
𝑡𝑓
0

         (7.17) 

 

In the presented scenario, 𝑡𝑓 represents the final time. 𝐵 is a positive constant that represents the 

costs associated with infected plants, while 𝐵1 serves as the relative cost weights for the control 

measure. Specifically, the objective function 𝐽(𝑢) aims to minimise both the overall number of 

infected plants and the cost of the control 𝑢(𝑡). Consequently, the aim is to identify an optimal 

control 𝑢∗(𝑡) that is capable of simultaneously achieving both of these objectives. Hence, the 

optimal controls 𝑢∗(𝑡) exist in such a way that: 

 

   𝐽(𝑢∗ ) = 𝑚𝑖𝑛{𝐽(𝑢)}                      (7.18) 

 

Here, the existence of an optimal control (7.18) for the system (7.16) will first be demonstrated. 

This is supported by the following Theorem 7.2. 
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Theorem 7.2: There exists an optimal control 𝑢∗(𝑡) such that 𝐽(𝑢∗(t) ) = 𝑚𝑖𝑛{𝐽(𝑢(𝑡))} subject 

to the control system (7.1) with initial conditions. 

Proof: The integrand of the objective functional 𝐵𝐼(𝑡) +
1

2
𝐵1𝑢

2(𝑡) is a convex function of the 

control variable 𝑢(𝑡). Both the control and state variables are greater than or equal to zero, and 

the system (7.1) satisfies Lipchitz criteria in relation to the state variables since the state 

solutions are bounded. Therefore, it can be concluded that there exists an optimal control [59]. 

 

In order to obtain the optimal solution, the initial step is to calculate the Lagrangian and 

Hamiltonian for the problem described in equations (7.16) to (7.17). The Lagrangian for this 

optimal control problem is given by: 

 

 𝐿(𝐼, 𝑢) = 𝐵𝐼(𝑡) +
1

2
𝐵1𝑢

2(𝑡). 

 

The goal is to determine the minimum Lagrangian values. This is accomplished by defining the 

control problem's Hamiltonian as follows: 

 

 𝐻(𝐼, 𝑢, 𝜆𝑆, 𝜆𝐼 , 𝜆𝑃, 𝑡) = 𝐿(𝐼, 𝑢) + 𝜆𝑆(𝑡)
𝑑𝑆(𝑡)

𝑑𝑡
+ 𝜆𝐼(𝑡)

𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜆𝑃(𝑡)

𝑑𝑃(𝑡)

𝑑𝑡
    (7.19) 

 

Where 𝜆𝑆, 𝜆𝐼 and 𝜆𝑃 are adjoint variables or co-state variables to be determined. The formulated 

model must conform to the necessary criteria outlined by Pontryagin's Maximum [76]. 

Pontryagin's Maximum Principle is commonly used to convert the system of equations (7.16) 

and (7.17) into a point-wise minimisation problem of the Hamiltonian 𝐻, taking into 

consideration the control variable 𝑢(𝑡). 

 

Theorem 7.3: Let 𝑆∗(𝑡), 𝐼∗(𝑡), 𝑃∗(𝑡) represent the optimal state solutions corresponding to the 

optimal control variable 𝑢∗(𝑡) for the optimal control problem (7.16) – (7.17). This implies the 

existence of adjoint variables 𝜆𝑆, 𝜆𝐼 and 𝜆𝑃 satisfying: 

 

𝑑𝜆𝑆

𝑑𝑡
= 𝜆𝑆[𝑎1(2𝑏1𝑆 − 1) + 𝑐𝑃 + 𝜇] +

𝛽1(1−𝑢)

1+𝛾1𝐼
(𝜆𝑆 −  𝜆𝐼)𝐼,  
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𝑑𝜆𝐼

𝑑𝑡
=

𝛽1(1−𝑢)

(1+𝛾1𝐼)2
(𝜆𝑆 −  𝜆𝐼)𝑆 + 𝜆𝐼 (

𝛽2𝑃

1+𝛾2𝑃
+ 𝜇) − 𝐵, 

𝑑𝜆𝑃

𝑑𝑡
= 𝑐𝜆𝑆𝑆 +

𝛽2

(1+𝛾1𝑃)2
𝜆𝐼𝐼 + 𝛼𝜆𝑃, 

 

with transversality conditions 𝜆𝑆(𝑡𝑓),  𝜆𝐼(𝑡𝑓),  𝜆𝑃(𝑡𝑓) = 0. 

 

Furthermore, the optimal control variable 𝑢∗ minimises 𝐽 over the region 𝑈 and it is given by: 

𝑢∗(𝑡) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝜆𝐼−𝜆𝑆

𝐵1
, 𝑢𝑚𝑎𝑥) , 0). 

 

Proof: To derive both the transversality conditions and the adjoint equations, the Hamiltonian 

(7.19) is utilised. The adjoint equations are derived through the application of Pontryagin's 

Maximum Principle. 

 

 
𝑑𝜆𝑆

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆
, 
𝑑𝜆𝐼

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼
 and 

𝑑𝜆𝑃

𝑑𝑡
= −

𝜕𝐻

𝜕𝑃
 with 𝜆𝑆(𝑡𝑓),  𝜆𝐼(𝑡𝑓),  𝜆𝑃(𝑡𝑓) = 0. 

 

The optimality of the control problem is determined by 
𝜕𝐻

𝜕𝑢
= 0 on the interior of the control set. 

 

Hence, we get, 𝐵1𝑢(𝑡) +
𝛽1𝑆𝐼

1+𝛾1𝐼
𝜆𝑆(𝑡) −

𝛽1𝑆𝐼

1+𝛾1𝐼
𝜆𝐼(𝑡) = 0. 

 

This implies that 𝑢(𝑡) =
𝛽1(𝜆𝐼−𝜆𝑆)𝑆𝐼

𝐵1(1+𝛾1𝐼)
(= 𝑢∗(𝑡)), say. 

 

Using the property of control space, we obtain: 

 

𝑢∗(𝑡) = 0 if  
𝛽1(𝜆𝐼−𝜆𝑆)𝑆𝐼

𝐵1(1+𝛾1𝐼)
≤ 0, 

 

𝑢∗(𝑡) =
𝛽1(𝜆𝐼−𝜆𝑆)𝑆𝐼

𝐵1(1+𝛾1𝐼)
 if 0 <

𝛽1(𝜆𝐼−𝜆𝑆)𝑆𝐼

𝐵1(1+𝛾1𝐼)
< 𝑢𝑚𝑎𝑥 

 

𝑢∗(𝑡) = 𝑢𝑚𝑎𝑥 if 
𝛽1(𝜆𝐼−𝜆𝑆)𝑆𝐼

𝐵1(1+𝛾1𝐼)
≥ 𝑢𝑚𝑎𝑥. 
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So, the optimal control is characterized as 𝑢∗(𝑡) = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝜆𝐼−𝜆𝑆

𝐵1
, 𝑢𝑚𝑎𝑥) , 0). This represents 

the characterization of the optimal control. 

 

7.5 Numerical Analysis 

The proposed model for plant epidemics is studied through numerical methods to see the 

dynamics of disease spread and the role of optimal control measures in reducing diseases. This 

numerical analysis is carried out with the help of MATLAB 2018a. The initial conditions are set 

as 𝑆(0) = 100, 𝐼(0) = 50, 𝑎𝑛𝑑 𝑃(0) = 10, which represent the initial state for susceptible and 

infected plant populations and pesticides respectively described in this order. The provided 

starting values give a reference point for analysing how each population behaves over time as the 

disease progresses and with application of optimal control strategies. This method helps to 

understand which strategies are more effective and what the impact of these strategies on disease 

the control line, giving practical insight into the epidemic management system. 

 

Table 7.1: Parameters and its Values 

Parameter Value 

𝑎1 0.1 

𝑏1 0.001 

𝛽1 0.001 

𝛾1 0.001 

𝑐 0.001 

𝜇 0.06 

𝛽2 0.02 

𝛾2 0.021 

𝛼 0.02 

𝐵 1 

𝐵1 0.1 

𝑢(𝑡) 0.5 

𝑡𝑓 2000 
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Figure 7.1: Dynamics of 𝑺 and 𝑰 over time without control 𝒖(𝒕) 

 

Figure 7.1 presents a narrative that shows the populations of susceptible and infected plants take 

much longer to reach equilibrium without the application of pesticide or at 𝑢(𝑡) = 0. In the 

absence of these strategies, the infection can spread much more easily, resulting in larger 

fluctuations and slower stabilisation of plant populations. The drastic difference in this 

comparison demonstrates the importance of control strategies in managing disease dynamics and 

helping the system stabilise more quickly. 

 

The infection that spreads without the application of 𝑢(𝑡) or pesticides creates longer periods of 

not only high infections but also more variability in the plant populations. This means that 

growth and infection dominate the natural processes, which causes slower population 

stabilisation and larger swings in plant numbers. This all shows how difficult managing plant 

diseases can be without human intervention, as the populations oscillated much more and took a 

longer time to reach equilibrium. 
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Figure 7.2: Dynamics of 𝑺 and 𝑰 over time with control 𝒖(𝒕) 

 

Figure 7.2 shows that the populations of susceptible plants (𝑆) and infected plants (𝐼) rapidly 

reach equilibrium values. The results show that setting the control value 𝑢(𝑡) = 0.5 efficiently 

stabilises the system's dynamics. The controlled variable 𝑢(𝑡) = 0.5 directly influences the 

system's behaviour, leading to a decrease in infections and accelerating system function. By 

reducing the rate of disease spread and its harmful effects on affected plants, this intervention 

creates a more controlled and predictable system. Implementing 𝑢(𝑡) = 0.5 results in a 

significant decrease in the number of infected plants, thereby stabilising growth among 

susceptible plants. It is essential to implement this kind of control in order to keep the plant 

population stable and provide a more seamless transition towards equilibrium levels. 

 

Pesticide use can help to balance the effects of the control variable 𝑢(𝑡) = 0.5. Pesticides 

stabilise the population growth rate of susceptible plants by further reducing the number of 

unhealthy plants. Rapid outbreaks or extremely high infection rates require this type of response. 
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Pesticides have the ability to stabilise plant populations by reducing their erratic growth patterns. 

Pesticides act as an extra-stabilising component, preventing sudden shifts or variations in plant 

populations. Avoiding extreme fluctuations in plant populations makes this concept a reality. 

This demonstrates the pesticide's efficacy in controlling plant diseases and its contribution to 

maintaining a steady and predictable plant ecosystem balance. Using pesticides with the control 

variable 𝑢(𝑡) = 0.5 is important for keeping plant populations healthy and stable over time 

because it lowers the rate of transmission and lessens the damage to diseased plants.  

 

 

 

Figure 7.3: Phase Portrait of the System 

 

The phase portrait in Figure 7.3 provides a dynamical view of the interaction between 

susceptible plants (𝑆), infected plants (𝐼), and pesticide levels (𝑃) over time. The axes in this 

three-dimensional plot indicate the quantity of susceptible plants, infected plants, and pesticide 

level, and each point depicts the system's condition at that specific time.  
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The phase portrait shows that the system is progressively approaching a stable state where the 

populations of susceptible plants, infected plants, and pesticide levels stay constant. In the phase 

portrait, the trajectory spirals inward towards a central equilibrium point. The system may 

wobble at first with some oscillations, but these fluctuations eventually diminish and bring about 

stability, according to this spiralling pattern. The pesticide level (𝑃) starts high but gradually 

decreases due to its natural degradation rate (𝛼), which influences infection dynamics by 

reducing interactions between infected and susceptible plants and helping to control the spread of 

infection. 

 

Initially, the populations of susceptible and infected plants oscillate more significantly, reflecting 

changes as the system adjusts to the pesticide's presence. Due to its growth rate and the initial 

decrease in infection, the susceptible plant population (𝑆) initially grows, while the infected plant 

population (𝐼) experiences comparable fluctuations as the infection progresses and the pesticide 

regulates it. Over time, the fluctuations decrease, resulting in stable populations of 𝑆, 𝐼, and 𝑃, 

which demonstrates the sustained effectiveness of the control strategy. 

 

The inward spiralling trajectory provides a demonstration of the effectiveness of the control 

𝑢(𝑡) = 0.5 in stabilising the system. The pesticide treatment allows susceptible plants to recover 

and thrive, thereby reducing the number of affected plants. The system is stable under the 

provided control approach, as evidenced by this progression towards equilibrium. Over time, the 

system has smoothed out any initial disruptions, resulting in a predictable and steady state. 

Finally, the system establishes a balance in which the levels of susceptible plants, infected plants, 

and pesticides remain constant, implying that methods of sustainable farming may manage the 

infection without requiring ongoing, large-scale interventions. As a result, the phase portrait 

effectively demonstrates how the control method affects the interactions between susceptible and 

infected plants, as well as the amounts of pesticides, resulting in a system that is stable and 

manageable over time. 
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7.6 Conclusion 

 

This study investigates the ways in which the use of pesticides impacts the transmission of plant 

diseases. In particular, it validates the existence of the model and guarantees that there is a 

unique solution to it. Another contribution to the study is the identification of optimal control 

strategies for efficient plant disease management. The research findings provide farmers with 

actionable guidance on how to use pesticides in a sustainable manner. It is vital for farmers to 

have this knowledge in order to assist them in achieving a balance between effective pest control, 

environmental preservation, and economic viability, which will ultimately lead to more 

sustainable farming practices. 

 

 

 

 

 

 

 


