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Chapter 3 

An Eco-epidemic model with disease in Plant 

populations and Pesticides as control measure 

  

This article has been published under the title “An Eco-epidemic Model with Disease 

in Plant Populations and Pesticides as Control Measure” in the IOSR Journal of 

Mathematics (IOSR-JM), Volume 18, Issue 3 Series II (May – June 2022), pages 

48-54. 
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3 
An Eco-epidemic model with disease in 

 Plant populations and Pesticides as 

control measure 

 

3.1 Introduction  

The first section of the paper aims to highlight an explanation of the significance of ecology and 

ecosystems in terms of understanding how nature functions. Acquiring this knowledge is critical 

for understanding ecological processes and the methods by which diseases spread throughout 

their respective plant populations. Also, throughout the course of this chapter, we discussed the 
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significance of mathematical eco-epidemiology in terms of acquiring an understanding of the 

functioning of ecosystems that are substantial in scale. By implementing mathematical models, 

researchers are able to acquire a more thorough understanding of the development of diseases as 

well as the management of their particular agricultural ecosystems. The use of mathematical 

models makes this possible. Applying this approach, which necessitates examining everything 

simultaneously, we can gain a comprehensive understanding of ecological phenomena. The 

information it provides enables us to devise strategies to prevent the spread of disease and ensure 

the proper maintenance of agricultural supplies [163].  

 

3.2 Eco-Epidemic Model Formulation and Assumptions  

3.2.1 Proposed mathematical model  

The mathematical model displayed changes in plant populations when they are infected with a 

disease and when pesticides are used to get rid of the disease. Differential equations determine 

the rates of change in the populations of susceptible (𝑥) and infective (𝑦) plant species over time. 

According to the model, plant populations are divided into classes of susceptible and infective 

plants, and both groups are subjected to diseases. The complex relationship between disease 

spread and pesticide effects on plant populations can be studied using this formulation. It is also 

easy to find ways to stop the spread of disease in agricultural ecosystems [3].  

 

3.2.2 Assumptions underlying the model formulation  

The formulation of the model is based on important aspects of understanding plant populations, 

disease spread, and pesticide activity. First, it is assumed that there are healthy and susceptible 

plants. This decline allows for the for the study of plant disease dissemination. The model also 

assumes a direct correlation between susceptible and infected populations. Let 𝑥(𝑡) and 𝑦(𝑡) be 

the susceptible population and infective population of the total plant populations, respectively. 

Let 𝑧(𝑡) be the amount of pesticide used to control infectious diseases in plant populations. The 

following assumptions are taken into account while formulating the mathematical eco-

epidemiological model: 
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i. In the presence of disease, the total plant population is composed of two classes: the 

susceptible population 𝑥(𝑡) and the infected population 𝑦(𝑡). Therefore, the total 

plant population at any point in time 𝑡 is given by 𝑥(𝑡) + 𝑦(𝑡) = 𝑁(𝑡). 

ii. In the absence of the disease, the plant populations grow at a growth rate of 𝑟. 

iii. The pesticide 𝑧(𝑡) is applied to both the susceptible and the infective populations. 

iv. A linear response for  𝛽𝑥𝑦 between susceptible and infective is considered. 

v. A linear response for dyz between the infectives and pesticides is considered.  

vi. All the model parameters are assumed to be positive. 

This study examines how pesticides influence susceptible and infective plants. These enable us 

to study how chemicals like pesticides combat diseases. Using these assumptions, the model 

illustrates the interconnection between plant populations, disease transmission, and pesticide 

usage. This will aid in understanding and preventing ecological diseases in agricultural 

ecosystems [9]. 

The model equations below are based on the assumptions taken above: 

𝑑𝑥 

𝑑𝑡
= r − 𝛽𝑥𝑦 −  𝜇𝑥 − 𝑐𝑥𝑧 

𝑑𝑦

𝑑𝑡
=  𝛽𝑥𝑦 −  dyz −  𝜇𝑦 

 
𝑑𝑧

𝑑𝑡
=  𝛼𝑧(1 − 𝑧)           (3.1)  

With initial conditions 𝑥(0) ≡  𝑥0 > 0, 𝑦(0) ≡  𝑦0 > 0 𝑎𝑛𝑑 𝑧(0) ≡  𝑧0 > 0.                  (3.2) 

Where 
𝑑𝑥 

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
 and 

𝑑𝑧

𝑑𝑡
 represent the rate of change of the quantities 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡) 

respectively.  

Here, 𝑟 is the constant growth rate of the plant populations, 𝛽 is the susceptible and infective 

contact rate, µ is the natural death rate of plant populations, 𝑐 is the susceptible and pesticides 

contact rate, 𝑑 is the infective and pesticides contact rate and 𝛼 is the amount of pesticides used. 
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3.2.3 Representation of plant populations, disease dynamics, and pesticide intervention 

Variables that illustrate the spread of diseases, plant populations, and pesticide use are combined 

in the eco-epidemic model. This helps us understand how different parts of agricultural 

ecosystems work together. Both 𝑥(𝑡) and 𝑦(𝑡), which are variables, show plant populations that 

are susceptible and infective. The total plant population is shown by 𝑁(𝑡) = 𝑥(𝑡) + 𝑦(𝑡). By 

adding the same number of pesticides to both susceptible and infective plants, the variable 

𝑧(𝑡) illustrates how crucial it is to control diseases. The idea behind this model is that there are 

straight lines that connect pesticides and susceptible plants (𝑐𝑥𝑧), infective plants and pesticides 

(𝑑𝑦𝑧), and susceptible plants and infective plants (𝛽𝑥𝑦). These assumptions allow for the 

formulation of a set of ordinary differential equations (ODEs) that show the rate of change of 

𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) over time. How diseases spread and how well pesticides work in agricultural 

ecosystems to keep plants from getting infected are shown by the number of links in this model. 

Plant development, the spread of disease, and the application of pesticides are all examples of 

ecological processes that can be simulated. Using this model, one can conduct a comprehensive 

investigation into the progression of disease. Through the use of a variety of variables, the model 

explains how everything works and how they link together using a variety of variables. The 

results demonstrate that there is a connection between the level of sensitivity, the number of 

diseases, and the effectiveness of pesticides.  

𝑧 

Figure 3.1: Transfer diagram of model (3.1) 

𝑐𝑥𝑧 

𝛼𝑧(1 − 𝑧) 𝑑𝑦𝑧 

 

𝛽𝑥𝑦 𝑟 

𝑥 𝑦 

𝜇𝑦 

S 

𝜇𝑥 
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3.2.4 Linear responses between populations and pesticides  

Through the use of this model, we are able to gain a better understanding of how epidemics 

occur and how to effectively manage diseases in plant ecosystems. It has been hypothesised that 

chemical substances have a direct influence on plant populations that are sensitive to and 

afflicted with diseases. The model displays more specific information. There are straight lines 

connecting these populations, which indicate which ones are susceptible to the disease and which 

ones are affected by it. There is a connection between the population that is diseased and the 

population that is sensitive to the use of pesticides. It is possible to evaluate the effectiveness of 

pesticides as control measures by studying how they influence disease-prone plant types as well 

as plant types that are sensitive to disease. The model provides a framework for assessing how 

different pesticide treatments affect disease dissemination and pesticide population dynamics 

within plant groups. This is accomplished by including these linear responses in the model. The 

development of the most effective strategies for preserving the health of ecological systems and 

reducing the incidence of diseases that are prevalent in agricultural regions is facilitated by the 

information here [202]. 

 

3.3 Positivity and Boundedness Analysis 

3.3.1 Theorem 3.1: Positivity of solutions in the system  

Theorem 3.1: All solutions of the system represented by (3.1) that start in 𝑅3 remain positive at 

𝑅+
3  for all 𝑡 ≥ 0. 

Proof: Considering (3.1) in a matrix form, 𝑋̇ = 𝐹(𝑋), 

where, 𝑋 = [𝑥, 𝑦, 𝑧]𝑇 and 𝑋‾(0) = [𝑥0, 𝑦0, 𝑧0]
𝑇 ∈ 𝑅+ 

3 and 

𝐹(𝑋) = [

r − 𝛽𝑥𝑦 − 𝜇𝑥 − 𝑐𝑥𝑧
𝛽𝑥𝑦 − 𝑑𝑦𝑧 − 𝜇𝑦
𝛼𝑧(1 − 𝑧)

]. 

It is observed that, for 𝑋‾(0) ∈ 𝑅+ 
3, whenever and 𝑋‾(0) = [0,0,0]𝑇 , 𝐹(𝑋) ≥ 0, So the solution 

of (3.1) will always lie in 𝑅+ 
3. 

Hence, the theorem with the help of this derivation above is proved. 



 

 
59 

The results of the eco-epidemic model are investigated through the use of a positive analysis. In 

accordance with Theorem 3.1, which deals with the positivity of solutions, it is imperative that 

all variables that characterise plant populations and disease processes remain positive as the 

model expands. An explanation is provided by the model, which places an emphasis on the 

positive aspects of responses. According to these concepts, the rate that is predicted by the 

ecological population model is biologically acceptable. This is because diseases and low 

population numbers are not expected to occur in nature. It is stated in Theorem 3.1 that the 

model is able to reliably predict how plant populations will evolve and how diseases will spread, 

provided that its findings are satisfactory [14]. This concept provides an explanation for the 

results of the model in agricultural contexts, which are characterised by low disease populations 

that would defy biological rules. Performing the eco-epidemiological positivity analysis, which 

is the final phase, is necessary in order to guarantee that the model provides us with informative 

information regarding the ways in which eco-epidemiological processes evolve over time. 

 

3.3.2 Theorem 3.2: Boundedness of solutions in the system 

Theorem 3.2: All solutions of the system (3.1) that start in 𝑅+
3  are uniformly bounded in the 

solution set Ω = {(𝑥, 𝑦, 𝑧): 0 ≤ 𝑥 ≤
𝑟

𝜇
, 0 ≤ 𝑦 ≤

𝑟

𝜇
, 0 ≤ 𝑧 ≤ 1,0 ≤ 𝑥 + 𝑦 ≤

𝑟

𝜇
}. 

Proof: Let 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) be the solution of the system (3.1). 

Let 𝑤 = 𝑥 + 𝑦. 

Then, 

𝑑𝑤

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
 

𝑑𝑤

𝑑𝑡
= r − 𝛽𝑥𝑦 − 𝜇𝑥 − 𝑐𝑥𝑧 + 𝛽𝑥𝑦 − dyz − 𝜇𝑦 

𝑑𝑤

𝑑𝑡
+ 𝜇𝑤 = 𝑟 − (𝑐𝑥 + 𝑑𝑦)𝑧 

Therefore, 
𝑑𝑤

𝑑𝑡
+ 𝜇𝑤 ≤ 𝑟 ⇒ 𝑤 ≤

𝑟

𝜇
+ C𝑒−𝜇𝑡 and 𝑤 ≤

𝑟

𝜇
+ (𝑤0 −

𝑟

𝜇
) 𝑒−𝜇𝑡 
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As 𝑡 tends to infinity, 𝑒−𝜇𝑡 tends to 0 implies W tends to 
𝑟

𝜇
 

Thus 𝑤(𝑡) ≤
𝑟

𝜇
 and hence 𝑤 is bounded. 

Now 
𝑑𝑧

𝑑𝑡
= 𝛼𝑧(1 − 𝑧) ⇒ 𝑧 =

1

1−𝐶𝑒−𝛼𝑡
  

As 𝑡 tends to infinity, 𝑧 tends to 1. 

Hence, 𝑧 is bounded for all 𝑡 and any initial value.  

Therefore, it is proved that 𝑥, 𝑦, 𝑧 are bounded. 

The boundedness analysis of Theorem 3.2 demonstrates that the eco-epidemic model's results 

remain within biologically significant time ranges. This result of boundedness gives the model 

more weight because it ensures that disease or population numbers don't continue to rise or 

exceed ecological limits [65]. The model adheres to ecological truth by utilising only a limited 

number of options. This makes it better for understanding how diseases spread and working out 

how to run agricultural ecosystems. The positivity and boundedness tests [15] clearly 

demonstrate that we can use the eco-epidemic model to study how plant populations change over 

time and how diseases spread. 

The boundedness of solutions in the eco-epidemic system can provide insights on the long-term 

behaviour of the epidemic inside the ecological model. It asserts that the system's responses 

remain constant. This halts ecological and epidemiological processes from either speeding up or 

decelerating. In the field of mathematical operations, this refers to the condition where all 

variables that describe the susceptible and affected plant populations, as well as the amounts of 

pesticides, stay within certain boundaries throughout the system's growth. This must be supplied 

to ensure the model is ecologically accurate. If pesticide quantities or levels were able to increase 

or decrease indefinitely, it would result in the breakdown of several systems. An effective 

approach to illustrating boundedness is by analysing the behaviour of the system and proving 

that solutions cannot tend towards infinity regardless of the initial conditions. Evaluate the 

stability and resilience of ecosystems damaged by disease and pesticides by assessing the 

boundedness of solutions. Furthermore, it has the advantage of protecting agricultural 

ecosystems and effectively managing plant diseases [16]. 
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Hence, based on Theorems 3.1 and 3.2, we can conclude that the model is well-defined and 

biologically valid. 

 

3.3.3 Proof and implications of positivity and boundedness for the model's biological 

validity  

The eco-epidemic model is subjected to a positivity and boundedness analysis in order to see 

how well it can demonstrate how things function in the real world and how well it can explain 

how things work in the biological world. The purpose of this investigation is to demonstrate that 

the answers provided by the model continue to be biologically true and accurate throughout time. 

The proof of positivity demonstrates that all of the state variables in the system, such as disease 

rates and plant populations, remain positive even as the model takes on more characteristics. The 

model will be able to avoid receiving negative numbers that are devoid of any biological 

meaning, provided that this is done. In addition to this, the boundedness analysis demonstrates 

that the outcomes of the model remain contained within particular regions.  

 

3.4 Equilibria  

3.4.1 Identification of equilibrium points in the eco-epidemic model  

Equilibria are stable states in the eco-epidemic model where all of the system's variables remain 

constant. By putting the derivatives of all state variables to zero and finding these points, a set of 

equations that describe the conditions under which the system reaches stability is created. When 

all populations have died out or the disease has spread so far that there are no longer any 

susceptible hosts, trivial answers are found. In non-trivial solutions, populations have a certain 

amount of disease and live in peace [20]. 

For finding the equilibrium points, we set the right-hand side of the system (3.1) equals to zero. 

The system (3.1) has been identified to be having the following equilibrium points: 

I. The trivial equilibrium point 𝐸0(0,0,0). 

II. The equilibrium point 𝐸1(0,0,1). 

III. The equilibrium point 𝐸2(𝑥1, 0,0) where 𝑥1 = 
𝑟

𝜇
 which always exist. 
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IV. The equilibrium point 𝐸3(𝑥2, 0, 𝑧2)where 𝑥2 = 
𝑟

𝜇+𝑐
 and 𝑧2 = 1. 

V. The equilibrium point 𝐸4(𝑥3, 𝑦3, 𝑧3) where 𝑥3 = 
𝜇

𝛽
, 𝑦3 = 

1

𝜇
(𝑟 −

𝜇2

𝛽
) and 𝑧3 = 0. 

VI. The endemic equilibrium point 𝐸5(𝑥4, 𝑦4, 𝑧4) where 𝑥4 = 
𝑑+𝜇

𝛽
, 𝑦4 =

𝑟

𝑑+µ
−
(𝜇+𝑐)

𝛽
  and 

𝑧4 = 1. 

 

3.4.2 Analysis of trivial and non-trivial equilibrium points  

When analysing eco-epidemiological models, it is crucial to comprehend the equilibrium points. 

In these stages, the system remains constant. Trivial and non-trivial equilibria can be identified. 

Trivial equilibria occur when all state variables are zero, leaving no plant populations or disease 

rates. Non-trivial equilibria, on the other hand, are stable conditions where populations and 

disease behaviour have achieved equilibrium. They coincide with biologically significant events, 

such as community-wide chronic disease transmission or the steady coexistence of healthy and 

diseased plants.  

 

3.4.3. Conditions for existence and stability of equilibrium points  

Theorem 3.3: The following equilibrium points  

(i) 𝐸0(0,0,0), 𝐸2(𝑥1, 0,0) and 𝐸4(𝑥3, 𝑦3, 𝑧3)  are saddle. 

(ii) 𝐸5(𝑥4, 𝑦4, 𝑧4) is locally asymptotically stable in R+
3  under the conditions: 

A. 𝛽𝑟 > (𝑐 + 𝜇)(𝑑 + 𝜇), 

B. 𝛽𝑟 + 𝛼(𝑑 + 𝜇) > 0, 

C. 𝛽𝑟 (1 +
𝛼

𝑑+𝜇
) > (𝑐 + 𝜇)(𝑑 + 𝜇), 

D. (
𝛽𝑟

𝑑+𝜇
+ 𝛼) [𝛽𝑟 (1 +

𝛼

𝑑+𝜇
) − (𝑐 + 𝜇)(𝑑 + 𝜇)] > 𝛼[𝛽𝑟 − (𝑐 + 𝜇)(𝑑 + 𝜇)]. 

It has "equilibrium points," which are conditions in which all variables in the eco-epidemic 

model remain constant across time. Conditions for the existence and stability of equilibrium 

points are critical to understanding how the model acts and forecasting its long-term behaviour. 

The system may have equilibrium points if there are existence conditions, typically represented 
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as a set of mathematical rules. The stability conditions, on the other hand, assess how the system 

reacts to changes in equilibrium and determine whether a point of equilibrium is stable, unstable, 

or partially stable. When things are in a state of safe balance, they attempt to revert to their 

former state following minor alterations. However, it behaves differently when it is at an 

undetermined equilibrium point. Semi-stable equilibria are stable over a large range of state 

space dimensions, but not across a wide range of dimensions [31]. It helps us figure out how to 

get rid of pests in agricultural ecosystems by revealing which plant populations are resistant to 

disease and which are susceptible to poisons. 

 

3.4.4. Biological significance of different equilibria  

The equilibria of the eco-epidemic model are positions that are safe from a biological 

perspective. A situation is said to be in trivial equilibrium when one or more populations do not 

undergo any changes. It is possible that there is no disease and no one is making any efforts to 

change the situation. Simple ecological processes, such as population dynamics and disease 

rates, are subject to alteration when the ecological system is in a null state. These reactions 

highlight the result of striking a balance between disease control, population growth, and 

management considerations. The outcome could be a long-term coexistence or a period of 

transition [34]. If legislators and ecologists are aware of the biological effects that each stability 

has, they will be able to devise individualized solutions that will enhance ecosystem health and 

vitality while also reducing the chance of disease outbreaks and population declines [36]. 

 

3.5. Stability Analysis  

3.5.1 Application of Jacobian matrix for stability analysis  

A Jacobian matrix is required in order to do an analysis of the stability properties that correspond 

to the model. The Jacobian matrix 𝐽 of the system (3.1) can be expressed in the following 

manner: 

𝐽 = [
−(𝛽𝑦 + 𝜇 + 𝑐𝑧) −𝛽𝑥 −𝑐𝑥

𝛽𝑦 𝛽𝑥 − 𝑑𝑧 − 𝜇 −𝑑𝑦
0 0 𝛼 − 2𝛼𝑧

]        (3.3) 
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A discussion of the stability of six points of equilibrium for the system (3.1) is presented in the 

following theorems. 

 

Theorem 3.4: The trivial equilibrium point 𝐸0(0,0,0) is unstable. 

Proof: The Jacobian matrix of 𝐸0 is given by 𝐽𝐸0 = [
−𝜇 0 0
0 −𝜇 0
0 0 𝛼

]. 

Eigenvalues of the above matrix are 𝜆1 = −𝜇, 𝜆2 = −𝜇, 𝜆3 = 𝛼. 

Eigenvalues 𝜆1, 𝜆2 are always negative and 𝜆3 is positive, 

Hence, 𝐸0 can be identified to be unstable. 

 

Theorem 3.5: The equilibrium point 𝐸1(0,0,1) is locally asymptotically stable. 

Proof: The Jacobian matrix of 𝐸1 is given by 𝐽𝐸1 = [
−𝜇 − 𝑐 0 0
0 −𝑑 − 𝜇 0
0 0 −𝛼

]. 

Eigenvalues of the above matrix are 𝜆1 = −(𝑐 + 𝜇), 𝜆2 = −(𝑑 + 𝜇), 𝜆3 = −𝛼. 

Clearly, the eigenvalues 𝜆1 < 0, 𝜆2 < 0, 𝜆3 < 0 and therefore 𝜆1, 𝜆2, 𝜆3 have negative real parts. 

Hence, the equilibrium 𝐸1 is locally asymptotically stable. 

 

Theorem 3.6: The equilibrium point 𝐸2(𝑥1, 0,0) is unstable. 

Proof: The Jacobian matrix of 𝐸2 is given by 𝐽𝐸2 =

[
 
 
 −𝜇 −

𝛽𝑟

𝜇
−
𝑐𝑟

𝜇

0
𝛽𝑟

𝜇
− 𝜇 0

0 0 𝛼 ]
 
 
 

. 

Eigenvalues of the above matrix are 𝜆1 = −𝜇, 𝜆2 =
𝛽𝑟

𝜇
− 𝜇, 𝜆3 = 𝛼. 

Clearly, eigenvalue 𝜆3 is positive. 

Hence 𝐸2 is unstable. 
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Theorem 3.7: The equilibrium point 𝐸3(𝑥2, 0,1) is locally asymptotically stable if 𝐴0 < 1, 

where 𝐴0 =
𝛽𝑟

(𝑐+𝜇)(𝑑+𝜇)
. 

Proof: The Jacobian matrix of 𝐸3 is given by 𝐽𝐸3 =

[
 
 
 −𝜇 − 𝑐 −

𝛽𝑟

𝑐+𝜇
−

𝑐𝑟

𝑐+𝜇

0
𝛽𝑟

𝑐+𝜇
− 𝑑 − 𝜇 0

0 0 −𝛼 ]
 
 
 

. 

Eigenvalues of the above matrix are 𝜆1 = −(𝑐 + 𝜇), 𝜆2 =
𝛽𝑟

𝜇+𝑐
− 𝑑 − 𝜇, 𝜆3 = −𝛼. 

Here, the eigenvalues 𝜆1 < 0, 𝜆3 < 0 ⇒ 𝜆1, 𝜆3 have negative real parts. 

Now for stability, we must have: 𝜆2 < 0 i.e. 
𝛽𝑟

𝜇+𝑐
− 𝑑 − 𝜇 < 0 ⇒

𝛽𝑟

(𝑐+𝜇)(𝑑+𝜇)
< 1 ⇒ 𝐴0 < 1. 

Hence, the equilibrium 𝐸3 is locally asymptotically stable if 𝐴0 < 1, where 𝐴0 =
𝛽𝑟

(𝑐+𝜇)(𝑑+𝜇)
. 

 

Theorem 3.8: The equilibrium point 𝐸4(𝑥3, 𝑦3, 𝑧3) is unstable. 

Proof: The Jacobian matrix of 𝐸4 is given by 𝐽𝐸4 =

[
 
 
 −

𝛽𝑟

𝜇
−𝜇 −

𝑐𝜇

𝛽

𝛽𝑟

𝜇
− 𝜇 0

−𝑑

𝜇
(𝑟 −

𝜇2

𝛽
)

0 0 𝛼 ]
 
 
 

. 

Eigenvalues of the above matrix are 𝜆1 =

−𝛽𝑟

𝜇
−√(

𝛽𝑟

𝜇
)
2
−4𝜇(

𝛽𝑟

𝜇
−𝜇)

2
, 𝜆2 =

−𝛽𝑟

𝜇
+√(

𝛽𝑟

𝜇
)
2
−4𝜇(

𝛽𝑟

𝜇
−𝜇)

2
 and 

𝜆3 = 𝛼. Clearly, the eigenvalue 𝜆3 is positive.  

Hence 𝐸4 is unstable. 

 

Theorem 3.9: The endemic equilibrium point 𝐸5(𝑥4, 𝑦4, 𝑧4) is locally asymptotically stable if 

and only if the following condition holds: 

I.  𝛽𝑟 > (𝑐 + 𝜇)(𝑑 + 𝜇), 

II.  𝛽𝑟 + 𝛼(𝑑 + 𝜇) > 0, 

III.  𝛽𝑟 (1 +
𝛼

𝑑+𝜇
) > (𝑐 + 𝜇)(𝑑 + 𝜇), 
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IV.  (
𝛽𝑟

𝑑+𝜇
+ 𝛼) [𝛽𝑟 (1 +

𝛼

𝑑+𝜇
) − (𝑐 + 𝜇)(𝑑 + 𝜇)] > 𝛼[𝛽𝑟 − (𝑐 + 𝜇)(𝑑 + 𝜇)]. 

Proof: We will use the Routh-Hurwitz Criterion to analysed the stability of the equilibrium point 

𝐸5. 

The Jacobian matrix of 𝐸5 is given by 𝐽𝐸5 =

[
 
 
 −

𝛽𝑟

𝑑+𝜇
−(𝑑 + 𝜇) −

𝑐(𝑑+𝜇)

𝛽

𝛽𝑟

𝑑+𝜇
− (𝑐 + 𝜇) 0 −𝑑 [

𝑟

𝑑+𝜇
−
(𝑐+𝜇)

𝛽
]

0 0 −𝛼 ]
 
 
 

. 

Here, 

𝑤1 = −det (𝐽𝐸5) = 𝛼[𝛽𝑟 − (𝑐 + 𝜇)(𝑑 + 𝜇)], 

𝑤2 = −tr (𝐽𝐸5) =
𝛽𝑟

𝑑+𝜇
+ 𝛼, 

𝑤3 = det [
−

𝛽𝑟

𝑑+𝜇
−(𝑑 + 𝜇)

𝛽𝑟

𝑑+𝜇
− (𝑐 + 𝜇) 0

] + det [
−

𝛽𝑟

𝑑+𝜇
−
𝑐(𝑑+𝜇)

𝛽

0 −𝛼
] + det [

0 −𝑑 [
𝑟

𝑑+𝜇
−
(𝑐+𝜇)

𝛽
]

0 −𝛼
], 

       = 𝛽𝑟 (1 +
𝛼

𝑑+𝜇
) − (𝑐 + 𝜇)(𝑑 + 𝜇). 

According to the Routh-Hurwitz Criterion, the real parts of all eigenvalues of 𝐽𝐸5  are negative if 

and only if 𝑤𝑖 > 0 for 𝑖 = 1,2,3 (3.4) and 𝑤2𝑤3 > 𝑤1. 

Now, from equation (3.4), we have; 

I.  𝑤1 > 0 ⇒ 𝛼[𝛽𝑟 − (𝑐 + 𝜇)(𝑑 + 𝜇)] > 0 ⇒ 𝛽𝑟 > (𝑐 + 𝜇)(𝑑 + 𝜇), 

II.  𝑤2 > 0 ⇒
𝛽𝑟

𝑑+𝜇
+ 𝛼 > 0, 

III.  𝑤3 > 0 ⇒ 𝛽𝑟 (1 +
𝛼

𝑑+𝜇
) − (𝑐 + 𝜇)(𝑑 + 𝜇) > 0 ⇒ 𝛽𝑟 (1 +

𝛼

𝑑+𝜇
) > (𝑐 + 𝜇)(𝑑 + 𝜇), 

IV.  𝑤2𝑤3 > 𝑤1 ⇒ (
𝛽𝑟

𝑑+𝜇
+ 𝛼) [𝛽𝑟 (1 +

𝛼

𝑑+𝜇
) − (𝑐 + 𝜇)(𝑑 + 𝜇)] > 𝛼[𝛽𝑟 − (𝑐 + 𝜇)(𝑑 + 𝜇)]. 

 

Hence, the equilibrium point 𝐸5 is considered to be locally asymptotically stable if and only if 

the criterion described above is satisfied. 
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The Jacobian matrix is utilised in the stability study of the eco-epidemic model in order to 

investigate the functioning of the system in close proximity to its equilibrium points. Through 

the process of linearizing the model equations around each equilibrium point, the Jacobian 

matrix is able to provide information regarding the stability of the system. One can determine if 

the equilibrium points of a term are stable or unstable by examining its eigenvalues. In the event 

that the points remain consistent over time, even negligible shifts will become less noticeable. It 

is necessary for the points to be less steady in order to observe changes more clearly, the points 

must be less stable. As a result of this, their behaviour is going to shift [37]. 

The Routh-Hurwitz Criterion is a useful tool for stability analysis. It does this by analysing the 

coefficient values in characteristic equations that are generated from the term. When determining 

whether or not a system is stable, several researchers use approaches other than eigenvalues. It is 

also possible to utilise this measurement. 

 

3.5.2 Theorem 3.4-3.9: Stability analysis of equilibrium points using Eigenvalue theorem 

and Routh-Hurwitz Criterion  

According to Theorems 3.4 to 3.9, it is clear that the analysis of stability at points of equilibrium 

in the eco-epidemic model is either stable or unstable. Both the Routh-Hurwitz criterion and the 

Eigenvalue theory are utilised in these applications. By providing us with insights into the 

system's behaviour over the long run, these theories, which are key instruments for analysing the 

stability of equilibrium points, also provide us with information. With the use of the Eigenvalue 

theorem, one may determine if the dynamics of the system lead to stable, unstable, or barely 

stable behaviour by examining the eigenvalues of the Jacobian matrix at each equilibrium point. 

Applying the Routh-Hurwitz criterion to analyse system stability is a truly fascinating 

experience. This mathematical approach provides a clear and methodical way to determine 

whether a system will remain stable, which is both intellectually rewarding and practically 

valuable. It is exciting to see how theoretical principles translate into real-world applications, 

enhancing our understanding and control of dynamic systems. Specifically, it examines the 

formulas for the characteristic polynomial of the system in order to determine the values that 

they contain. Researchers are able to assess whether equilibrium points are stable, in which case 

minor changes will have less of an impact over time, or unstable, in which case modifications 
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will have a larger impact and could lead to significant changes in population and disease 

patterns. It is only the plant stability test that can give solid evidence of how well steps taken to 

stop diseases are working and how strong plant populations would be in agricultural ecosystems 

[51]. 

 

3.5.3 Interpretation of stability results of disease control and population dynamics  

The stability analysis of the eco-epidemic model reveals the effectiveness of disease prevention 

measures and the evolution of plant populations over time. Researchers may find the 

mathematical term for the stability of equilibrium points in the model using the Jacobian matrix, 

the Eigenvalue theorem, and the Routh-Hurwitz criterion. Systems that aren't stable usually 

balance out once stable answers are found [52]. This shows that keeping diseases away may help 

keep plant populations stable. It is important for researchers to exercise caution since unstable 

solutions demonstrate that even minor adjustments can have significant consequences for 

populations. 

To gain an understanding of the long-term stability of disease management, it is necessary to 

consider the ways in which various control strategies may alter the system's functioning over 

time. Based on the findings of fixed equilibria, it is possible that certain methods of plant 

management maintain healthy plant populations and reduce the number of infected plants. In 

order to prevent disease outbreaks or population losses, it may be necessary to take tougher or 

more targeted efforts to stabilise a fragile equilibrium. When taken as a whole, eco-analysis 

provides an explanation for the change in eco-epidemiological systems [53]. This makes it easier 

for people to think of methods to maintain the long-term health of agricultural ecosystems. 

 

3.6 Numerical Analysis  

For the purpose of gaining an understanding of the behaviour of the disease transmission 

dynamics model and the influence of control measures on the prevalence of disease, numerical 

analysis was utilised. Using MATLAB 2015a, this numerical analysis enabled the execution of a 

variety of simulations based on a wide range of scenarios and parameter values. This shed light 

on how varying levels of pesticide application and other interventions influence the dynamics of 
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the SIR model in diverse settings. The accuracy of the predictions was ensured by comparing the 

results of the model with real-world data obtained from agricultural field observations. 

Furthermore, this data typically included recommendations for specific actions that farmers 

should take to manage diseases on their farms. 

 

3.6.1 Parameters and initial conditions for numerical simulations  

Set factors and starting conditions for the eco-epidemic model so that the computer analysis can 

give useful results. Factors like transfer rates, recovery rates, and pesticide efficiency are 

examples of parameters that influence ecological and epidemiological trends. These factors are 

often based on real-life facts or ideas. The basic factors display the state of the machine at the 

start. Some of these factors include the number of people who lived there at the beginning, the 

disease rate, and the number of chemicals used. To make sure they have the right starting 

conditions, models always begin in places that are like real ecological situations. Changes in 

parameters can also be tested using parameter sensitivity analysis to see how the model's results 

change. As a result, the analysis becomes more accurate [57]. Tools that work with numbers, like 

MATLAB, are used to run the eco-epidemic model over time, given the factors and starting 

conditions. Visualisation tools make it easier to understand simulation results by providing more 

information about how diseases spread, how populations change, and how well control measures 

work. Ecological analysis aids decision-making for disease control methods by carefully 

examining a range of parameter values and starting conditions. The parameters and initial 

conditions for numerical simulations are given as follows: 

𝑆(0) = 100 (100% of plant population), 𝐼(0) = 0.1(10% of plant population infected), 𝑃(0) =

10( proportion of pesticide used). r = 0.1, k = 0.001, 𝛽1 = 0.001, γ = 0.001, 𝜇 = 0.01, 𝛽2 =

0.02, 𝛼 = 0.02, 𝜏 =0.01.  
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3.6.2 Numerical simulation of the eco-epidemic model using MATLAB 

For the purpose of analysing eco-epidemic models on a computer, MATLAB simulations are 

utilised. This allows one to observe how the system develops in response to either positive or 

negative outcomes. For the purpose of obtaining precise results over time, MATLAB makes use 

of the model's components and initial conditions. Researchers are able to gain a better 

understanding of the mechanisms that cause diseases to spread and the effectiveness of the 

preventative measures that are taken by conducting these simulations. They were able to 

comprehend by demonstrating to them what the model predicted would take place. Due to the 

fact that MATLAB is capable of generating equations, researchers are able to investigate the 

ways in which a variety of elements, including as the weather or the usage of pesticides, 

influence the spread of disease and the behaviour of populations. MATLAB's drawing tools 

make it simple to discuss term models and determine whether or not the assertions made by the 

models about the real world are consistent with the real situation of reality [68]. The model will 

be compared to data from the real world in order to determine how accurately it captures the 

complex nature of ecological systems. This will allow them to determine how accurate the model 

is over the long term. As a results, numerical analysis is a useful instrument for comprehending 

eco-epidemiological processes, determining farming decisions, and exercising control over 

agricultural administration systems. The model (3.1) is simulated for time 𝑡 = 700 using the 

parameters and initial values mentioned above. Figure 3.2-Figure 3.4 show the results of the 

simulation with and without any control measure, as well as with pesticide as a control measure 

for the proposed eco-epidemic model. 
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   Figure 3.2: 𝒙-𝒚 model without control measure 

 

   Figure 3.3: 𝒙-𝒚 model with pesticide as control measure 
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Figure 3.4: Amount of pesticides used             

 

3.6.3 Visualisation and interpretation of simulation results  

Through computer interpretation of the development of plant ecosystems and accounts of plant 

ecosystems, the emergence of disease populations and the spread of diseases in agricultural 

environments may be better understood. One can make reasonable assumptions about how the 

model will behave in various situations by entering a number and the starting conditions into a 

computer tool like MATLAB [71]. When the simulation results are shown as graphs, charts, or 

heatmaps, the data is easier to understand. There is a chance that this information could help us 

comprehend the ecological mechanisms and factors that lead to the spread of diseases. 

Figuring out what the simulation results mean involves looking for patterns, links, and trends in 

the data. Researchers look at the effects of shifting factors, such as pesticide application rate or 

disease incidence starting point, on population changes and disease incidence over time. There 

are several methods to evaluate the eco-epidemic rate model. One way to do this is to observe 

how it works in real life. One advantage of the simulation results is that they help find effective 

ways to treat and prevent diseases in agricultural settings [73]. Computer-based data analysis 



 

 
73 

aids scientists in understanding the interactions between disease, viruses, and plants. This will 

help them stop the spread of disease and keep long-term control over ecological processes. 

 

3.7 Discussion  

3.7.1 Synthesis of analytical and numerical findings  

To understand the behaviour and effects of the eco-epidemic model, the discussion blends 

analytical and numerical findings. Analytical models can help to fully comprehend the model 

and its application. Some people think they can guess how the system will behave and stay stable 

in the long term by doing a stability analysis and finding equilibrium. It is possible to see that 

these results are true because computer simulations show how the model changes when events 

and factors change [75]. 

In this discussion, the advantages and disadvantages of the model are illustrated for the purpose 

of understanding ecological changes and the spread of disease within plant populations by 

combining all of these different techniques. By illustrating the areas in which the model is a good 

fit with known phenomena and the areas in which it is not, the graph demonstrates how the 

model could be improved. In addition, the findings of the model and the consequences such 

discoveries have for agricultural practices and the management of ecosystems are investigated in 

great detail. This study investigates the potential of the model to assist in the management of 

diseases, the application of pesticides, and the enhancement of plant populations within 

agricultural environments. 

 

3.7.2 Implications of model assumptions and limitations  

Details of the model's assumptions and restrictions demonstrate the eco-epidemic framework's 

importance. Everyone believes that mathematical models aid comprehension. They're flawed and 

based on assumptions that may understate how complex ecosystems really are. Thanks to these 

restrictions, ecologists can use model results and understand the hazards of making predictions. 

The seminar also discusses ways to make models more accurate and dependable by testing 

assumptions using real-world data and field reports [78]. 
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It can be concluded that the interpretation of pesticides and the design of control strategies could 

be influenced by model assumptions. Some of these assumptions include the predictability of 

interactions between populations and pesticides. This is due to the fact that statistical models 

serve as the foundation for model assumptions. Upon completion of a sensitivity analysis, one 

can ascertain the consistency of the model's outcomes with changes to important assumptions 

and inputs. This is possible because sensitivity analysis is a type of statistical study. Creating 

more realistic eco-epidemic models is a complex undertaking because it necessitates the 

inclusion of stochastic elements and spatial variations. As a result, developing such models is a 

very difficult endeavour. 

Despite these issues, the discussion emphasises the eco-agricultural decision-making model for 

safe growth and decision-making [81]. The model helps understand disease spread across 

ecological systems. It gives us ways to prevent diseases without harming the environment. Better 

eco-epidemiological models preserve ecosystems. It needs to be remembered that to make 

modifications, the study requires that model [1]. 

 

3.8 Conclusion 

This study has provided significant insights into the functioning of eco-epidemiological systems 

and the management of diseases in agricultural ecosystems. The mathematical model's analysis 

and development provided crucial findings on plant population treatments, disease patterns, and 

pesticide application. The study and description of equilibrium points have contributed to the 

development of efficient disease control measures by making the system's stability and 

behaviour evident. This model is ecologically important because of its boundedness rate and 

positivity, which are similar to the results seen in the real world. The coupling of mathematical 

models with ecological and epidemiological data in this study demonstrated the significance of 

employing a range of approaches to complex environmental challenges. 

 

 

 


