Table of Contents

Abb	Abbreviation	
List of Symbols		X
List	List of Figures	
List of Tables		XV
1	General Introduction	1
	1.1 Overview of the study	1
	1.1.1 Background of the study	2
	1.1.2 Mathematical modelling	3
	1.1.3 Eco-Epidemiology system	7
	1.2 Integrated Pest Management	8
	1.3 Problem statement	10
	1.4 Aim and scope of the study	12
	1.5 Significance of study	12
	1.6 Conclusion / Summary	14
2	Literature Review	15

2.1 Introduction to the chapter	15
--	----

-i]

ſ

2.2 Employment of Mathematical modelling in agriculture	16
2.2.1 Significance	17
2.2.2 Applications	17
2.2.3 Mathematical modelling and integrated management of	
Eco- Epidemiology model	18
2.2.4 Role of Pesticides in evolving plant diseases	23
2.2.5 Modelling of Eco-epidemiology Model for effective Integrated	
Pest management	24
2.3 Research gaps	29
2.4 Research Questions	30
2.5 Objectives of the study	31
2.6 Mathematics preliminaries and general methodology	32
2.6.1 State variables	32
2.6.2 Equilibrium points	32
2.6.3 Time dependent equilibrium point	33
2.6.4 Types of Equilibrium points	33
2.6.5 Malthusian and Logistic Growth Model	34
2.6.6 Prey-predator Model: Lotka-Volterra System	34
2.6.7 Prey dependent functional response	35
2.6.8 Stability and Instability	37
2.6.9 Linear stability analysis	38
2.6.10 Eigen Values and Eigen Vectors	39
2.6.11 Jacobian matrix	40

_____(ii)_____

2.6.12 Routh Hurwitz criteria	41
2.6.13 Phase portrait or Phase plane diagram	42
2.6.14 Slope Field/ Direction Field	42
2.6.15 Trajectory	43
2.6.16 Limit Cycles	43
2.6.17 Basic Theorems of Lyapunov on Stability	43
2.6.18 Poincare–Lyapunov Theorem	44
2.6.19 Basic Reproduction Number	45
2.6.20 Sensitivity analysis	46
2.6.21 Hopf bifurcation	47
2.6.22 Optimal Control	49
2.6.23 Pontryagin's Maximum Principle	50
2.7 Conclusion / Summary	52

3 An Eco-epidemic model with disease in Plant populations and Pesticides

as control measure	54
3.1 Introduction	54
3.2 Eco Epidemic Model Formulation and Assumptions	55
3.2.1 Proposed mathematical model	55
3.2.2 Assumptions underlying the model formulation	55
3.2.3 Representation of plant populations, disease dynamics, and	l
pesticide intervention	57
3.2.4 Linear responses between populations and pesticides	58
3.3 Positivity and Boundedness Analysis	58
3.3.1: Positivity of solutions in the system	58
3.3.2: Boundedness of solutions in the system	59

3.3.3 Proof and implications of positivity and boundedness for the	
model's biological validity	61
3.4 Equilibria	61
3.4.1 Identification of equilibrium points in the eco-epidemic model	61
3.4.2 Analysis of trivial and non-trivial equilibrium points	62
3.4.3. Conditions for existence and stability of equilibrium points	62
3.4.4. Biological significance of different equilibria	63
3.5 Stability Analysis	63
3.5.1 Application of Jacobian matrix for stability analysis	63
3.5.2 Theorem 3.4-3.9: Stability analysis of equilibrium points using	
Eigenvalue theorem and Routh-Hurwitz Criterion	67
3.5.3 Interpretation of stability results of disease control and population	on
dynamics	68
3.6 Numerical Analysis	68
3.6.1 Parameters and initial conditions for numerical simulations	69
3.6.2 Numerical simulation of the eco-epidemic model using	
MATLAB	70
3.6.3 Visualization and interpretation of simulation results	72
3.7 Discussion	73
3.7.1 Synthesis of analytical and numerical findings	73
3.7.2 Implications of model assumptions and limitations	73
3.8 Conclusion	74
Stability and control of a plant epidemic model with pesticide	
intervention	76
4.1 Introduction	76
4.2 Assumptions of Plant Epidemic Model	77
4.3 Mathematical Model	79
4.3.1 Mathematical model, including the differential equations	79
4.3.2 Model's significance and how it simulates plant epidemic	
dynamics	82
4.4 Positivity and Boundedness	83
4.4.1 Positivity	83
4.4.2 Boundedness	83

iv

4.5 Equilibria	85
4.6 Stability Analysis	88
4.6.1 Stability of trivial equilibrium point	89
4.6.2 Stability of axial equilibrium point	89
4.6.3 Local stability of the disease-free equilibrium	90
4.6.4 Local stability of the endemic equilibrium	91
4.6.5 Global stability of the disease-free equilibrium	92
4.6.6 Global Stability of the endemic equilibrium	92
4.7 Sensitivity Analysis	95
4.8 Numerical Analysis	97
4.8.1 Parameters and Initial Conditions	98
4.9 Numerical simulations	98
4.10 Results and Discussion	103
4.11 Conclusion	103

Analysis of Stability, Sensitivity Index and Hopf Bifurcation of Eco-	
Epidemiological SIR Model under Pesticide Application	107
5.1 Introduction	107
5.2 Background and Literature Review	108
5.2.1 Summary of previous research on plant diseases	108
5.2.2 Mathematical modelling in biology and its applications	109
5.3 Model Formulation	109
5.3.1 Assumptions made for the SIR model formulation	109
5.3.2 Model equations and the interpretation of model parameters	
and variable	112
5.4 Theoretical Analysis	113
5.4.1 Positivity and Boundedness	113
5.4.2 Existence and Uniqueness of Solution for the SIPR Model	116
5.4.3 Analysis of the equilibrium points, including the trivial,	
disease-free, and endemic equilibrium states	118
5.4.4 Calculation and interpretation of the basic reproduction number	
(R_0) and its implications for disease control	120
5.5 Stability Analysis	122
5.5.1 Stability of trivial equilibrium point	123

	5.5.2 Local stability of the disease-free equilibrium	123
	5.5.3 Local stability of the endemic equilibrium	124
	5.6 Sensitivity Analysis and Hopf Bifurcation	125
	5.6.1 Sensitivity analysis performed on R_0 and the implications of	
	the findings	125
	5.7 Hopf bifurcation, its significance in the model, and the conditions	129
	5.8 Numerical Simulations	132
	5.8.1 Numerical methods and software used for simulation	132
	5.8.2 Presentation and interpretation of simulation results	133
	5.9 Conclusion and Future Directions	137
6	Optimizing Plant Epidemic Control: A Mathematical Model	
	Integrating Susceptible and Infectives Plants, and Herbivores	
	with Pesticide Intervention	141
	6.1 Introduction	141
	6.2 Mathematical model formulation and description	145
	6.3 Preliminaries	148
	6.3.1 Positivity of solutions	148
	6.3.2 Boundedness of solutions	149
	6.3.3 Existence and Uniqueness of the system	150
	6.4 Equilibria and Stability	152
	6.5 Permanence of the System	158
	6.6 Sensitivity Analysis	160
	6.6.1 Sensitivity Analysis Results	160
	6.7 Analysis of Optimal Control	164
	6.7.1 Optimal Control Analysis Results	167
	6.8 Discussion	170
	6.8.1 Mathematical Analysis of Disease Dynamics	171
	6.8.2 Optimal Control Framework	171
	6.8.3 Computational Implementation and Analysis	172
	6.7 Conclusion	172

_____ vi)_____

7	A Mathematical Analysis of Plant-Pesticide Interaction: Existence,		
	Uniqueness, and Optimal Control	174	
	7.1 Introduction	174	
	7.2 Mathematical model	176	
	7.3 Existence and uniqueness of solutions	177	
	7.4 Application of Optimal Control to Plant epidemic system	179	
	7.5 Numerical Analysis	183	
	7.6 Conclusion	188	
8	Conclusion and Scope for Future Work	189	
	8.1 Introduction	189	
	8.2 Summary and original Contribution of the thesis	190	
	8.2.1 Developing a basic eco-epidemic model of spread of diseases		
	between susceptible and infected plants, utilising pesticides as a control	ol	
	measure	190	
	8.2.2 Stability and control of a plant epidemic model with pesticide		
	intervention	190	
	8.2.3 Analysis of Stability, Sensitivity Index and Hopf Bifurcation of		
	Eco-Epidemiological SIR Model under Pesticide Application	191	
	8.2.4 Optimizing Plant Epidemic Control: A Mathematical Model		
	Integrating Susceptible and Infectives Plants, and Herbivores with		
	Pesticide Intervention	191	
	8.2.5 A Mathematical Analysis of Plant-Pesticide Interaction: Exist	ence,	
	Uniqueness, and Optimal Control	192	
	8.3 Future Scope of Work	193	
Refer	rences	195	
List o	of Research Papers presented in Conferences and Seminars	224	
List o	of Research Papers Accepted/ Published	226	
First	page of paper 1	228	
First	First page of paper 2		

First page of paper 3

First page of paper 5

230

231