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2 
Literature Review 

 

2.1 Introduction to the chapter 

This chapter will provide a short summary of the existing mathematical models that are utilised 

to define pest control ecological interactions. This chapter will discuss the significance of 

mathematical models in agriculture, as well as the main ecological phenomena in the agricultural 

pest control framework. The main objective of the eco-epidemiological model beneath the 

pesticide application is to reduce the harm produced by the infected plant populations and the 

application of pesticides as a control measure.  

Existing works in the literature have analysed eco-epidemic models, emphasising either 

predatory or prey populations, where they are segregated into infected or susceptible categories. 

As a result, this chapter focuses on the scholarly works that deal with plant populations enduring 
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a disease epidemic and the role of pesticides. Moreover, this chapter explains the investigations 

that explore strategies for mitigating epidemics and promoting the recovery of plant populations.  

Plant epidemics have been recognised in various scholarly works. Since the eco-epidemiological 

model permits: 

• To analyse the associations prevailing among biotic and abiotic disease system 

constituents impacting the development of disease in a host plant [62]. 

• To enumerate the spatial and temporal spread of the disease [66]. 

• To evaluate the ability of management possibilities for vector and disease mechanism 

[60]. 

• To improve scenario examination for the assessment of various disease management 

programme [22]. 

Moreover, epidemiological model improvement and utilisation can recognise data or knowledge 

gaps and, therefore, prioritise further investigation work. This research subject has attracted a 

surge of attention, and the number of papers involving various mathematical models and issues is 

discussed in this chapter. This chapter provides an exploration of the academic works that 

concentrate on the mathematical modelling, application of pesticides, eco-epidemic model for 

plant diseases, and integrated pest management.  

 

2.2 Employment of Mathematical modelling in agriculture  

The benefits of agricultural production for society and its collaboration with the environment are 

not precise or subjective, as it is appropriate to implement mathematical models of fuzzy logic 

for such correlations. It is needed to define the promising application of these techniques to 

Cuba’s agriculture decision-making. Accordingly, the work done by Rodríguez and López [151] 

denotes the method of organising an agro-systems group based on soil overuse syndrome 

symptoms in order to rearrange biodiversity to reduce the central scheme. The academic work 

deals with the application of Big6 as a mathematical instrument constructed on fuzzy logic that is 

easy to implement to address environmental management issues in agricultural soils, thus 

satisfying the aim of the investigation. The outcomes attained permit us to recognise that two of 

the plots in this agro-system require a huge amount of attention to reduce the impacts of the main 
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mechanism of soil overuse syndrome. Generally, managers can employ the improvement of these 

mathematical models on the basis of fuzzy logic in place of an instrument to encourage 

environmental management’s decision-making.  

Currently, several agricultural products have started to execute a specific farming method. In this 

context, it is necessary to develop strategies for assessing and sustaining the growth of 

agricultural crops. Hence, in order to evaluate the administration of the plant-soil-air system, the 

growth of the plant's prospective is introduced, which is the proportion of the power disbursed on 

the unit of a plant's mass formation. The study contemplates the theoretical requisites for 

measuring the potential of growth. Hence, keeping in mind the need for a precise scheme of 

agricultural science on the one hand and, on the other hand, the consistency of acquiring the 

intended crop yield, Maksimov et al. [124] intend to develop the functioning of the plant-soil-air 

system using mathematical modelling for producing choices related to operational management.  

 

2.2.1 Significance 

In recent decades, an investigation into biological issues has been heavily reliant on 

mathematical modelling. The main motive of the investigation carried out by Li et al. [116] is to 

analyse innovative solutions to the predator-prey model with two nonlocal and local fractional 

operators. Through the incorporation of two effective analytical techniques, a few categories of 

analytical solutions were established for the system through the beta-time fractional operator. 

Furthermore, a numerical technical basis for the model was established. The article displays the 

finite difference schemes, which are the basis for the numerical approach. The concurrent 

investigation of numerical techniques for this problem category makes it conceivable to deliver 

an appropriate numerical description of the problem solution in the instance of analytical method 

failure. Moreover, the article embraces numerical simulations of the outcomes.  

 

2.2.2 Applications 

Rudoy [156] devotes his classic study to the modern methods of mathematical modelling in 

agriculture, specifically focusing on the applied aspects of its development. The main goal of this 

work is to improve and perfect one of the most important techniques that can move the science 
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of mathematical modelling and its application for the needs of agriculture to a new level of 

development. The study shows that mathematical models based on advanced scientific 

knowledge play a huge role in optimising agricultural processes and ensuring high efficiency in 

crop production. 

The study demonstrates that mathematical models are a vital part of agricultural processes, 

especially in economic calculation and in modelling the processes of different sections of farms. 

By using mathematical models, farmers or agricultural managers can predict the results more 

accurately, improve the decision-making process, and optimise resource allocation for higher 

yields. Strategic use of the models could lead to tangible improvements in farm management, 

including higher yields and better resource allocation, according to the statistical data. Overall, 

Rudoy’s study demonstrates that advanced mathematical models are vital for improving 

agricultural processes and ensuring a more sustainable agricultural industry.  

 

2.2.3 Mathematical modelling and integrated management of Eco-Epidemiology model 

Jeger and Bragard [92] carried out the conventional study, which intends to reveal that insect-

transmitted diseases have several features in common, irrespective of whether the casual 

pathogen is a virus, phytoplasma, or virus. The introduced framework can be established, which 

condenses the fundamental interactions among the insect vector, plant, and pathogen with respect 

to key epidemiological parameters from which a principle can be formed that measures whether 

the pathogen will establish, persist, and lead to an epidemic in a host population.  

Likewise, another inquiry conducted by Greenhalgh et al. [70] analysed a model comprising a 

predatory population and both the infected and susceptible populations. The predator can forage 

on either prey species, but instead of selecting individuals at random, the predator forages 

specifically on the most abundant prey species. Precisely, it is assumed that the predator’s 

likelihood of grasping an infected or susceptible prey is proportional to the numbers of these two 

distinct kinds of prey species. This phenomenon, concerning changing preference from 

susceptible to infected prey, is termed switching. According to the proposed model, the 

researcher assumes that the predator will ultimately die as a result of eating infected prey.  
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One of the significant needs for the utilisation of advanced numerical approaches to resolving 

fractional issues is their application in real-world problems. The primary part of the improvement 

made in this region has been the improvement of effective numerical approaches and methods. 

Similarly, Ghanbari [64] investigates an advanced technique for evaluating the eco-

epidemiological dynamics of a nonlinear fractional system using differential equations. One of 

the primary topics of computational biology is eco-epidemiology, which relates epidemiology to 

ecology. The existence of a disease in one of the populations in the environment provides major 

alterations in the necessary system components in those models. The system’s equilibrium points 

are assessed for this model. Finally, the study displays the uniqueness and convergence theorems 

of the solution acquired from the employment of fractional derivative operators. 

Another inquiry performed by Ayembillah et al. [17] established and evaluated the mathematical 

model of the maize steak virus disease dynamics. The outcomes displayed that the system was 

positive and uniformly bounded. The disease-free and the points of endemic equilibrium and its 

local stability analysis are performed. The sensitivity analysis of every parameter is performed in 

the model analysis to provide a detailed picture of the effect of every factor on spread. Figure 2.1 

below depicts the maize steak virus disease spread dynamics model. 

 

Figure 2.1. Schematic illustration of the Maize steak virus disease model 

(Source: [41]) 
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The analytical outcomes were established by the numerical simulations with realistic parameter 

values. The outcomes attained are given as follows:  

• Altering the predation and infection rates of leafhoppers and maize, 𝛽1, 𝛽11 and 𝛽2 

correspondingly and the susceptible leafhopper’s birth rate 𝑏 have a direct association 

with the standard basic reproduction number  𝑅0 . 

• Meanwhile, fluctuating the infected maize’s death rate, 𝜇 ,death rate of infected and 

susceptible leafhopper, 𝜇1, and the infected maize plants removal rate have an inverse 

association with the standard basic reproduction number 𝑅0. 

The introduced model reveals that the disease spread mostly relies on how these parameters are 

deployed [41].  

Similarly, another paper, which was carried out by Alemneh et al. [6], evaluated an ideal 

deterministic eco-epidemiological model for the dynamics of the dynamics of the maize steak 

virus and investigated the optimal strategy to combat the maize population from the maize steak 

virus. The model of optimal control is improved with three control intermediations, such as: 

• 𝑢1 - 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

• 𝑢2 - 𝑞𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 

• 𝑢3 – 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

In order to attain an optimum control approach, the researcher utilised Pontryagin’s maximal 

principle to acquire the Hamiltonian, the control characterization, adjoint variables, and the 

system's optimality. Numerical simulations are executed by means of the forward-backward 

sweep iterative technique. The outcomes of the study reveal that every integrated approach has 

the capability to reduce the disease at a particular time. On the other hand, because of the 

inadequate resources, it is vital to identify a profitable tactic. The utilisation of an incremental 

cost-effectiveness ratio and a cost-effectiveness analysis method is investigated, and it is inferred 

that the collaboration of quarantine and prevention is an excellent and profitable tactic from 

various integrated approaches. Hence, stakeholders and policymakers must smear the integrated 

association to prevent the maize steak virus from spreading in the maize populace.  
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Kebede and Muchie [101] have presented another inquiry that establishes a mathematical model 

for the transmission dynamics of the cotton leaf curl virus disease. This model considers both the 

vector and cotton populations. The model takes into account the following primary factors: 

• The vector populations are categorized as infected (𝑌) and susceptible (𝑋) 

• Cotton populations are categorized as infected (𝐵) and Susceptible (𝐴) 

• The solutions of the model are positive and confined to the initial circumstances of the 

particular meaningful set.  

The existence of distinct cotton leaf curl viruses and the endemic equilibrium points are 

discovered, and the basic reproduction number is estimated utilising the subsequent generation 

matrix technique. The conditions for this equilibrium’s global and local asymptotic stability are 

then introduced. While the standard reproduction is below one, the system has the globally and 

locally asymptotically stable cotton leaf curl virus-free equilibrium point, and if the standard 

reproduction number is greater than 1, the system has the globally and locally asymptotically 

stable endemic equilibrium point. The outcomes of the simulation agree with the analytical 

outcomes.  

Another article studied by Ibrahim [86] intends to learn about the eco-epidemiological model’s 

dynamic behaviour. The paper presents a prey-predator model that incorporates infectious 

diseases in prey species as well as stage structure in predator species. The Lotka-Volterra 

functional response led to the structural growth of the prey species, even in the absence of 

predators and ferocity procedures. The boundedness, uniqueness, and existence of the entire 

equilibrium point are measured. The restrictions on the models’ persistence are established. The 

local bifurcation towards all equilibrium points is evaluated. The global dynamics of the model 

are examined in a numerical manner and contrasted with the acquired results.  

Likewise, Ma et al. [123] conducted a study that presented a stochastic eco-epidemiological 

system with a patchy structure and infection associated with transportation. Moreover, the 

assessment of stochastic dynamical behaviours is conducted. Initially, through the construction 

of appropriate Lyapunov functions, the study demonstrates the existence of a distinct globally 

positive solution, commencing from the initial positive value. Subsequently, it is revealed that 

the displayed system is stochastically ultimately bounded, and the average in the second moment 
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of solution time is confined. Finally, it is demonstrated that stochastic perturbations can manage 

the predator population, and the diseases in the predator can be non-existent while being constant 

in the deterministic system. Consequently, few numerical simulations are provided to examine 

the theoretical outcomes.  

Savadogo et al. [160] conducted another paper in which they introduced and assessed a 

mathematical model defining the dynamics of phytoplankton, toxin production, and fish 

population using an ordinary differential equations system. They segregate the phytoplankton 

into two groups: the susceptible phytoplankton and the infected phytoplankton. The study 

intends to evaluate the impact of the toxic substance on the fish population. The contributions of 

the study are as follows: 

• The model’s equilibria stability has been learned globally and locally towards the 

standard basic reproduction number 𝑅0.  

• The model’s mathematical analysis reveals that the equilibrium in the absence of diseases 

is globally asymptotically stable when 𝑅0 ≤ 1 and the endemic equilibrium is globally 

asymptotically stable if 𝑅0 ≥ 1. 

• Numerical simulations are performed to demonstrate the theoretical results feasibility. 

Gaber et al. [61] conducted an inquiry to construct an eco-epidemiological model in addition to 

the nonlinear incidence rate that Gumel and Moghadas [72] recommended. The introduced 

model delivers a realistic and reasonable approach to ecological systems across the globe since 

we track Holling type II for the considered predator-susceptible prey interaction. Also, the model 

follows the simple mass action low for the predator for the predator-infected prey interaction 

since the infected prey will be weak. The inquiry reveals that: 

• The time for judgement is suggestively longer compared to the time required to hold the 

healthy prey. 

• The solutions for positivity, existence, and boundlessness are evidenced. 

Also, the equilibrium points are measured according to the feasibility conditions of the study. 

Local stability has been evaluated by Routh Hurwitz criteria, and the Lyapunov function has 

been created to learn global stability as per the La Salle theorem. Hopf and Sotomayor's 

theorems provide insight into various types of bifurcation. The solutions to the numerical 
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analysis were implemented with the aid of fourth-order Runge-Kutta. The simulations executed 

in the study encouraged the theoretical findings. 

 

2.2.4 Role of Pesticides in evolving plant diseases  

In an eco-epidemic model, the impact of pesticides on plant diseases can be seen through 

interactions among plants, pathogens, and the environment. Pesticides, meant to control 

pathogens and pests, can unintentionally affect disease transmission and evolution in ecosystems. 

For example, pesticide use can influence pathogen populations, leading to the emergence of 

pesticide-resistant strains. This can be represented in the model by including a parameter for the 

rate of pesticide resistance development among pathogens. 

Additionally, the indirect effects of pesticides on plant health and ecosystem dynamics are 

important in eco-epidemic models. Pesticides can disrupt ecological balances by harming natural 

enemies of pathogens or changing soil microbial communities, which can impact disease 

dynamics. These indirect effects can be included in the model by adding equations or parameters 

that show changes in ecosystem structure and function due to pesticide application. By 

considering these factors, researchers can gain a better understanding of how pesticides, 

pathogens, and plants interact and develop more effective strategies for managing plant diseases 

while minimising environmental harm. 

An academic study carried out by Vavre et al. [185] gives insights into the interactions between 

pesticides and plant disease-causing pathogens from an ecological and epidemiological 

perspective. It discusses the ecological and evolutionary effects of using pesticides in farming 

systems. The paper looks at how pesticides impact disease spread and the development of 

pesticide resistance in pathogens. It emphasises the need to combine ecological and 

epidemiological methods when designing pest control approaches. The overall meaning is that 

pesticides interact with pathogens in complex ways, and sustainable pest management requires 

understanding these interactions from multiple scientific viewpoints. 

 



 

 
24 

2.2.5 Modelling of Eco-epidemiology Model for effective Integrated Pest management 

The extensive use of chemical pesticides in agricultural pest management systems can pose risks 

to the multifaceted ecosystems, which consist of ecological, social, and economic subsystems. 

Wan et al. [188] introduced an ecological two-sidedness technique that has been implemented in 

pest-control strategies for pesticide pollution management. On the other hand, the catastrophe 

theory has not been initially implemented with this technique. Hence, the researcher utilises the 

technique of incorporating ecological two-sidedness with a multi-criterion assessment method of 

catastrophe theory to evaluate the agro-ecosystem complexity concerned by insecticides and 

display the optimal insect pest-control tactic in the production of cabbage. The outcomes of the 

research reveal that applying environment-friendly insecticides and frequency vibration lamps 

was regarded as the optimal insect pest-controlling approach in the production of cabbage in 

China.  

Within the framework of integrated pest management programmes (IPM), the study conducted 

by Anguelov et al. [13] introduced a generic model to learn the effect of mating disruption 

control utilising an artificial female pheromone to obscure males and adversely impact one’s 

mating prospects. Subsequently, the reproduction rate is reduced, resulting in a fall in the size of 

the population. Trapping is executed to seize the males fascinated by the artificial pheromone for 

more effective control. A model’s theoretical analysis in the absence of control initially takes 

place to execute the endemic equilibrium’s properties. Next, control is included, and the model’s 

theoretical analysis permits the pheromone’s threshold values, which is practically fascinating 

for field applications. Lastly, the numerical experiments are executed to illustrate the theoretical 

outcomes. 

The conventional study that was carried out by Bazarra et al. [21] describes the numerical and 

mathematical insight of a problem emerging in vector-borne plant infections. The introduced 

model is described as a non-linear structure that consists of a parabolic partial differential 

equation for the function of vector abundance and a 1st-order normal differential equation for the 

function of plant well-being. A uniqueness and existence outcome are demonstrated utilising 

uniform estimates, finite differences, and short-lived distances to the boundary. The solutions 

regulatory are also acquired. Subsequently, utilising the implicit Euler scheme and the finite 

element method, fully discrete approximations are established. Lastly, a few numerical outcomes 



 

 
25 

in 1 or 2 dimensions are displayed to validate the approximation’s accuracy and the solution’s 

behaviour.  

A main threat to livestock and agricultural resources is the pest outbreak. Integrated pest 

management is extensively being employed now-a-days to manage the pest population. In the 

process of managing the pest’s outbreak, the natural enemies are extremely valuable. As a result, 

Kalra et al. [96] employed biological and microbial pest control approaches that involve 

simultaneously using infected pests and spontaneously discharging natural enemies. Hence, a 

susceptible-infected-recovered model involving prey’s infection with two classes and the 

predator's stage structure is analysed for the purpose of integrated pest management. Predators 

acts as the natural enemy, while prey behaves as the pest. Initially, global and local stability of 

pest extinction periodic solutions is performed, followed by the system’s performance, utilising a 

stroboscopic map, the floquet theory of impulsive differential equations, and a comparison 

analysis approach. Moreover, it is revealed that an impulsive period’s threshold value plays a 

significant role in the system’s dynamics. Furthermore, to endorse the suggested outcomes, 

numerical simulations are performed. 

Al-Jubouri et al. [8] present another paper that aims to study and evaluate the impact of optimal 

harvesting on the dynamic behaviour of the eco-epidemiological model, which deals with an 

assailant species (locust insect) and a wheat field (host species). The research provides an 

interpretation and analysis of a mathematical model that incorporates an epidemiological 

environment containing various infectious diseases in the presence of optimal harvesting. The 

introduced system is segregated into two species such as predator individuals – 𝑌(𝑡) – Locust 

insect and Prey individuals – 𝑋(𝑡) – wheat (host species).  
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Figure 2.2. The introduced eco-epidemiological system’s chart 

(Source: [8]) 

 

Figure 2.2 illustrates the chart of eco-epidemiological system with two various diseases. The 

primary work contributions are: 

• Understanding of the mathematical analysis for the eco-epidemiological model’s 

dynamic behaviour and discoursing the proportional harvesting effects. 

• Processing and safeguarding the wheat crops from the danger of being visible to locus 

pest infest. 

• Forming a steady, balanced eco-epidemiological system that can creates high-income. 

Similarly, Bakhtiar et al. [18] examine the complex interaction among the pest insects and plants 

beneath the intervention of natural enemies discharges coupled with sterile insect approaches. A 

nonlinear ordinary differential equations set is created with respect to an optimal control model 

involving the population’s characteristics. Also, the optimal control measures are pursued in such 
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a manner that they reduce the density of pests concurrently with the control energies. The study 

investigated the three distinct strategies associating with the sterile insect release rate and 

predators in place of natural enemies, correspondingly proportional, constant, and engulfing 

proportional release rates for the control objective attainability. The main findings of the study 

are: 

• The essential optimality conditions of the control problem are attained by utilising the 

Pontryagin maximum principle. Following this, the forward-backward sweep technique is 

then executed to estimate the optimal solution numerically.  

• It is also revealed that the environment comprises of brown plant hoppers as pests and 

rice plants and lady beetles as natural enemies, and the releases of sterile plant hoppers 

can reduce the density of pests, thus increasing the biomass of plants. 

• The natural enemies release with constant rate and sterile insects release with 

proportional rate are considered to be the most cost-efficient approach in managing pest 

insects. 

• The introduced approach reduces the pest population by about thirty-five percent and, 

hence, increases the plant density by up to thirteen percent at the time of control 

implementation.  

Maintenance of aphids using insecticides is ineffective to control the potato virus. Meanwhile, a 

mixed-cropping system that contains potatoes and non-host crop plants is the main strategy. 

Investigations regarding the significance of those practices will benefit smallholder framers. 

Accordingly, Degefa et al. [40] introduce a mathematical model that intends to analyse the 

impacts of a mixed-cropping system on the potato virus Y disease dynamics. The evaluation 

results show that the non-virus host plant has a significant impact on decreasing the basic 

reproduction number, 1. Subsequently, an endemic equilibrium is formed, in which one is locally 

asymptotically stable. The study implements a geometric technique and carefully considers 

conditions to ensure the global stability of the endemic equilibrium. The sensitivity analysis and 

bifurcation of the embedded parameters are performed. Lastly, a few numerical simulations are 

performed to encourage the analytic outcomes. 

Panja [143] conducted another inquiry that presents a 3-species model of the interactions 

between the crop, predator, and pest. In the absence of crop harvesting and pests, researchers 
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regard the crop growth rate as logistical. The study considers that pests consume crops, while in 

the interim, predators consume pests. The research focuses on the process of harvesting crops. 

Holling type II functional response has been regarded as important for pest and crop depletion. It 

is also presumed that the predators will consume pests. The main contributions of this study are: 

• Boundedness and positivity of the model’s solution have been analysed. 

• Several equilibrium model points are assessed and global and local stability at that time 

are examined. 

• Investigations on the Hopf bifurcation existence principle in association with the central 

model parameter have been performed. 

• Through the utilisation of a defined objective function, the optimum crop harvesting has 

been measured. 

• The best crop harvesting rate is estimated by Pontryagin’s maximum theory. 

According to the study's findings, an increase in optimal harvesting yields contributes to the 

model's stability, indicating that strategic harvesting practices can enhance the consistency and 

predictability of agricultural outputs. Furthermore, the study demonstrates that a higher rate of 

pest consumption significantly reduces agricultural yields, emphasizing pests' detrimental impact 

on crop productivity. These findings highlight the intricate and delicate balance between 

harvesting practices and pest management. Effective optimisation of one aspect, such as 

maximising harvest yields, can positively influence the overall productivity of the agricultural 

system. However, the increased crop losses due to pests can undermine the benefits of optimised 

harvesting without adequate pest control measures. Thus, the study underscores the importance 

of integrated approaches that simultaneously address both harvesting and pest management to 

ensure the sustainability and efficiency of agricultural systems.  

Jana and Kar [90] conducted another investigation with the purpose of establishing and analysing 

the hybrid impulsive eco-epidemic model, which incorporates disease in the population of pests. 

The primary purpose of this study is to investigate the existence of pest-eradication periodic 

solutions, both in terms of their stability and their existence. It is as a result of this that the 

research presents an updated eco-epidemic model that incorporates alternating frequencies of 

pesticide sprays and the release of both natural enemies and infected bugs for the purpose of pest 

control. As a result of the findings of the study, the threshold values for the susceptible pest 
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eradication periodic solution were displayed below the various scenarios, which demonstrated 

the solution's global attractiveness. 

 

2.3 Research gaps  

Some of the limitations or future works found in discussed existing studies are as follows, 

A. Existing literature on eco-epidemic models focuses primarily on the dynamics of animal 

populations involving prey and predators. Researchers have devoted significant attention 

to studying epidemics within either the prey or predator populations, and the subsequent 

spread of diseases within these animal populations. Nevertheless, these studies usually do 

not investigate the dynamics of epidemics in plant populations. 

B. Given that eco-epidemic modelling primarily focuses on prey-predator animal 

populations, measures for disease control tend to vary correspondingly. There is a lack of 

research in the literature on using pesticides to prevent and manage plant diseases within 

the eco-epidemic modelling framework. This gap emphasizes the need for further 

research to clarify the potential impact of pesticides on reducing disease transmission 

among plant populations. 

C. There is a significant lack of research, especially focused on the creation of plant 

epidemic models, despite an abundance of literature on plant diseases and control 

measures. Even though there are studies on plant disease management available, the 

current state of research mostly ignores the complex dynamics of epidemic spread within 

plant populations and the development of successful control techniques. This omission 

emphasizes the need for future research efforts to address this gap and improve our 

understanding of plant epidemic dynamics and corresponding control methods. 

D.  The paper [64] suggests to prolong the numerical method utilised by the researcher to 

variable-order fractional systems in upcoming future. These systems can produce intense 

alterations in the potential ways of modelling of eco-epidemiological issues. 

E. The application of pesticides does not provide quick recovery of the infected plants. 

There is a possible interruption in the recovery procedure. The introduced model can be 

prolonged to a time-delay model with the aid of delay differential equations. The 

suggested work can be protracted utilizing fractional order derivatives. Moreover, the 
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investigators can extend the model by investigating contact rates among pesticides and 

plants, which are totally reliant on the measure of pesticides smeared. It can be attained 

by means of utilization of functions which depend on the variable  𝛼. 

F. The theoretical findings of the study [148] present various pest management control 

strategies. On the other hand, the wide-ranging eradication of the pest populace is often 

unachievable in reality. Hence, the main goal is to stop the pest populace from attaining 

harmful levels and to manage its density beneath the economic threshold. Hence, the 

study introduces the improvement of state-dependent impulsive differential equations to 

resolve this issue and this strategy will serve as the futuristic recommendation for the 

investigators. 

 

2.4 Research Questions 

I. What are the main dynamics and factors that affect the spread of plant epidemics in an 

ecosystem, taking into account the interactions between plant populations and disease 

agents? 

II. What are the various ecological components that contribute to the occurrence and spread 

of plant epidemics in ecosystems, and how can we integrate these factors into modelling 

frameworks? 

III. Within eco-epidemic modelling frameworks, how can we measure and examine the 

possible impacts of plant epidemics on the stability of ecosystems? 

IV. What are the possible approaches to intervene in order to control plant epidemics in 

ecosystems, specifically focusing on the use of pesticides, and how successful are these 

approaches in reducing the spread of diseases while minimising their impact on the 

environment? 

V. How can we adapt current models and frameworks to account for the dynamics of prey-

predator animal populations, the transmission of diseases to plant populations, and plant 

epidemics? 
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2.5 Objectives of the study 

Based on the literature reviewed above, the primary objective of this research is to develop a 

Mathematical Model for an Eco-epidemic Model. The focus is on studying the impact of a 

specific disease on an age-structured plant ecosystem. Through the model, we aim to simulate 

the growth of plants and the transmission of the disease within an interacting eco-epidemic 

framework. The susceptible plant population will be represented using an age-specific Lotka-

Volterra model, while disease-carrying vectors will be considered as infectives. To accurately 

capture the complexity of this interactive system, a comprehensive mathematical model will be 

formulated. The main objectives of this research are as follows: 

1. The aim is to develop a basic eco-epidemic model that analyses the spread of diseases 

between susceptible and infected plants, utilising pesticides as a control measure. This 

model will look at how well pesticides control the spread of disease, which will help 

experts come up with long-term plans for managing plant epidemics. 

2. The goal is to establish the stability and control of a plant epidemic model using pesticide 

intervention and the Holling Type II functional response. This involves developing a 

mathematical framework to understand how pesticides can effectively control disease 

spread while maintaining ecological balance. 

3. The aim of this study is to analyse the stability, sensitivity index, and Hopf bifurcation of 

the Eco-Epidemiological SIR model under pesticide application. This involves 

investigating the conditions for maintaining system stability, evaluating the sensitivity of 

model outcomes to changes in key parameters, and examining the potential for Hopf 

bifurcation, which could lead to periodic disease outbreaks. Through these analyses, the 

study seeks to understand how pesticides impact plant disease dynamics, ultimately 

contributing to more effective and sustainable disease management strategies. 

4. To find an optimal control policy for the plant epidemic model, integrate susceptible 

infective plants and herbivores with pesticide intervention as a control measure. This 

study aims to determine how pesticides affect populations of plants and herbivores 

infected with disease. By developing mathematical models that account for pesticide 

impact, the study aims to understand the dynamics of disease transmission within plant 

communities and its consequences for herbivore populations. Through analysis and 
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validation of these models, the research seeks to provide insights into optimizing 

pesticide strategies for controlling disease while maintaining ecological balance, thus 

informing sustainable management practices and conservation efforts. 

5. To examine the existence and uniqueness of solutions to the model equations developed 

in Chapter 4, with a particular focus on plant population dynamics under pesticide 

application. It seeks to identify the conditions that ensure the existence and uniqueness of 

these solutions through mathematical analysis. Additionally, the chapter explores optimal 

control strategies for regulating plant population dynamics, aiming to balance the benefits 

of pesticide use with environmental and economic concerns. These findings enhance the 

understanding of plant population control in agricultural systems and provide crucial 

insights into environmentally responsible methods of pesticide administration. 

 

2.6 Mathematics preliminaries and general methodology 

Differential equations serve as a means to describe and formulate scientific problems, 

necessitating the use of various mathematical tools for their analysis. This section offers a 

thorough overview of these tools, accompanied by pertinent definitions, fundamental concepts, 

and theorems that consistently apply throughout this thesis. 

 

2.6.1 State variables: A state variable is a group of variables that describe the mathematical 

"state" of a dynamic system. These variables explain the behaviour of the factors that impact the 

system. Models are comprised of first-order differential equations that are expressed in the form 

of state variables. 

2.6.2 Equilibrium points: Equilibrium points, also referred to as steady states or fixed points, 

are the solutions of a dynamical system. These systems are typically described by ordinary 

differential equations, and at equilibrium points, the rate of change of the system's state variables 

is zero. Mathematically, an equilibrium point 𝑥∗ satisfies the condition �̇� = 𝑓(𝑥∗) = 0, where �̇�  

represents the time derivative of the state variables and 𝑓(𝑥) represents the vector field defining 

the dynamics of the system. Equilibrium points play a crucial role in understanding the behavior 



 

 
33 

and stability of dynamical systems. They serve as reference states where the system remains 

unchanged over time [145].  

2.6.3 Time dependent equilibrium point: A time-dependent equilibrium point refers to a 

solution of a dynamical system where the state variables of the system reach a steady state, but 

this steady state varies with time. Mathematically, consider a dynamical system described by 

ordinary differential equations �̇� = 𝑓(𝑡, 𝑥), where 𝑥 represents the state variables of the system 

and 𝑓(𝑡, 𝑥) is a vector field that defines the evolution of the system over time [145]. A time-

dependent equilibrium point 𝑥∗(𝑡) satisfies the condition �̇� = 𝑓(𝑡, 𝑥∗(𝑡)) = 0. 

2.6.4 Types of Equilibrium points: There are three types of equilibrium points and they are (1) 

Nodes, (2) Sink and (3) Sources [145]. 

I. Nodes: At a node, the dynamics of the system with respect to the state variable evaluated 

at the equilibrium point has a derivative that equals zero, while the dynamics at 

nearby points have a derivative that is negative. Mathematically, it is characterized by 

𝑓(𝑥𝑒) = 0 and 
𝑑𝑓

𝑑𝑥
< 0 for 𝑥 close to 𝑥𝑒. 

II. Sink: A sink is a special case of a node where the derivative of the system's dynamics 

with respect to the state variable evaluated at the equilibrium point equals zero, and the 

derivative of the dynamics with respect to the state variable at nearby points is negative, 

and there are no zero eigenvalues of the Jacobian matrix. Mathematically, it is 

characterized by 𝑓(𝑥𝑒) = 0,  
𝑑𝑓

𝑑𝑥
< 0 for 𝑥 close to 𝑥𝑒, and all eigenvalues of the Jacobian 

matrix have negative real parts. 

III. Sources: At a source, the dynamics of the system with respect to the state variable 

evaluated at the equilibrium point has a derivative that equals zero, while the dynamics at 

nearby points have a derivative that is positive. Mathematically, it is characterized by 

𝑓(𝑥𝑒) = 0 and 
𝑑𝑓

𝑑𝑥
> 0 for 𝑥 close to 𝑥𝑒. 
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2.6.5 Malthusian and Logistic Growth Model 

In the early stages of modelling biological processes, the growth rate of a population (birth-

death) was calculated using the following equation: 

 
𝑑𝑥

𝑑𝑡
= 𝑘𝑥              (2.1) 

Here, 𝑘 is a constant. The population experiences a constant growth rate ‘𝑘’ time the current 

numbers, without any restrictions on resources [125]. However, it is important to note that this 

model has limitations, as populations in ecology cannot sustain indefinite growth. Instead, this 

model may hold true for a certain period of time. In response to the shortcomings of the 

Malthusian model, the growth of the population is reevaluated using the following Logistic 

growth model equation: 

 
𝑑𝑥

𝑑𝑡
= 𝑟𝑥 (1 −

𝑥

𝐾
)             (2.2) 

Where '𝑟' is the intrinsic growth rate and '𝐾' is the maximum carrying capacity of the 

environment. In this logistic growth model, the population increases similarly to the Malthusian 

growth model when '𝑥' is small. However, when '𝑥' is large, the species start competing for 

limited resources. 

 

2.6.6 Prey-predator Model: Lotka-Volterra System 

Lotka suggested a simple model for predator-prey relationships to explain fluctuations in fish 

catches [120]. The Volterra model is given by the equations below, where 𝑛(𝑡) represents the 

prey population and 𝑝(𝑡) represents the predator at time 𝑡, 

 
𝑑𝑛

𝑑𝑡
= 𝑛(𝛿 − 𝜗𝑝) 

 
𝑑𝑝

𝑑𝑡
= 𝑝(𝜎𝑛 − 𝜏)             (2.3) 

Where 𝛿, 𝜗, 𝜎, 𝜏 are non-negative constants. 

The above-mentioned model is built upon certain assumptions: 

a) The prey population experiences unrestricted growth in the absence of predators. 
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b) The term 𝜗𝑛𝑝 signifies the impact of predation on prey, leading to a decrease in its per 

capita growth rate. 

c) In the event of prey scarcity, the predator mortality rate leads to exponential decline, 

which is directly proportional to the term 𝜏𝑝. 

d) The growth rate of the predator is influenced by the contribution of the prey, which is 

denoted as 𝜎𝑛𝑝. This means that the prey's contribution is directly proportional to both 

the abundance of available prey and the size of the predator population. 

 

 2.6.7 Prey dependent functional response 

The ecological concept of functional response refers to the rate at which a consumer consumes 

food in relation to its density. This concept is closely linked to the numerical response, which 

measures the reproductive rate of a consumer in relation to food density. In the following 

discussion, we will explore various types of functional responses. 

1. Prey dependent functional response: The consumption rate of predators is solely 

determined by the prey in the prey-dependent function type, denoted as 𝐹(𝑥, 𝑦) = 𝐹(𝑥). 

Prey-dependent functional responses can be classified in various ways [82]. Here are 

some of the most commonly recognized types. 

 

• Lotka-Volterra Type:  

In this type, the rate at which prey is consumed by each predator steadily 

increases in a linear manner. This functional response can be mathematically 

represented as: 𝐹(𝑥) = 𝑎𝑥, where 𝑎 > 0 denotes the rate at which a predator 

consumes its prey. 

 

• Holling type-I: 

 𝐹(𝑥, 𝑦) = 𝐹(𝑥) = 𝑎𝑥      for 0 < 𝑥 < 𝑎 

     = 𝑏         for 𝑥 ≥ 𝑎.          (2.4) 

Here, 𝑥 represents the density of the prey population, while 𝑦 represents the density of 

the predator population. The value of 𝑎 signifies the resource level at which the predator 
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reaches satiation at 𝑏. Consequently, when 𝑎 takes on significantly large values, the 

equation simplifies to the Lotka Volterra form. 

 

• Holling type-II: 

 𝐹(𝑥, 𝑦) = 𝐹(𝑥) =
𝑀𝑥

1+𝑀𝑛𝑥
=

𝛼𝑥

𝛽+𝑥
          (2.5) 

Here, 𝑀 represents the search rate, while 𝑛 denotes the handling time. The variable '𝛼' 

stands for the maximum harvest rate and '𝛽' represents the half saturation level. 

 

• Holling type-III: 

 𝐹(𝑋) =
𝑀𝑥2

1+𝑀𝑛𝑥2
=

𝛼𝑥2

𝛽+𝑥2
           (2.6) 

This behaviour is characteristic of a generalist predator that transitions between different 

food species or predators that focus their feeding activities in areas with plentiful 

resources.  

 

2. Ratio dependent functional response: 

The model is referred to as ratio-dependent when 

  𝑓1(𝑥1, 𝑥2) = 𝑓1 (
𝑥1

𝑥2
)            (2.7) 

Leslie introduced the earliest ratio dependent model, which was later examined by Leslie-

Gower and Pielou as follows: 

  
𝑑𝑥1

𝑑𝑡
= 𝛼1𝑥1 − 𝛼2𝑥1𝑥2 

  
𝑑𝑥2

𝑑𝑡
= 𝛼1𝑥2 (1 −

𝑥2

𝜎1𝑥1
)           (2.8) 

In this particular model, the carrying capacity 𝐾 is determined by the presence of resources, 

denoted as 𝑥1. As a result, 𝐾 is directly proportional to the abundance of prey population 𝑥1, 

with 𝜎1 representing the constant of proportionality. 
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It is becoming increasingly evident that in certain scenarios, the per-capita growth rate of 

predators should be determined by the ratio of prey-predator abundance. The concept of a 

ratio-dependent functional response was given as: 

  𝐹(𝑋, 𝑌) =
𝛼(

𝑋

𝑌
)

1+𝑀𝑛(
𝑋

𝑌
)
=

𝛼𝑋

𝛽𝑌+𝑋
           (2.9) 

The consumption of prey in these models is not directly linked to prey density, but rather to 

the ratio of prey and predator densities. This allows for the consideration of predator 

abundance or scarcity in the ecosystem. 

 

2.6.8 Stability and Instability 

This process enables the validation of a dynamical system to determine if its trajectories 

converge towards the equilibrium point [145]. Validation can be accomplished through 

numerical methods, Lyapunov stability analysis, or structural stability assessment. 

I. Stability: Let 𝐷 represent the spherical region centered at the equilibrium point 𝑥∗ 

defined by |𝑥 − 𝑥∗| < 𝑅 in the state space, and let the sphere |𝑥 − 𝑥∗| = 𝑅 be denoted by 

𝑆. The equilibrium point 𝑥∗ is considered stable if, for any 𝑅 > 0, there exists 𝑟 > 0 such 

that |𝑥(0) − 𝑥∗| < 𝑟 implies |𝑥(𝑡) − 𝑥∗| < 𝑅 for all 𝑡 > 0. Conversely, if this condition 

does not hold, then 𝑥∗ is termed an unstable equilibrium point. 

II. Asymptotic stability: An equilibrium point 𝑥∗ is considered asymptotically stable if it is 

stable and there exists a positive 𝑟 > 0 such that |𝑥 − 𝑥∗| < 𝑟 which implies 𝑥(𝑡) → 𝑥∗ 

as 𝑡 → ∞. Additionally, 𝑥∗ is termed locally asymptotically stable if it is locally stable 

and all solutions starting near 𝑥∗ converge to 𝑥∗ as 𝑡 → ∞. 

III. Local stability: One way of finding out the local stability of an equilibrium point in a 

dynamical system is through linearization of the dynamics by means of the Jacobian 

matrix 𝐽(𝑥∗), which expresses the variable 𝑥∗ as the equilibrium point. If all eigenvalues 

for 𝐽(𝑥∗) have negative real parts (𝑅𝑒(𝜆𝑖) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖), then the equilibrium point can 

be considered locally stable. However, if any eigenvalue for 𝐽(𝑥∗) has a positive real part, 

then it would be regarded as locally unstable [145]. This analysis allows us to know what 

kinds of behaviours trajectories can have in a neighbourhood around an equilibrium 
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point, and this knowledge provides valuable information about system behaviour without 

considering its global dynamic features. 

IV. Global stability: Global stability involves examining the behaviour of a dynamical 

system within its entire state space, taking into account all the possible initial conditions. 

In contrast with local stability, which concentrates only on the behaviour near given 

equilibrium points, global stability implies the study of the whole dynamics of the system 

and how its trajectories evolve through time independently of their initial states. A 

dynamical system is said to be globally stable if, regardless of starting positions in the 

state space, all paths eventually converge to some stable configurations such as equilibria, 

limit cycles, or invariant sets [145]. Analysis of global stability often focuses on the 

behaviour of trajectories in the long run and the recognition of attractors with their 

basins. A fundamental result is that trajectories from different initial conditions must tend 

to one and only one attractor. This analysis helps to understand the nature of the system 

as a whole, ensuring that it behaves predictably and reliably throughout its phase space. 

 

2.6.9 Linear stability analysis: 

In order to determine the stability of a dynamic system, it is important to observe how it behaves 

near its equilibrium states. These equilibrium states are achieved by setting all time-dependent 

variables' derivative values to zero. Even though the system's input and output remain constant at 

the equilibrium state, it is crucial to understand whether any deviations from this state will cause 

significant changes in the entire system or if they will be dampened out. Local stability analysis 

focuses on determining the survival and coexistence of a species when there are small deviations 

from the equilibrium state [145]. On the other hand, the global stability approach is used to 

discuss the long-term behaviour of a system. The following methodology is employed to find the 

stability of a dynamic system. 

Consider a dynamical system described by the equation �̇� = 𝑓(𝑥), where 𝑥 represents the state 

vector and 𝑓(𝑥) represents the dynamics of the system. Suppose 𝑥∗ s an equilibrium point, such 

that 𝑓(𝑥∗) = 0. 

We can expand the dynamics 𝑓(𝑥) around 𝑥∗ using a Taylor series:  
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𝑓(𝑥) = 𝑓(𝑥∗) +
𝜕𝑓

𝜕𝑥
|
𝑥∗
(𝑥 − 𝑥∗) + Φ((𝑥 − 𝑥∗)2). 

Since, 𝑓(𝑥∗) = 0, the linear term becomes: 

𝑓(𝑥) ≈
𝜕𝑓

𝜕𝑥
|
𝑥∗
(𝑥 − 𝑥∗). 

This expression resembles the linear approximation of a function around a point, where 
𝜕𝑓

𝜕𝑥
|
𝑥∗

 is 

the Jacobian matrix 𝐽(𝑥∗). Therefore, the linearized dynamics around 𝑥∗ can be written as:  

�̇� ≈ 𝐽(𝑥∗)(𝑥 − 𝑥∗).  

The stability of 𝑥∗ can then be analysed by examining the eigenvalues of 𝐽(𝑥∗). If all eigenvalues 

have negative real parts, 𝑥∗  is locally stable. If any eigenvalue has a positive real part, 𝑥∗ is 

locally unstable. This linear stability analysis provides insights into the behavior of the system 

near 𝑥∗ based on its linearized dynamics. 

 

2.6.10 Eigen Values and Eigen Vectors 

The historical origins of the concept of eigenvalues and eigenvectors can be traced back to the 

18th century, where mathematicians like Leonhard Euler and Joseph Louis Lagrange explored 

the idea of characteristic roots and vectors. However, it was not until the 19th century that the 

formal study of eigenvalues and eigenvectors began. It was during this time that mathematicians 

such as Carl Friedrich Gauss, Augustin-Louis Cauchy, and Hermann von Helmholtz made 

significant contributions to the theory. The term "eigenvalue" was later coined by David Hilbert 

in 1904. The early 20th century witnessed the growth of linear algebra as a distinct field, with 

luminaries like David Hilbert, Emmy Noether, and Hermann Weyl leading the way in advancing 

the topic. Since then, eigenvalues and eigenvectors have become fundamental concepts in many 

areas of mathematics, including linear algebra, differential equations, and functional analysis, 

and they play an important role in a wide range of applications across scientific fields. 

Eigenvalues and eigenvectors are mathematical properties of square matrices 𝐴. An eigenvalue, 

symbolized as 𝜆, is a scalar that possesses the property of having a nonzero vector 𝜈 (known as 

the eigenvector) that satisfies the equation 𝐴𝜈 = 𝜆𝜈 [145]. This relationship can be 
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mathematically expressed as the matrix equation (𝐴 − 𝜆𝐼)𝜈 = 0, where 𝐼 represents the identity 

matrix. The process of determining the eigenvalues involves solving the characteristic equation 

|𝐴 − 𝜆𝐼| = 0, which provides the values of 𝜆 for which the matrix 𝐴 − 𝜆𝐼 becomes singular. 

Once the eigenvalues have been obtained, the corresponding eigenvectors can be found by 

solving the system of equations (𝐴 − 𝜆𝐼)𝜈 = 0 for each eigenvalue 𝜆. Eigenvectors, being 

nonzero vectors, define directions within the vector space that remain unchanged or are scaled by 

the linear transformation represented by the matrix 𝐴. On the other hand, eigenvalues represent 

the scaling factors associated with these eigenvectors.  

 

2.6.11 Jacobian matrix: 

The Jacobian matrix represents the derivatives of a vector-valued function in terms of its input 

variables [145]. It is a matrix of partial derivatives, with each entry representing the rate of 

change of one component of the output vector in relation to one input variable.  

Consider a vector-valued function 𝑓:ℝ𝑛 → ℝ𝑚, which maps an 𝑛-dimensional input vector 𝑥 to 

an 𝑚-dimensional output vector 𝑦 = 𝑓(𝑥). 

The Jacobian matrix of 𝑓, denoted by 𝐽(𝑓), is defined as follows: 

𝐽(𝑓) =

[
 
 
 
 
 
𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
⋯

𝜕𝑓1

𝜕𝑥𝑛
𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
⋯

𝜕𝑓2

𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1

𝜕𝑓𝑚

𝜕𝑥2
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛]
 
 
 
 
 

        (2.10) 

Here: 

𝑓𝑖 represents the 𝑖-th component function of 𝑓. 

𝜕𝑓𝑖

𝜕𝑥𝑗
 denotes the partial derivative of the 𝑖-th component function with respect to the 𝑗-th input 

variable 𝑥𝑗. 
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The Jacobian matrix  𝐽(𝑓) shows how the 𝑖-th output variable changes based on the 𝑗-th input 

variable. For example, in the Jacobian matrix, 
𝜕𝑓𝑖

𝜕𝑥𝑗
 represents the rate of change of the 𝑖-th output 

variable with respect to the 𝑗-th input variable in the 𝑖-th row and 𝑗-th column. 

The Jacobian matrix is a fundamental tool in calculus, optimization, and various fields of applied 

mathematics and physics. It plays a vital role in capturing significant information about the local 

behaviour of a function, specifically regarding the impact of slight variations in the input 

variables on the corresponding changes in the output variables.  

 

2.6.12 Routh Hurwitz criteria  

The Routh-Hurwitz criterion is a technique utilized in control theory to determine the stability of 

a linear time-invariant (LTI) system by examining the coefficients of its characteristic 

polynomial. This method offers a structured approach to stability analysis without the need to 

directly find the roots of the polynomial. The criterion involves constructing a tabular array 

called the Routh array, where the polynomial coefficients are organized in a specific manner. By 

observing the sign changes in the first column of the array, conclusions can be drawn regarding 

the system's stability. A stable system is indicated when there are no sign changes in the first 

column. Conversely, the number of sign changes corresponds to the number of unstable roots in 

the characteristic polynomial. The Routh-Hurwitz criterion plays a crucial role in the analysis 

and design of control systems [155]. 

Consider the constants 𝑎1, 𝑎2, … . . , 𝑎𝑛 to be real numbers.  

The equation  ℒ(𝜅) = 𝜅𝑛 + 𝑎1𝜅
𝑛−1+. . . . . . . +𝑎𝑛 = 0  possesses roots with negative real parts if 

and only if the determinant values of the subsequent matrices: 

𝑄1 = (𝑎1), 𝑄2 = (
𝑎1 1
𝑎3 𝑎2

), 𝑄3 = (
𝑎1 1 0
𝑎3 𝑎2 𝑎1
𝑎5 𝑎4 𝑎3

) ……….𝑄𝑛 = (

𝑎1 1 0…… 0
𝑎3 𝑎2 𝑎1…… 0
… … …… 0
… … …… 𝑎𝑛

) 

are all positives.  
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Here (𝑖, 𝑘)𝑡ℎ entry in the matrix  𝑄𝑗 = {
𝑎2𝑖−𝑘,   
1
0

0 < 2𝑖 − 𝑘 < 𝑛
2𝑖 − 𝑘 = 0

  2𝑖 − 𝑘 < 0 𝑜𝑟   2𝑖 − 𝑘 > 𝑛
    (2.11) 

In particular, for cubic polynomials, these criteria simplify to 𝑎1 > 0, 𝑎3 > 0, 𝑎1𝑎2 > 𝑎3. 

 

2.6.13 Phase portrait or phase plane diagram 

A phase portrait, also called a phase plane diagram, is a visual representation used in dynamical 

systems theory to analyse how a system of differential equations behaves. It shows the paths that 

the system's state variables follow over time. Each axis in the phase portrait represents one of the 

system's state variables, and the paths show how these variables change over time. These paths 

can provide important information about the system's behaviour, such as stability, periodicity, 

and the presence of attractors or repellers. By studying the shape and direction of the paths, we 

can understand the long-term behaviour of the system without explicitly solving the differential 

equations.  

Phase portraits are very helpful for understanding nonlinear systems when it is hard or 

impossible to find analytical solutions. They give us a qualitative understanding of how the 

system behaves and can predict its behaviour with different starting conditions. To make a phase 

portrait, we usually graph the state variables against each other. For instance, if we have a system 

with two state variables 𝑥 and 𝑦, we graph 𝑥 on the 𝑥-axis and 𝑦 on the 𝑦-axis. Every point on 

the phase plane shows a distinct combination of the state variables at a specific moment in time. 

 

2.6.14 Slope Field/ Direction Field: 

A slope field, also known as a direction field, for a first-order ordinary differential equation 

(ODE) 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) is a visual depiction of a function 𝑓(𝑥, 𝑦) on a grid of points in the 𝑥𝑦- 

plane. Every point (𝑥, 𝑦)on the grid has a little line segment or arrow with a slope equal to 

𝑓(𝑥, 𝑦). This generates a field of slope vectors indicating the direction a solution curve is going 

to take at each point. This representation allows us to better understand the behaviour of 

differential equation solutions and identify zones of increasing decreasing, or constant behaviour 
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dependent on vector direction. We can also identify nullclines, where 𝑓(𝑥, 𝑦) = 0, which 

provide further information on the behaviour of solutions. 

 

2.6.15 Trajectory: 

In differential equations and dynamical systems, a trajectory is the path that a system solution 

takes over time. It illustrates how the state variables of the system change over time, going from 

one initial condition to several successive ones. A trajectory is defined mathematically by 

integrating a set of differential equations with specified initial conditions. Every point on the 

trajectory represents a distinct system state at a given point in time. Depending on the kind of 

differential equations, trajectories may show a variety of behaviours, such as periodic oscillations 

around limit cycles, chaotic motion characterised by sensitivity to initial conditions, or 

convergence to stable equilibrium points. Trajectory analysis offers important information about 

the stability characteristics and long-term behaviour of dynamical systems. 

 

2.6.16 Limit Cycles: 

In a dynamical system, a periodic orbit is termed a limit cycle if all paths that begin near the orbit 

converge towards it as 𝑡 approaches infinity. Another way to define it is as an isolated periodic 

solution in which any neighbouring trajectory is dragged towards or away from the limit cycle. If 

the neighbouring trajectories are pulled to the limit cycle for every "𝑥" in a neighbourhood, the 

limit cycle is stable; if the neighbouring trajectories are repulsed from the limit cycle for every 

"𝑥" in a neighbourhood, the limit cycle is unstable. Henri Poincaré (1854-1912) pioneered the 

study of limit cycles [145]. 

 

2.6.17 Basic Theorems of Lyapunov on Stability: 

There are several variations of Lyapunov's theorems, but the two most basic ones are often 

referred to as the Direct Method and the Indirect Method [145].  
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I. Direct Method (First Theorem):  

Consider an autonomous system of ordinary differential equations represented as �̇� = 𝑓(𝑥), 

where �̇� denotes the state vector of the system and 𝑓(𝑥) represents the vector field that 

defines the dynamics of the system. 

The first theorem states that there exists a continuously differentiable function Υ(𝑥), termed 

the Lyapunov function, such that: 

• Υ(𝑥) is positive definite (i.e., Υ(𝑥) > 0 ∀𝑥 ≠ 0 and Υ(0) = 0). 

• The derivative of function Υ(𝑥) along the system's trajectories, represented as Υ̇(𝑥), 

is negative semidefinite (i.e., Υ̇(𝑥) ≤ 0 ∀ 𝑥). 

• If Υ̇(𝑥) < 0, then 𝑥 = 0 is asymptotically stable. 

 

II. Indirect Method (Second Theorem): 

Similarly, for the Indirect Method, there exists a continuously differentiable function 

Υ(𝑥), termed the Lyapunov function, such that: 

• Υ(𝑥) is positive definite. 

• The derivative of function Υ(𝑥) along the system's trajectories, represented as 

Υ̇(𝑥), negative semidefinite. 

• If Υ̇(𝑥) < 0, then 𝑥 = 0 is asymptotically stable. 

These theorems outline the conditions for the stability of the equilibrium point 𝑥 = 0 within 

the system. The direct method involves a direct evaluation of the derivative of the Lyapunov 

function, while the indirect method assesses the derivative indirectly through the system 

dynamics. Both approaches provide effective tools for analysing stability in nonlinear 

systems. 

 

2.6.18 Poincare–Lyapunov Theorem: 

The Poincare–Lyapunov theorem, also called the Poincare–Bendixson theorem, deals with the 

way solutions of two-dimensional autonomous differential equations behave. It gives conditions 
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for the trajectories of these systems to show specific types of behaviour, like the presence of 

limit cycles [145].  

The theorem states: 

If the trajectory of a planar autonomous system remains within a closed, bounded subset of the 

phase plane without converging to a stable equilibrium point or diverging to infinity over time, it 

must either: (1) As time approaches infinity, the system tends to converge towards a periodic 

orbit, also known as a limit cycle, or (2) Remain in a finite region without oscillating 

indefinitely. 

In other words, the theorem states that under specific conditions, trajectories of planar 

autonomous systems either display periodic behaviour by converging to a closed orbit (limit 

cycle) or remain restricted within a finite region of the phase plane without expanding to infinity. 

The theorem has important consequences in studying dynamical systems, especially in 

understanding the presence and behaviour of limit cycles. These cycles are repeated paths seen in 

various real-life systems. The theorem offers valuable understanding of the qualitative behaviour 

of solutions without the need to explicitly solve the differential equations. 

 

2.6.19 Basic Reproduction Number: 

The Basic Reproduction Number (𝑅0) in an eco-epidemic model measures the potential for an 

infectious disease to spread throughout a coupled ecological and epidemiological system. It 

offers insights into how diseases spread and population dynamics are simultaneously influenced 

by interactions between hosts, pathogens, and ecological factors [129]. 

In the context of an eco-epidemic model, 𝑅0 can be expressed as the product of several 

components: 

𝑅0 = Ψ × Γ × Φ,             (2.12) 

Where: 

Ψ: represents the transmission rate of the pathogen which signifies the likelihood of transmission 

occurring during each contact between an infected host and a susceptible host. 
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Γ: stand for the average amount of time an infected host is contagious, or the duration of 

infectiousness. 

Φ: represents the average number of susceptible hosts in contact with an infected host during its 

infectious phase. 

Mathematically, 𝑅0 represents how ecological and epidemiological processes interact to drive 

the spread of disease within a population. Changes in host population density, predator-prey 

interactions, or environmental conditions, for instance, can have an impact on the contact rate Φ 

and the transmission rate Γ, which in turn can have an impact on 𝑅0 and the dynamics of disease 

spread. 

The 𝑅0 estimation of an eco-epidemic model is critical for understanding how infectious diseases 

may affect host populations and ecosystems. By calculating 𝑅0, researchers can identify 

important factors driving disease transmission, assess the effectiveness of interventions, and 

develop conservation and disease management methods that account for the interconnectedness 

of ecological and epidemiological processes. 

 

2.6.20 Sensitivity analysis: 

Sensitivity analysis is the process of measuring how modifications to a mathematical model's 

parameters or input variables impact the model's solution or output [144]. In Eco-epidemiology, 

understanding the relative significance of the different factors involved in its transmission is 

necessary to identify the most sensitive parameters. We calculate the basic reproduction number 

𝑅0 sensitivity index for different model parameters. These indices show the relative importance 

of each parameter for the spread of disease. 

1. Local Sensitivity Analysis: Through local sensitivity analysis, we investigate how slight 

modifications to model parameters surrounding a particular scenario impact 𝑅0 in an eco-

epidemic model. To do this, one must compute the partial derivatives of 𝑅0 for each 

individual parameter at a given set of parameter values. Examples of these include 

disease transmission rates, host population growth rates, predator-prey interaction 

coefficients, and environmental carrying capacities. These partial derivatives measure 
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how sensitive 𝑅0 is to variations in each parameter, which aids in determining which 

ecological and epidemiological elements influence the disease's potential to spread within 

that particular ecological context. 

2. Global Sensitivity Analysis: Analysing variations in model parameters over their whole 

range or distribution allows us to determine how these variations affect the overall value 

of 𝑅0 and the dynamics of the eco-epidemic system. This is known as global sensitivity 

analysis. We can measure how important various parameters and interactions are in 

determining how diseases spread and how ecological dynamics work by methodically 

changing the values of the model's parameters and tracking changes in 𝑅0 and related 

model outcomes, such as disease prevalence, host and predator populations, or ecosystem 

stability. Strategies including variance-based approaches (e.g., Sobol' indices) or Monte 

Carlo simulation, we can break down the variability in 𝑅0 and pinpoint important 

variables that influence the unpredictability and uncertainty of disease transmission and 

ecosystem dynamics. 

A model of eco-epidemic sensitivity analysis of 𝑅0 helps inform management decisions and 

intervention tactics for infectious disease control in natural ecosystems by offering important 

insights into the intricate relationships between ecological and epidemiological processes. 

Researchers can determine important ecological and epidemiological factors influencing disease 

transmission, evaluate the possible effects of interventions on disease spread and ecosystem 

health, and create more efficient plans for disease control and conservation management by 

measuring the sensitivity of 𝑅0 to changes in parameters. 

 

2.6.21 Hopf bifurcation: 

The concept of Hopf bifurcation holds significant importance in the analysis of dynamic systems, 

especially in nonlinear systems theory. It characterizes the way a system behaves differently 

when a parameter is changed. In particular, Hopf bifurcation is the result of a change in a stable 

equilibrium point that produces stable limit cycles or periodic orbits [145]. This can be explained 

mathematically as follows: 

Consider a system described by a set of ordinary differential equations: 
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𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢)          (2.13) 

where 𝑢 is a parameter, 𝑥 stands for the system's state variables, and 𝑓(𝑥, 𝑢) is a vector field that 

describes the dynamics of the system. 

When the Jacobian matrix of the system evaluated at the equilibrium point has two purely 

imaginary eigenvalues, there exist a Hopf bifurcation at an equilibrium point 𝑥∗ = 0 of the 

system, where 𝑓(𝑥, 𝑢) = 0. 

Mathematically, let 𝐽 be the Jacobian matrix of the system evaluated at the equilibrium point 𝑥∗, 

defined as: 

   𝐽 =
𝜕𝑓

𝜕𝑥
|
𝑥=0

 

A Hopf bifurcation takes place if the eigenvalues of 𝐽 are of the form 𝜆 = ±𝑖𝜔, where 𝜔 is a 

non-zero real number and 𝑖 is the imaginary unit. 

Moreover, the stability of the periodic orbits resulting from the Hopf bifurcation depends on the 

sign of the real part of the eigenvalues. Periodic orbits exhibit stability when the real part is 

negative (subcritical Hopf bifurcation), whereas instability occurs when the real part is positive 

(supercritical Hopf bifurcation). 

Alternatively, it is not necessary to explicitly determine eigenvalues when using the equivalent 

condition for simple Hopf bifurcation, as suggested by Wei-Min Liu [119]. This criterion, also 

known as the Liu criterion, offers a useful method for locating Hopf bifurcations in dynamical 

systems without the need to compute eigenvalues. 

The following two conditions must be satisfied, according to the Liu criterion, for a simple Hopf 

bifurcation to occur at an equilibrium point 𝑥∗: 

1. At the equilibrium point 𝑥∗, the trace of the Jacobian matrix must be zero, i.e., 𝑡𝑟(𝐽) = 0. 

2. The determinant of the Jacobian matrix at 𝑥∗ must be positive, i.e., 𝑑𝑒𝑡(𝐽) > 0. 

The first condition, 𝑡𝑟(𝐽) = 0, ensures that the equilibrium point is neither a stable nor an 

unstable node or spiral. It indicates that the linearized dynamics at the equilibrium point 𝑥∗ are 

purely rotating, which is a key feature of Hopf bifurcations and in order for oscillatory behaviour 
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to occur, the second criterion, 𝑑𝑒𝑡(𝐽) > 0, must guarantee that the linearized dynamics rotate 

anticlockwise around the equilibrium point 𝑥∗. 

By fulfilling both conditions of the Liu criterion, it is possible to clearly detect the presence of a 

simple Hopf bifurcation in the dynamical system without explicitly identifying eigenvalues. This 

criterion provides a useful and computationally efficient way for identifying Hopf bifurcations in 

a variety of dynamical systems theory applications. Hopf bifurcation is also known as a 

Poincare–Andronov–Hopf bifurcation and is named after Henri Poincare, Aleksandr Andronov 

and Eberhard Hopf. 

 

2.6.22 Optimal Control 

The study of optimal control focuses on identifying the most effective strategies or control 

policies to enhance the behaviour or performance of a dynamic system over a period of time 

[154]. This area of research involves determining how to manipulate the inputs or controls of a 

system in order to achieve specific goals, while taking into account constraints and optimizing 

performance criteria. 

Optimal control problems are typically presented as optimization tasks, where the objective is to 

discover a control function that either minimizes or maximizes an objective function, while 

considering system dynamics and constraints. The objective function represents the performance 

criterion that needs to be optimized, such as maximizing profit, minimizing cost, or attaining a 

desired state of the system. The control function outlines how inputs or controls should vary over 

time to accomplish the desired objectives.  

From a mathematical perspective, consider a system described by a set of ordinary differential 

equations: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡)            (2.14) 

In the above system, 𝑥 represents the state variables, 𝑢 represents the control inputs and 𝑡 

represents time. The function 𝑓 explains the dynamics of the system. 
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The goal is to discover the control inputs 𝑢(𝑡) that minimize or maximize an objective function 

while considering constraints on the system dynamics, control inputs, and potentially the state 

variables. Mathematically, this can be expressed as an optimization problem: 

 Minimize 𝐽∗(𝑥, 𝑢, 𝑡)   

subject to: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡) 

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 

 𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥 

 𝑥(𝑡0) = 𝑥0 

 𝑥(𝑡𝑓) = 𝑥𝑓 

Here, the function 𝐽∗(𝑥, 𝑢, 𝑡) is the objective function, which is to be optimised, with 𝑢𝑚𝑖𝑛 and 

𝑢𝑚𝑎𝑥 representing the lower and upper bounds on the control inputs, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 

denoting the lower and upper bounds on the state variables. The initial and final conditions of the 

state variables are represented by 𝑥0 and 𝑥𝑓, while the initial and final times are denoted by 𝑡0 

and 𝑡𝑓.  

The objective of optimal control analysis is to identify the optimal control inputs 𝑢(𝑡) that either 

minimize or maximize the objective function 𝐽∗(𝑥, 𝑢, 𝑡), while adhering to the specified 

constraints. This process often requires the application of mathematical optimization methods 

like calculus of variations, Pontryagin's maximum principle, dynamic programming, or 

numerical optimization algorithms to identify the optimal solution. 

 

2.6.23 Pontryagin's Maximum Principle 

Pontryagin's Maximum Principle (PMP) is an important concept in optimum control theory, and 

it serves as an effective tool for analysing and solving optimal control problems. It specifies the 

required conditions that optimal control trajectories need to fulfil [146]. 
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Mathematically, consider a system of an optimal control problem described by a set of the 

following dynamics: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝑡)            (2.15) 

In the above system, 𝑥 represents the state variables, 𝑢 represents the control inputs and 𝑡 

represents time. The function 𝑓 explains the dynamics of the system. The objective is to 

minimise or maximise the cost function 𝐽∗(𝑥, 𝑢, 𝑡) based on system dynamics and constraints. 

The existence of an adjoint vector 𝑝(𝑡) that satisfies the following differential equation is stated 

by Pontryagin's Maximum Principle in the context of an optimal control problem without any 

state constraints: 

 
𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
 

Here, 𝐻(𝑥, 𝑝, 𝑢, 𝑡) represents the Hamiltonian function and is defined as follows: 

 𝐻(𝑥, 𝑝, 𝑢, 𝑡) = 𝑝𝑇 . 𝑓(𝑥, 𝑢, 𝑡) + 𝐽∗(𝑥, 𝑢, 𝑡). 

Additionally, the optimal control 𝑢∗(𝑡) that minimizes or maximizes the cost function must 

satisfy: 

 𝑢∗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛/𝑚𝑎𝑥 𝐻(𝑥, 𝑝, 𝑢, 𝑡) 

Furthermore, the terminal condition for the adjoint vector 𝑝(𝑡𝑓) is given by: 

 𝑝(𝑡𝑓) =
𝜕χ

𝜕𝑥(𝑡𝑓)
 

Where χ(𝑥(𝑡𝑓), 𝑡𝑓) represents a terminal cost function, if it exists. 

Pontryagin's Maximum Principle offers valuable insights into the framework of optimal control 

problems and presents a methodical way to discover optimal control strategies. It serves as the 

foundation for numerous optimization algorithms and methodologies applied in the examination 

and resolution of optimal control problems in diverse areas such as engineering, economics, and 

biology. 
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2.6.24 Conclusion / Summary 

This chapter begins with an overview of the study, followed by a discussion of various existing 

scholarly works related to the research topic. Some of these are the importance of mathematical 

modelling in agriculture, eco-epidemiology models, the role of pesticides in new plant diseases, 

and how eco-epidemiology models can be used for integrated pest management, along with the 

associated mathematical methodologies. The chapter also identifies research gaps, outlines 

research questions, and states the objectives of the study in comparison with the previously 

existing studies. Finally, the chapter concludes with a summary section. 

 

 

 

 

 

 

 

 

 

 

 

 


