Mathematical Modelling and Integrated Management of Eco-Epidemiological System under the Application of Pesticides

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

То

By

Balajied Me Syrti Department of Mathematics Royal School of Applied and Pure Sciences Registration No: 1190001

October 2024

Dedicated To My Family, My Teachers & My Friends

DECLARATION

I hereby declare that the content embodied in the PhD thesis entitled "Mathematical Modelling and Integrated Management of Eco-Epidemiological System under the Application of Pesticides" is the result of research work carried out by me in the Department of Mathematics, The Assam Royal Global University, Guwahati, India, under the supervision of Prof. (Dr.) Anuradha Devi and co-supervision Dr. Aditya Ghosh.

In keeping with the general practice of reporting research observations, due acknowledgments have been made wherever the work described is based on the findings of other researchers.

Ffurther, I declare that this thesis as a whole or any part thereof has not been submitted to any university (or institute) for the award of any degree/ diploma.

Date: 30/10/2024

Place: Guwahati

$\beta \cdot S_{\gamma} \gamma + \hat{i}$ (BALAJIED ME SYRTI)

Registration No.: 1190001 Roll No.: 197011001

CERTIFICATE FROM THE SUPERVISORS

This is to certify that the work presented in the thesis entitled "Mathematical Modelling and Integrated Management of Eco-Epidemiological System under the Application of Pesticides" by Balajied Me Syrti, submitted to the Assam Royal Global University for the award of the degree of Doctor of Philosophy in Mathematics, is a record of the results obtained from the research work carried under our supervision.

This thesis conforms to the template and stipulated guidelines of the Assam Royal Global University, including the standard related to plagiarism, and has a plagiarism index of 4 %, excluding the bibliography.

Anundha Devi

Signature of the Supervisor

Adilyallush

Signature of the Co-Supervisor

ACKNOWLEDGEMENTS

I extend my deepest gratitude to my thesis supervisor, Dr. Anuradha Devi, for her invaluable guidance, unwavering support, and insightful feedback throughout this research endeavour. Her expertise has been instrumental in shaping the direction and quality of this thesis. I also wish to acknowledge Dr. Aditya Ghosh (co-guide), Dr. Ankur Jyoti Kashyap, and the faculty members of the Mathematics Department at The Assam Royal Global University for their constructive criticism and valuable input, which have significantly enriched my understanding of the subject matter.

Moreover, I am immensely thankful to my family for their unwavering support, understanding, and encouragement throughout this academic journey. Their constant encouragement has been a driving force behind my accomplishments. Lastly, I would like to express my appreciation to all individuals who generously contributed their time, expertise and insights to this research.

Assam Royal Global University

Certificate of Plagiarism Check for Thesis

Author Name	Balajied Me Syrti
Course of Study	PhD
Name of Guide	Prof. (Dr.) Anuradha Devi
Department	Mathematics
Acceptable Maximum Limit	10%
Submitted By	centrallibrary@rgu.ac
Paper Title	Mathematical Modelling and Integrated Management of Eco-Epidemiological System under the Application of Pesticides
Similarity	4%
Paper ID	1997535
Submission Date	2024-06-14 13:57:21

B. sy rti Signature of Student

Anuradha Deu. Signature of Guide

ang

Head of the Department

University Librarian

LIBRARIAN

Director of Post Graduate Studies

CENTRAL LIBRARY

The Assem Royal Global University Enerated by DrillBit Anti-Plagiarism Software

Abbreviations

DE	Differential Equation
ODE	Ordinary Differential Equations
PDE	Partial Differential Equations
DDE	Delay Differential Equations
SIR	Susceptible-Infectious-Recovered
LTI	Linear time-invariant
IFF	if and only if
РМР	Pontryagin's Maximum Principle
MATLAB	Matrix Laboratory
R ₀	Basic reproductive number
DFE	Disease-free equilibrium
EE	Endemic equilibrium
GH	Generalised-Hopf
ВТ	Bogdanov-Takens
VOCs	Volatile organic compounds
IPM	Integrated Pest Management
FAO	Food and Agriculture Organization

List of Symbols

=	Equal to
<i>≠</i>	Not equal to
<	Less than
>	Greater than
≤	Less than or equal to
≥	Greater than or equal to
~	Approximately equal to
\Rightarrow	Implies
\rightarrow	Convergence
/	Division
det	Determinant
tr	Trace
π	Pi
E	belongs to
Э	
Ξ	there exists
$\frac{d}{dx}$	there exists Derivative
<u></u>	
$\frac{d}{dx}$	Derivative

β	Beta
γ	Gamma
δ	delta
Δ	Delta
ε	Epsilon
θ	Theta
ω	omega
arphi	Phi
η	Eta
λ	Lambda
μ	Mu
ν	Nu
ξ	Xi
ρ	Rho
τ	Tau
X	Chi
ψ	psi
ψ	Psi
ζ	Zeta
σ	Sigma
Ω	Omega
X	is proportional to

\Leftrightarrow	if and only if
∞	infinity
∴	Therefore
÷	because / since
е	Exponential
II II	norm of
max	Maximum
min	Minimum
lim	Limit
inf	Infimum
sup	Supremum

List of Figures

Fig. No.	Figure Caption	Page No.
1.1	Interpretation of Mathematical modelling	6
1.2	Pyramid of Integrated Pest Management	9
1.3	Plant disease triangle	11
2.1	Schematic illustration of the Maize steak virus disease model	19
2.2	The introduced eco-epidemiological system's chart	26
3.1	Transfer diagram of model (3.1)	57
3.2	x - y model without control	71
3.3	x - y model with pesticide as control measure	71
3.4	Amount of pesticides used	72
4.1	Transfer diagram of model (4.1)	79
4.2	S(t) vs Time under the application of Pesticide	99
4.3	I(t) vs Time under the application of Pesticide	99
4.4	Amount of Pesticides $P(t)$ used vs Time	100
4.5	S(t) and $I(t)$ vs Time under the application of Pesticide	100
4.6	Phase portrait of $S(t)$ vs $I(t)$ under the application of Pesticide.	101
4.7	S(t) and $I(t)$ vs Time without the use of Pesticide	101
4.8	Phase portrait of $S(t)$ vs $I(t)$ without the use of Pesticide	102
5.1	Impact of the variation of g in the number of infected plant	128
	population (difference not visible)	
5.2	Impact of the variation of μ in the number of infected plant	128
	population	
5.3	Plot of $\Delta = A_1 A_2 A_3 - A_3^2 - A_1^2 A_4$ and $\frac{d\Delta}{d\theta}$ as functions of θ	131
	(Parameters are taken from Table 5.4).	
5.4	Plot of A_1, A_2, A_3, A_4 as functions of θ (Parameters are taken from	131
	Table 5.4).	
5.5	Phase portrait of the system (5.1) for $\theta = 0.78/day$ and $\theta =$	132
	0.84/day (other parameters are considered as mentioned in Table	
	5.4 with $d_1 = 0.5$).	
5.6	Time evolution of system (5.1) with the parameters mentioned in	133
	Table 5.4	

ſ

5.7	Two-dimensional projection of Hopf bifurcation curve with free	135
	parameter θ and α	
5.8	Time evolution of system (5.1) with the parameters mentioned in	135
	Table 5.4 and $d_1 = 0.5/day$, $\theta = 1/day$. The dotted line	
	represents the amount of pesticides used	
5.9	Two-dimensional projection of Hopf bifurcation curve with free	136
	parameter d_1 and d_2	
6.1	Variations in Basic Reproduction Number (R_0) with Infection	162
	Rate (β)	
6.2	Rate (β) Final State Population Dynamics against Infection Rate (β)	163
6.2 6.3		163 169
	Final State Population Dynamics against Infection Rate (β)	
6.3	Final State Population Dynamics against Infection Rate (β) Dynamics of Ecological Variables and Optimal Control Profile	169
6.3 6.4	Final State Population Dynamics against Infection Rate (β) Dynamics of Ecological Variables and Optimal Control Profile Phase Portrait: State Space Dynamics Visualisation	169 170
6.3 6.4 7.1	Final State Population Dynamics against Infection Rate (β) Dynamics of Ecological Variables and Optimal Control Profile Phase Portrait: State Space Dynamics Visualisation Dynamics of <i>S</i> and <i>I</i> over time without control $u(t)$	169 170 184

List of Tables

Table No.	Table Caption	Page No.
4.1	Notations and Description of model parameters	80
4.2	Sensitivity index table	96
5.1	Notation and definition of model variables	112
5.2	Notations and definition of model parameters	112
5.3	Sensitivity index table	126
5.4	Parameter values used for Simulation	133
6.1	Parameters and its Values	161
6.2	Parameters and its Values	168
7.1	Parameters and its Values	183