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Chapter 4 

Stability and control of a plant epidemic model 

with pesticide intervention 

  

This article has been published under the title “Stability and control of a plant 

epidemic model with pesticide intervention” in the International Journal of Advanced 

and Applied Sciences (IJAAS), Vol. 11, No.2 (2024), page no. 82-93. 
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4 
 Stability and control of a plant  epidemic 

model with pesticide intervention 

 

4.1 Introduction 

Plant epidemic models may help control diseases that spread throughout plant populations. These 

models have the potential to enhance agricultural productivity and ecological equilibrium, 

leading to a reduction in pesticide intervention rates, a reduction in agricultural expenses, and a 

decrease in disease development. Only two factors affect the effectiveness of these interventions: 

disease transmission dynamics and ecological interactions between plant populations. Our 

research areas include pesticide control and plant epidemics. Pesticide applications play a critical 

role in the ongoing battle against the spread of infectious diseases within plant populations and 
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the preservation of ecological systems. The application of pesticides plays a crucial role. 

Understanding the dynamics of plant epidemic models under the influence of pesticide 

intervention holds significant importance for the effective control of diseases and the 

management of ecosystems. This paper explores a novel area by examining the stability and 

control of a plant epidemic model in the presence of pesticide applications. The results of this 

study provide valuable and innovative insights that can assist policymakers and ecologists in 

making well-informed decisions pertaining to disease management and the preservation of 

ecological systems. Prey-predator models, in which an epidemic affect either the prey or the 

predators, serve as the primary basis for the research on plant epidemic models. In these models, 

the populations of prey or predators are divided into compartments, such as susceptible and 

infective. Additionally, these models allow for the implementation of a wide range of control 

variables, such as medication and removal through killing (e.g., bird flu, swine flu, etc.). 

However, the focus of this study is on the ecoepidemic model related to plant populations, 

specifically the epidemics that occur in plantations such as tea and rice. It is important to note 

that no previous research has considered the plant epidemic model under the application of 

pesticides, making this work a novel contribution to the field. By examining a model of a plant 

epidemic with pesticide intervention, this study offers a comprehensive analysis. To discover a 

long-term solution to agricultural diseases, the model measures disease stability and control. This 

study investigates ecological dynamics and agricultural life as part of a long-term plan to combat 

disease [83]. 

 

4.2 Assumptions of Plant Epidemic Model  

The disease epidemic model that we are examining is constructed on a few essential assumptions 

that assist us in understanding the complex mechanisms that govern the propagation of diseases 

and the expansion of disease populations within plant ecosystems. A distinction is made between 

plants that are susceptible and plants that are infected. According to the conceptual terms, 

biological processes are responsible for slowing down the growth rate of plant populations that 

are both susceptible and infected. When planning the development of logistics, it is critical to 

consider population growth as well as resource availability. 
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According to this model, diseases are transmitted naturally between plants that are susceptible 

and plants that are unwell. This transmission mechanism is frequently represented by the contact 

rates between susceptible and the infection rates per contact. For the purpose of demonstrating 

this connection, the saturation effect is frequently used. The number of susceptible hosts has a 

negative impact on the rate at which the disease spreads. The Holling reaction rate of type II is 

utilised [87]. 

The plant epidemic rate plant disease model, which is supported by these assumptions, is utilised 

for the purpose of studying the dynamics of epidemic transmission and the usefulness of the 

model. It is important to exercise caution when utilising the results because the modifications 

may lead to a reduction in the model's ability to understand complex plant ecosystems [91]. For 

the purpose of avoiding these problems, one could continue to assume that plant populations mix 

equally and that the success of ecosystems is determined by slow or immediate ecosystem 

dynamics, while ignoring the geographical and temporal variation that exists within ecosystems 

[97]. 

The necessary assumptions for the proposed plant epidemic model are given as follows: 

i. The group of plants within a population that are susceptible to the disease but not yet 

infected is referred to as the susceptible class. This portion of the population is 

represented as 𝑆(𝑡). 

ii. The group of plants that have the capacity to spread the disease to other plants within the 

population is referred to as the infected class. This proportion of the population is 

denoted as 𝐼(𝑡). 

iii. In the absence of disease, the plant population experiences logistic growth with carrying 

capacity 
1

𝑏1
 and the natural growth rate 𝑎1. As a result, the plant populations will increase 

at the rate 𝑎1𝑆(1 − 𝑏1𝑆). 

iv. When a disease exists, the plant populations get categorized into two disjoint classes 

which changes with time 𝑡: the susceptible plants, labelled as 𝑆(𝑡), and the infected 

plants, labelled as 𝐼(𝑡). Consequently, at any time 𝑡, the overall population can be 

expressed as 𝑆(𝑡) + 𝐼(𝑡) = 𝑁(𝑡). 
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v. The infection of susceptible plants occurs upon contact with infected plants, and this 

interaction is assumed to follow mass action kinetics characterized by the convolution 

rate 𝛽1. 

vi. To achieve disease control, a quantity of pesticides which is denoted by 𝑃(𝑡) is 

administered within the plant populations. This approach involves the application of 

pesticides to both the susceptible and infected plants in the model. 

vii. The interaction between susceptible and infected plants is modelled using a Holling type 

II functional response, given by 
𝛽1𝑆𝐼

1+𝛾1𝐼
. Similarly, the impact of pesticides on reducing the 

infection rate in plants is represented by another Holling Type II functional response, 

𝛽2𝐼𝑃

1+𝛾2𝑃
. 

viii. All the model parameters are assumed to be non-negative. 

 

4.3 Mathematical Model  

4.3.1 Mathematical model, including the differential equations  

At any time 𝑡, the plant population is divided into two sub-populations namely the susceptible 

and the infected populations which are denoted by 𝑆 = 𝑆(𝑡) and 𝐼 = 𝐼(𝑡) respectively and 

𝑆(𝑡) + 𝐼(𝑡) = 𝑁(𝑡) denotes the Total Biomass of the plant populations. Let 𝑃 = 𝑃(𝑡) be the 

Pesticides used in the population considered. The transfer diagram of the model is depicted in 

Figure 4.1, while Table 1 provides the notations and descriptions for the model parameters. 

 

 

 

 

 

Figure 4.1: Transfer diagram of model (4.1) 
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Table 4.1: Notations and Description of model parameters 

Parameters Definitions of parameters 

𝑎1 The natural growth of susceptible plant population. 

1

𝑏1
 The carrying capacity of plants. 

𝛽1 The contact rate of susceptible and infected plants. 

𝛾1 The catching rate of disease by susceptible plants. 

𝑐 The proportion of susceptible plants damages by pesticides. 

𝜇 The natural death rate of plant populations. 

𝛽2 The contact rate of pesticides and infected plants. 

𝛾2 The handling rate of infected plants by the use of pesticide. 

𝛼 The rate at which pesticides is being used. 

 

From Figure 4.1, it can be seen that the mathematical model will be governed based on the 

following system of equations: 

   
𝑑𝑆

𝑑𝑡
= 𝑎1𝑆(1 − 𝑏1𝑆) −

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 − 𝜇𝑆, 

𝑑𝐼

𝑑𝑡
=

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝜇𝐼 −

𝛽2𝐼𝑃

1+𝛾2𝑃
,          (4.1) 

𝑑𝑃

𝑑𝑡
= −𝛼𝑃. 
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From the biological point of view, we are only interested in the dynamics of system (4.1) in the 

closed octant 𝑅+
3 . Thus, we consider the initial conditions 𝑆(0) ≡ 𝑆0 > 0, 𝐼(0) ≡ 𝐼0 > 0 and 

𝑃(0) ≡ 𝑃0 > 0. 

Here, 
𝑑𝑆

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
 and 

𝑑𝑃

𝑑𝑡
 represents the rates of change of the quantities 𝑆(𝑡), 𝐼(𝑡) and 𝑃(𝑡) 

respectively. 

Using differential equations to explain the connections between susceptible (𝑆) and infected (𝐼) 

plant groups and the application of pesticides (𝑃), the mathematical model looks at the dynamics 

of disease spread within plant populations. This model integrates the natural growth rate of the 

susceptible population, denoted by 𝑎1, and the carrying capacity, 1/𝑏1, to describe logistic 

growth: 𝑑𝑆/𝑑𝑡 = 𝑎1𝑆(1 − 𝑏1𝑆) − 𝛽1𝑆𝐼/(1 + 𝛾1𝐼) − 𝑐𝑃𝑆 − 𝜇𝑆. In order to account for the 

effectiveness of disease spread as the size of the infected population grows, the equation includes 

the infection process, which is affected by the contact rate 𝛽1 and changed by the Holling type II 

functional response. 

The rate of infection in plants is expressed by the equation 𝑑𝐼/𝑑𝑡 = 𝛽1𝑆𝐼/(1 + 𝛾1𝐼) − 𝜇𝐼 −

𝛽2𝐼𝑃/(1 + 𝛾2𝑃), which shows how plants go from being susceptible to being resistant to 

infection. This change is also influenced by pesticide application. The effectiveness of pesticides 

in preventing infection is taken into account in this formulation along with the average plant 

death rate (𝜇) for both susceptible and infected plants (𝛽2). The rate at which the pesticides are 

taken out of the system or break down is shown. Input 𝑑𝑃/𝑑𝑡 = −𝛼𝑃 to set the dynamics of the 

pesticide. 

Two model factors, 𝛾1and 𝛾2, show that the rates are not going in a straight line. The changing 

factors for disease growth and pesticide effectiveness are demonstrated by these measures. The 

model shows a normal growth rate (𝑎1) and a carrying capacity (1/𝑏1). It appears to be built on 

ecological concepts as a result. The term "common pesticide situation" (𝑐𝑃𝑆) was chosen to 

provide a full picture of the ecological system and to highlight the potential harm that pesticides 

may cause to plants that are susceptible to them. This model provides a strong framework to 

evaluate the dynamics of plant diseases in response to the rate of pesticide intervention, which is 

important for identifying the most effective management methods. 
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4.3.2 Model's significance and how it simulates plant epidemic dynamics 

The effects of pesticide intervention on plant epidemic dynamics were examined in this study 

using a mathematical model. To model how populations of susceptible and infected plants 

interact in an agricultural ecosystem, non-linear ordinary differential equations (ODEs) are used. 

By looking at the Holling type II functional reaction, we can see how closely the rates of disease 

spread are linked to the number of plants that are susceptible. It can be stated that the plant 

population is either susceptible (𝑆) or infected (𝐼) for the purposes of using the model. The rate 

of pesticide introduction is shown by the variable that can be controlled (𝑃). 

It is necessary to understand the difficulty of stopping disease spread within plant populations for 

this model to be effective in the long term. The release of new data has enabled a thorough 

analysis of how pesticide use influences the spread of epidemics in these populations. An 

analysis of the effects of pesticides in the model demonstrates how to keep plant populations 

stable while lowering epidemic rates. This framework is important because an excess of 

chemicals could prevent the disease from spreading, but at the expense of the ecological balance 

or the population of susceptible plants [98]. 

The rapid development rate of plants, the rapid propagation of diseases, and the exponential plant 

death rate brought on by pests are all taken into consideration in the mathematical formulation. 

This model accurately captures epidemic dynamics, making it useful for evaluating plant 

management effectiveness. Policymakers may use these dynamics to assist with decision-making 

on the timing and amount of pesticide application in order to reduce the frequency of diseases 

while maintaining ecological equilibrium and plant health. 

To ensure that the analysis is based on solid facts, the study includes thorough information about 

pesticide introduction and the plant populations affected by and susceptible to these chemicals. 

This comprehensive approach guarantees a thorough understanding of their interactions. To 

prevent incurable plant diseases and reduce environmental effects, researchers investigate 

various pesticide intervention strategies, such as altering treatment rates or timing. By 

experimenting with these variables, they are hoping to discover the most efficient strategies for 

disease control while minimising environmental consequences, supporting sustainable farming 

practices that safeguard both plant health and the ecosystem. 
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4.4 Positivity and Boundedness 

4.4.1 Positivity 

Theorem 4.1: Let 𝑆(0) > 0, 𝐼(0) > 0, 𝑃(0) > 0. This implies all solutions of the system 

represented by (4.1) that start in 𝑅3 remain positive at 𝑅+
3  for all 𝑡 ≥ 0. 

Proof: To prove the theorem, we use all the equations of the model (4.1). Following a similar 

approach used in [84], we obtain the inequality expression from the1st equation of model (4.1) as 

follows: 

𝑑𝑆

𝑑𝑡
≤ 𝑎1𝑆(1 − 𝑏1𝑆), which, when simplified gives: 

𝑆 ≤
𝑠(0)

𝑒−𝑎1𝑙(1−𝑏1𝑠(0))+𝑏1𝑠(0)
. 

Now, as 𝑡 → ∞, we obtain 0 < 𝑆 ≤
1

𝑏1
. Hence, the solution of system (4.1) is feasible in the 

region Ω = {𝑆, 𝑙, 𝑃}. 

Similar proofs can be established using a similar approach for the remaining equations of the 

model. 

Hence, the theorem stands proved. 

 

4.4.2 Boundedness 

Theorem 4.2: All solutions of system (4.1) that start in 𝑅+ 
3 are uniformly bounded. 

Proof: Let 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)) be any solution of the system (4.1). Since, 
𝑑𝑆

𝑑𝑡
≤ 𝑎1𝑆(1 − 𝑏1𝑆). 

We have, 

lim
𝑡→∞

 sup𝑆(𝑡) ≤ 𝑎1. 

Let  𝑊 =
𝑠

1+𝑎1
+ 𝐼 +

𝑃

𝛽2
. 

Then, 

𝑑𝑊

𝑑𝑡
=

𝑎1
1 + 𝑎1

𝑆(1 − 𝑏1𝑆) − 𝜇𝐼 −
𝛼

𝛽2
𝑃 
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≤
𝑎1

1 + 𝑎1
𝑆 − 𝜇𝐼 −

𝛼

𝛽2
𝑃 

≤
2𝑎1

1+𝑎1
− 𝛿𝑊, where 𝛿 = min{1, 𝜇, 𝛼}. 

Therefore, 

𝑑𝑊

𝑑𝑡
+ 𝛿𝑊 ≤

2𝑎1
1 + 𝑎1

. 

Applying a theorem of Birkhoff et al., [27] on the above differential inequalities, we obtain: 

0 ≤ 𝑊(𝑆, 𝐼, 𝑃) ≤
2𝑎1

(1 + 𝑎1)𝛿
+
𝑊(𝑆(0))𝐽(0), 𝑃(0))

𝑒𝛿𝑡
. 

Now, as 𝑡 → ∞, we obtain 0 ≤ 𝑊 ≤
2𝑎1

(1+𝑎1)𝛿
. 

Thus, all the solutions of (4.1) lie in the region: Ω = {(𝑆, 1, 𝑃): 0 ≤ 𝑊 ≤
2𝑎1

(1+𝑎1)𝛿
+ 𝜂 for any 

𝜂 > 0}. 

Hence, the theorem stands proved. 

Plant epidemic model results must be biologically accurate and helpful; hence, positivity and 

boundedness are essential. Due to biological restrictions, plant populations cannot have negative 

numbers, and positivity makes sure that both infected and susceptible plant populations are 

positive throughout the simulation. As population numbers grow, boundedness indicates that the 

environment has limited resources and a carrying capacity [115]. 

These characteristics are significant for a variety of reasons. The first phase, known as positivity, 

verifies the physical and biological consistency of the model's conclusions. Assumptions made 

by the model would be incorrect in the event that there were negative populations, which would 

be a violation of epidemiology and population dynamics. Boundedness maintains the model's 

claims by restricting the population's growth. Population growth may continue to rise, but not at 

a sustainable rate unless there are restrictions placed on it. This does not happen in the realm of 

ecological processes. 

Real-life positivity and boundedness have an impact on the strategies that we expect to use to 

combat diseases. In the event that these parameters are not adhered to, the model may result in 
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unusual disease populations reporting unfavourable results. This could lead to incorrect 

conclusions regarding the spread of the disease and the success of the intervention. As long as 

the model's solutions remain positive and limited, researchers are able to accurately evaluate the 

effectiveness of disease management strategies and make intelligent decisions regarding disease 

outbreak control [117]. 

Population positivity and boundedness indicate long-term disease dynamics. Keeping these traits, 

a model shows disease populations move towards or near equilibrium. This indicates that disease 

dynamics and target populations match. Failure to maintain positivity and boundedness may 

suggest unbound disease dynamics. By using the correct intervention measures, the system may 

be rectified. 

 

4.5 Equilibria  

To determine the equilibrium points of the system of equations (4.1), we establish a state where 

the time derivatives of 𝑆, 𝐼 and 𝑃 are all set to zero. This yields four equilibrium points in the 

coordinates (𝑆∗, 𝐼∗, 𝑃∗), which are given as follows: 

(i) The trivial equilibrium 𝐸0(0,0,0) which exists only if  𝑎1 < 𝜇. 

(ii) The axial equilibrium 𝐸1 (
1

𝑏1
, 0,0), where there are only susceptible plants, which 

always exist if 
𝛽1

𝜇𝑏1
< 1. 

(iii) Disease free equilibrium point 𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0). It is seen that the equilibrium 𝐸1 

consistently exists if and only if  𝑎1 > 𝜇. 

The basic reproduction number (𝑹𝟎): The basic reproductive number, denoted as 𝑅0 in the 

mathematical formulation of equation set (4.1), is calculated through the application of the next-

generation matrix method as outlined in the paper of Fantaye et al., (2022) [54]. 𝑅0 characterizes 

the average quantity of secondary infections originating from a single infected plant in a 

population that is entirely susceptible. Now, let 𝑥 = (𝐼, 𝑃, 𝑆). then the system of equation (4.1) 

can be rewritten as: 
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𝑑𝑥

𝑑𝑡
= 𝐹(𝑥) − 𝑉(𝑥), 

Where, 

𝐹(𝑥) = [

𝛽1𝑆𝐼

1 + 𝛾1𝐼
0
0

]  and 𝑉(𝑥) =

[
 
 
 
 𝜇𝐼 +

𝛽2𝐼𝑃

1 + 𝛾2𝑃
𝛼𝑃

𝛽1𝑆𝐼

1 + 𝛾1𝐼
+ 𝑐𝑃𝑆 + 𝜇𝑆 − 𝑎1𝑆(1 − 𝑏1𝑆)]

 
 
 
 

. 

The Jacobian matrices of 𝐹(𝑥) and 𝑉(𝑥) is given by: 

𝐹(𝑥) = [

𝛽1𝑆

(1 + 𝛾1𝐼)2
0

𝛽1𝐼

1 + 𝛾1𝐼
0 0 0
0 0 0

] 

and 

𝑉(𝑥) =

[
 
 
 𝜇 +

𝛽2𝑃

1+𝛾2𝑃

𝛽2𝐼

(1+𝛾1𝑃)2
0

0 𝛼 0
𝛽1𝑆

(1+𝛾1𝐼)2
𝑐𝑆

𝛽1𝐼

1+𝛾1𝐼
+ 𝑐𝑃 + 𝜇 − 𝑎1 + 2𝑎1𝑏1𝑆]

 
 
 

. 

At the disease-free equilibrium point 𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0), the Jacobian matrices of 𝐹(𝑥) and 𝑉(𝑥) 

becomes: 

𝐹(𝑥) = [

𝛽1(𝑎1 − 𝜇)

𝑎1𝑏1
0 0

0 0 0
0 0 0

]  and 𝑉(𝑥) = [

𝜇 0 0
0 𝛼 0

𝛽1(𝑎1 − 𝜇)

𝑎1𝑏1

𝑐𝛽1(𝑎1 − 𝜇)

𝑎1𝑏1
𝑎1 − 𝜇

] 

Using the method of next-generation matrix, the basic reproduction number, 𝑅0 is the spectral 

radius of 𝐹𝑉−1 or the dominant eigenvalue of FV−1 and thus, the basic reproduction number 𝑅0 

is given by: 

   𝑅0 =
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
. 

(iv) The disease endemic equilibrium point 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗). By simple calculation, we get: 
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𝑆∗ =
𝜇(1 + 𝛾1𝐼

∗)

𝛽1
, 𝑃∗ = 0 and 𝐼∗ are the roots of the following quadratic equation: 

      𝜒1𝐼
∗2 + 𝜒2𝐼

∗ + 𝜒3 = 0, 

Where, 

 𝜒1 = 𝑎1𝑏1𝜇𝛾1
2 > 0, 

 𝜒2 = 𝑎1𝑏1𝜇(2𝛾1 + 1) − 𝛽1(𝛽1 + 𝛾1(𝑎1 − 𝜇)), 

 𝜒3 = −𝛽1(𝑎1 − 𝜇). 

Hence, 𝐼∗ =
−[𝑎1𝑏1𝜇(2𝛾1+1)−𝛽1(𝛽1+𝛾1(𝑎1−𝜇))]±√[𝑎1𝑏1𝜇(2𝛾1+1)−𝛽1(𝛽1+𝛾1(𝑎1−𝜇)]2+4𝑎1𝑏1𝛽1𝜇𝛾2

2(𝑎1−𝜇)

2𝑎1𝑏1𝜇𝛾1
2 . 

The two primary states of equilibrium that are depicted by the model are an equilibrium that is 

free of disease and an equilibrium that is endemic. Disease is unable to develop below a 

particular point due to the presence of certain factors. This creates a state of equilibrium free 

from disease. It appears that this population does not contain any infectious plants at the 

moment. When it comes to determining the stability of the system, this limit, which is 

represented by the basic reproduction number 𝑅0, is an essential component. When 𝑅0 goes 

below 1, the disease is no longer able to spread through the plant population. This indicates the 

absence of any diseases within the population. The plant population is completely sensitive to 

spread, but it is healthy in this equilibrium, which is why the system is naturally resistant to 

disease progression. This equilibrium is stable, as demonstrated by the mathematical foundations 

that support it; it is asymptotically stable both locally and globally, which suggests that any slight 

deviation from this state brought about by the introduction of the disease will cause the system to 

naturally return to its disease-free state over the course of time [130]. 

Once 𝑅0 goes above 1, however, the endemic equilibrium state becomes significant. As a result, 

each affected plant typically infects more than one other plant with the disease. As a result, the 

disease persists in the plant population. This disease indicates a crucial phase in the formation of 

a stable plant population within the ecosystem. The model's term describes the number of 

susceptible and damaged plants. This equilibrium point provides insights into the long-term 
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dynamics of disease survival within plant populations, highlighting situations where the disease 

remains endemic despite intervention efforts [131]. 

The examination of the profound biological impacts of these disease processes provides a 

foundation for understanding the dynamics of plant diseases and the methods used to control 

them. A disease-free equilibrium is the ideal situation that disease prevention and control efforts 

strive to achieve. In this equilibrium, the plant population is completely free of any disease that 

could potentially affect it. On the other hand, when diseases become endemic within an 

ecosystem, it becomes more difficult to achieve a state of eco-equilibrium. The term "eco-

equilibrium" refers to a state of equilibrium in which efforts are made to prevent the emergence 

of disease and measures are taken to control the spread of disease if it has already occurred. 

Under these circumstances, the disease continues to be present throughout the population, but it 

is possible to control it by implementing intervention strategies that are persistent and consistent. 

This continuous effort is essential in order to keep the disease at a manageable level, prevent it 

from becoming out of control, and work towards the goal of protecting the overall health of the 

plant population [134]. 

 

4.6 Stability Analysis  

For the study of the properties of stability, the Jacobian matrix 𝐽 of the system (4.1) is as follows: 

𝐽 =

[
 
 
 𝐽11

−𝛽1𝑆

(1+𝛾1𝐼)2
−𝑐𝑆

𝛽1𝐼

1+𝛾1𝐼
𝐽22

−𝛽2𝐼

(1+𝛾2𝑃)2

0 0 −𝛼 ]
 
 
 

                     (4.2) 

Where, 

  𝐽11 = 𝑎1 − 2𝑎1𝑏1𝑆 −
𝛽1𝐼

1+𝛾1𝐼
− 𝑐𝑃 − 𝜇, 

  𝐽22 =
𝛽1𝑆

(1+𝛾1𝐼)2
− 𝜇 −

𝛽2𝑃

1+𝛾2𝑃
. 
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4.6.1 Stability of trivial equilibrium point 

Theorem 4.3: The trivial equilibrium point 𝐸0 is stable if 𝑎1 < 𝜇 and unstable otherwise. 

Proof: The Jacobian matrix of 𝐸0 is given by: 

   𝐽𝐸0 = [
𝑎1 − 𝜇 0 0
0 −𝜇 0
0 0 −𝛼

]. 

Eigenvalues of the above matrix are 𝜆1 = 𝑎1 − 𝜇1, 𝜆2 = −𝜇1, 𝜆3 = −𝛼. 

The two eigenvalues 𝜆2, 𝜆3 are always negative. Then, for stability, we need to have 𝜆1 < 0 i.e., 

𝑎1 < 𝜇. Hence, the trivial equilibrium point 𝐸0 is stable if 𝑎1 < 𝜇. 

 

Remark:  𝑎1 < 𝜇 implies that the plant population's natural growth rate is lower than its natural 

death rate, a scenario that can arise in adverse conditions like forest fires, floods, or landslides. 

Typically, population models assume that the natural growth rate is higher than the death rate. 

While mathematically the trivial equilibrium point is stable under these conditions, in reality, it's 

an unstable state. 

 

4.6.2 Stability of axial equilibrium point 

Theorem 4.4: The axial equilibrium point 𝐸1 is stable if 
𝛽1

𝜇𝑏1
< 1 and unstable otherwise. 

Proof: The Jacobian matrix of 𝐸1 is given by: 

   𝐽𝐸1 =

[
 
 
 −𝑎1 − 𝜇

−𝛽1

𝑏1

−𝑐

𝑏1

0
𝛽1

𝑏1
− 𝜇 0

0 0 −𝛼]
 
 
 

. 

Eigenvalues of the above matrix are 𝜆1 = −(𝑎1 + 𝜇),  𝜆2 =
𝛽1

𝑏1
− 𝜇,  𝜆3 = −𝛼. 

The two eigenvalues 𝜆1, 𝜆3 are always negative. Then, for stability of the axial equilibrium point 

𝐸1, we must have 𝜆2 < 0 ie., 
𝛽1

𝑏1
− 𝜇 < 0 =>

𝛽1

𝜇𝑏1
< 1.  



 

 
90 

Hence, the axial equilibrium point 𝐸1 is stable if 
𝛽1

𝜇𝑏1
< 1. 

 

4.6.3 Local stability of the disease-free equilibrium 

Theorem 4.5: The disease-free equilibrium 𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0) is locally asymptotically stable if 

𝑅0 < 1, where 𝑅0 =
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
 is a threshold parameter. 

Proof: The Jacobian matrix of 𝐸2 is given by: 

   𝐽𝐸2 =

[
 
 
 −𝑎1 + 𝜇 −

𝛽1(𝑎1−𝜇)

𝑎1𝑏1

−𝑐

𝑎1𝑏1
(𝑎1 − 𝜇)

0
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇 0

0 0 −𝛼 ]
 
 
 

. 

 

There are three distinct eigenvalues of matrix 𝐽𝐸2 . One is 𝜆1 = −(𝑎1 − 𝜇) < 0, the other ones are 

given by 𝜆2 = −𝛼 < 0 and 𝜆3 = 
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇. Eigenvalues 𝜆1, 𝜆2 are always negative. It means 

that the stability of an equilibrium point 𝐸2 depend upon the value 
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇. 

Now, 

 𝜆3 =
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇 = 𝜇 (

𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
− 1) 

      = 𝜇(𝑅0 − 1). 

Here, 𝜆3 = 𝜇(𝑅0 − 1) < 0 if 𝑅0 < 1 which implies that all the eigenvalues are negative. Hence, 

the disease-free equilibrium point 𝐸2 is node and asymptotically stable. It means that the infected 

population will be vanished and the disease will be eradicated in the plant population. On the 

other hand, if 𝑅0 > 1, then the equilibrium point 𝐸2 is saddle point and unstable. 
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4.6.4 Local stability of the endemic equilibrium 

Theorem 4.6: Suppose that 𝑅0 > 1, then the endemic equilibrium point 𝐸∗ is locally 

asymptotically stable and unstable otherwise. 

Proof: To establish the theorem, we utilise a parallel approach as described by Themairi et al, 

[182]. Let 𝐽𝐸∗  denote the Jacobian matrix of 𝐸∗, then we have: 

𝐽𝐸∗ = [

𝐴11 𝐴12 𝐴13
𝐴21 𝐴22 𝐴23
0 0 𝐴33

]               (4.3) 

Where: 

  𝐴11 = 𝑎1 − 2𝑎1𝑏1𝑆
∗ −

𝛽1𝐼
∗

1+𝛾1𝐼∗
− 𝜇,  𝐴12 = −

𝛽1𝑆
∗

(1+𝛾1𝐼∗)2
,  𝐴13 = −𝑐𝑆∗, 

  𝐴21 =
𝛽1𝐼

∗

1+𝛾1𝐼∗
,  𝐴22 =

𝛽1𝑆
∗

(1+𝛾1𝐼∗)2
− 𝜇,  𝐴23 = −

𝛽2𝐼
∗

(1+𝛾2𝑃∗)2
,  𝐴33 = −𝛼. 

The characteristic equation of the Jacobian matrix 𝐽𝐸∗  is given by: 

𝜑3 + 𝑥1𝜑
2 + 𝑥2𝜑 + 𝑥3 = 0                      (4.4) 

Where: 

  𝑥1 = −(𝐴11 + 𝐴22 + 𝐴33), 

  𝑥2 = 𝐴11𝐴22 + 𝐴11𝐴33 + 𝐴22𝐴33 − 𝐴12𝐴21, 

  𝑥3 = 𝐴12𝐴21𝐴33 − 𝐴11𝐴22𝐴33. 

Hence, 

𝑥1𝑥2 − 𝑥3 = [−(𝐴11 + 𝐴22 + 𝐴33)(𝐴11𝐴22 + 𝐴11𝐴33 + 𝐴22𝐴33) + 𝐴12𝐴21(𝐴11 + 𝐴22)] +

𝐴11𝐴22𝐴33.               (4.5) 

Let 𝑊1 = 𝐴11𝐴22𝐴33. If 𝐴11 < 0, 𝐴22 < 0 and 𝐴33 < 0, then 𝑥1 > 0, 𝑥3 > 0,𝑤1 < 0, and the 

first bracket in (4.5) is positive. 

Thus, if 𝑊1 < [−(𝐴11 + 𝐴22 + 𝐴33)(𝐴11𝐴22 + 𝐴11𝐴33 + 𝐴22𝐴33) + 𝐴12𝐴21(𝐴11 + 𝐴22)], then 

by using Routh-Hurwitz criterion, 𝐸∗ is asymptotically stable. 
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4.6.5 Global stability of the disease-free equilibrium 

Theorem 4.7: Suppose that 𝑅0 < 1, then the disease-free equilibrium point 𝐸2 is globally 

asymptotically stable. 

Proof: To prove the global stability of the disease-free equilibrium point E2, we will construct 

the following Lyapunov Function which is given by: 

𝐽(𝑆, 𝐼, 𝑃) =
1

2
[(𝑆 − 𝑆0) + (𝐼 − 𝐼0)]2          (4.6)  

Clearly, 𝐽(𝑆, 𝐼, 𝑃) ≥ 0 at the disease-free equilibrium and equal to zero whenever 𝑆 = 𝑆0 and 

𝐼 = 𝐼0. Then, the derivative of equation (4.6) with respect to time 𝑡 becomes: 

𝑑

𝑑𝑡
𝐽(𝑆, 𝐼, 𝑃) = [(𝑆 − 𝑆0) + (𝐼 − 𝐼0)] (

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
)       (4.7) 

Substituting the values of (
𝑑𝑆

𝑑𝑡
) and (

𝑑𝐼

𝑑𝑡
) from the system of equation (4.1) in (4.7), we have: 

 
𝑑

𝑑𝑡
𝐽(𝑆, 𝐼, 𝑃) = [(𝑆 − 𝑆0) + (𝐼 − 𝐼0)] (𝑎1𝑆 − 𝑎1𝑏1𝑆

2 − 𝑐𝑃𝑆 − 𝜇𝑆 − 𝜇𝐼 −
𝛽2𝐼𝑃

1+𝛾2𝑃
), 

         = −[(𝑆 − 𝑆0) + (𝐼 − 𝐼0)](𝑉 − 𝑈). 

Clearly, 
𝑑

𝑑𝑡
𝐽(𝑆, 𝐼, 𝑃) ≤ 0 if and only if 𝑉 − 𝑈 > 0, where 𝑉 = 𝑎1𝑆 − 𝑎1𝑏1𝑆

2 − 𝑐𝑃𝑆 − 𝜇𝑆 −

𝜇𝐼 −
𝛽2𝐼𝑃

1+𝛾2𝑃
 and 𝑈 = 𝑎1𝑆. Moreover, 

𝑑

𝑑𝑟
𝐽(𝑆, 𝐼, 𝑃) = 0 if and only if 𝑆 = 𝑆0 and 𝐼 = 𝐼0.  

Thus, by the invariance principle of LaSalle [112], the disease-free equilibrium point E2 is 

globally asymptotically stable. 

 

4.6.6 Global Stability of the endemic equilibrium 

In order to examine the global asymptotic stability for the disease endemic equilibrium point 𝐸∗, 

the following model is used. 

  𝑎1𝑆
∗ = 𝑎1𝑏1𝑆

∗2 +
𝛽1𝑆

∗𝐼∗

1+𝛾1𝐼∗
+ 𝑐𝑃∗𝑆∗ + 𝜇𝑆∗ 

  𝐼∗ =
𝛽1𝑆

∗𝐼∗

1+𝛾2𝐼∗
−

𝛽2𝐼
∗𝑃∗

1+𝛾2𝑃∗
 



 

 
93 

  𝛼𝑃∗ = 0. 

 

Theorem 4.8: If 𝑅0 > 1, then the endemic equilibrium 𝐸∗ of system (4.1) exhibits global 

asymptotic stability in the case where 𝑐 = 0. 

Proof: To prove the global stability corresponding to the endemic equilibrium 𝐸∗, the method 

proposed by Rosa and Torres [153] can be used and followed by constructing the following 

Lyapunov Function: 

𝐺(𝑡) = (𝑆 − 𝑆∗ − 𝑆∗ln 
𝑆

𝑆∗
) + (𝐼 − 𝐼∗ − 𝐼∗ln 

𝐼

𝐼∗
) + (𝑃 − 𝑃∗ − 𝑃∗ln 

𝑃

𝑃∗
)                 (4.8) 

After differentiating equation (4.8) with respect to time 𝑡, we have: 

𝑑𝐺

𝑑𝑡
= (1 −

𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
+ (1 −

𝑃∗

𝑃
)
𝑑𝑃

𝑑𝑡
.         (4.9) 

Now, 

(1 −
𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
= (1 −

𝑆∗

𝑆
) [𝑎1𝑆(1 − 𝑏1𝑆) −

𝛽1𝑆𝐼

1+γ1𝐼
− 𝑐𝑃𝑆 − 𝜇𝑆], 

       = (1 −
𝑆∗

𝑆
) (𝑎1𝑆 − 𝑎1𝑆

∗), 

       = 𝑎1𝑆 (1 −
𝑆∗

𝑆
)
2

.           (4.10) 

(1 −
𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
= (1 −

𝐼∗

𝐼
) [

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝜇𝐼 −

𝛽2𝐼𝑃

1+𝛾2𝑃
], 

       = (1 −
𝐼∗

𝐼
) [𝜇𝐼∗ − 𝜇𝐼], 

       = (1 −
𝐼∗

𝐼
) [−𝜇𝐼 (1 −

𝐼∗

𝐼
)], 

       = −𝜇𝐼 (1 −
𝐼∗

𝐼
)
2

.           (4.11) 

(1 −
𝑃∗

𝑃
)
𝑑𝑃

𝑑𝑡
= −𝛼𝑃 (1 −

𝑃∗

𝑃
).           (4.12) 
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When the outcomes of equations (4.10) -(4.12) are substituted to equation (4.9), we obtain: 

  
𝑑𝐺

𝑑𝑡
= 𝑎1𝑆 (1 −

𝑆∗

𝑆
)
2

− 𝜇𝐼 (1 −
𝐼∗

𝐼
)
2

− 𝛼𝑃 (1 −
𝑃∗

𝑃
), 

      = 𝑎1𝑆 − 2𝑎1𝑆
∗ +

𝑎1𝑆
∗2

𝑆
− 𝜇𝐼 + 2𝜇𝐼∗ −

𝐼∗
2

𝐼
− 𝛼𝑃 + 𝛼𝑃∗, 

      = [𝑎1𝑆 + 2𝜇𝐼
∗ + 𝛼𝑃∗ +

𝑎1𝑆
∗2

𝑆
] − [𝜇𝐼 + 2𝑎1𝑆

∗ + 𝛼𝑃 +
𝐼∗
2

𝐼
]. 

Here, 
𝑑𝐺

𝑑𝑡
≤ 0 if [𝑎1𝑆 + 2𝜇𝐼

∗ + 𝛼𝑃∗ +
𝑎1𝑆

2

𝑆
] ≤ 0. Therefore, using the invariance principle of 

LaSalle [112], 𝐸∗ is globally asymptotically stable whenever 𝑅0 > 1. 

The plant epidemic model's term stability analysis examines how the system behaves around the 

equilibrium points to determine whether they are stable or not. This could happen in two ways: 

the disease-free equilibrium (DFE) or the endemic equilibrium (EE). It is called the disease-free 

equilibrium (DFE) when there are no unhealthy plants. It is also called the endemic equilibrium 

(EE) when the disease stays in the population [135]. 

Before analysing the eigenvalues of the resulting Jacobian matrix, the stability analysis begins 

with the disease-free equilibrium and involves linearizing the system of nonlinear ordinary 

differential equations (ODEs) around the DFE point. The eigenvalues can provide information 

about the local stability of the equilibrium point. The DFE is locally asymptotically stable if all 

of its eigenvalues have real parts that are negative. With these small changes, the system will 

finally get back to a state where it is free of disease [136]. 

Mathematically, the stability criteria for a disease-free equilibrium are as follows: 

If Re (𝜆𝑖) < 0 for all 𝑖, then the DFE is locally asymptotically stable. 

In the same way, the stability of the endemic equilibrium is studied by making the system linear 

around the EE point and checking the Jacobian matrix's eigenvalues. Asymptotically, the EE is 

stable in its local area if all of its eigenvalues have negative real parts. The disease affects the 

population for a long time. 

It's possible to state this as the need for stability in an endemic equilibrium: 
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Re (𝜆𝑖) < 0 for all 𝑖, then the EE is asymptotically stable in that area. 

A global stability analysis is also carried out to find out if the term of the equilibrium points 

holds true for the whole system or just the area around them. From any point of view, we need to 

look at how the system works as a whole and see if it tends to move towards the equilibrium 

points. 

The term basic reproduction number (𝑅0) is important for determining the stability of 

equilibrium points. The disease-free equilibrium remains stable almost until the end if 𝑅0 is less 

than 1. This demonstrates that each unhealthy plant results in less than one secondary infection. 

When 𝑅0 exceeds 1, the stable endemic equilibrium globally approaches near-stability. Now, the 

disease can spread through the population. 

Researchers may evaluate the potential effectiveness of various disease control measures by 

using the results of the disease analysis. Making pesticides more widely accessible or fostering 

plant kinds that are resistant to them are two ways to limit pesticide transmission and preserve a 

disease-free condition within the population. If the disease-free equilibrium is stable, these 

measures may be used. This allows for the efficient containment of disease epidemics. A stable 

disease equilibrium rate, in contrast, indicates that the disease will most likely persist despite 

intervention attempts and that continuous management methods are required to mitigate its 

impacts. 

Plant stability analysis helps with disease management strategy development by providing 

important information about the dynamics of disease transmission in plant populations. 

Researchers may assess the potential effectiveness of various interventions and make wise 

judgments to manage epidemics by looking at the stability of equilibrium points and the 

fundamental epidemic decision [138]. 

 

4.7 Sensitivity Analysis  

Determining the most sensitive parameters requires knowing the relative importance of the 

various factors involved in its transmission. The sensitivity index of 𝑅0 is computed for various 
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parameters in the model. These indices indicate how important each parameter is for disease 

transmission [153]. 

The threshold parameter 𝑅0 is a function of four parameters, namely; 𝛽1, 𝑏1, 𝑎1 and 𝜇. The 

nomalized forward sensitivity index 𝑅0, which is differentiable with respect to a given parameter 

𝑝, is defined by: 

𝛾𝑝
𝑅0 =

∂𝑅0

∂𝑝

𝑝

𝑅0
.                     (4.13) 

The analytical expression for the sensitivity of the basic reproduction number 𝑅0  can be easily 

calculated using the explicit formula (4.13) for each parameter included in it. The sensitivity 

index values for the parameter values in Table 4.1 are shown in Table 4.2. Note that the 

sensitivity index can depend on several system parameters, but it can also be constant regardless 

of the parameters. For example, 𝛾𝛽1
𝑅0 = +1 and 𝛾𝑏1

�̂�0 = −1, this means that increasing 

(decreasing) 𝛽1, 𝑏1 by a certain percentage will always increase (decrease) 𝑅0 by the same 

percentage. 

 

Table 4. 2: Sensitivity index table 

Parameters Sensitivity index Sensitivity index 

values 

𝛽1 1 1 

𝑏1 -1 -1 

𝑎1 µ

𝑎1 − µ
 0.11 

µ 𝑎1
µ − 𝑎1

 −1.11 

 

From Table 4.2, we see that the most sensitive parameters are the contact rate of susceptible and 

infected plants 𝛽1 and the natural death rate of plant populations 𝜇. 
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Through sensitivity analysis, the plant epidemic model attempts to determine which factors 

significantly impact disease dynamics and plant development. As part of this analysis, the model 

factors will be altered. If significant model results, such as the basic reproduction number (𝑅0) or 

the locations of equilibrium, alter, this is what may be shown. Disease management techniques 

should give greater weight to sensitive factors if they are shown to significantly affect disease 

development and population dynamics [140]. 

The importance of ecological growth rate in developing disease dynamics is highlighted by the 

fact that it is sensitive to host ecological population factors. By modifying the ecosystem of 

animals that are susceptible and the human population, it is possible to substantially influence the 

rate at which diseases spread. In order to expand the number of the target population, 

interventions that change the environment or breed for genetic safety may be utilised alongside 

conventional disease management measures [142]. 

The disease sensitivity analysis, which also shows the importance of different disease factors, 

shapes the disease dynamics. Researchers may pick interventions that concentrate on the most 

crucial intervention by putting factors in order of sensitivity. Spending money on better disease 

tracking and early finding may be preferable to reducing pesticide use, for example, if it turns out 

that transfer rates are very sensitive. 

Overall, the sensitivity analysis helps us figure out how the model's complex connections impact 

the spread of diseases and how to better handle them. This analysis, which identifies key factors 

and their relative importance, aids in the development of tailored intervention methods suitable 

for specific ecological and epidemiological conditions. Through informed decision-making 

guided by disease sensitivity analysis results, stakeholders can enhance resource sharing and 

boost the effectiveness of disease control efforts [149]. 

 

4.8 Numerical Analysis  

The proposed plant epidemic model is analysed numerically to observe the behaviour of the 

spread of disease and the role of control measures in the decline of the disease. Numerical 

analysis is done on MATLAB 2018a. Computer simulations must validate the predictions of the 

plant epidemic model. This is especially true when it comes to how chemicals and pesticides 
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change disease dynamics in plant populations. To test how well the expected results of the model 

match up with actual data or claims made by well-known theories, researchers run these 

simulations. Researchers conduct these simulations to verify the accuracy and practicality of the 

model. The simulations look at a variety of factors, including the basic reproduction number 

(𝑅0), the effects of different factors, and the dynamics of plant populations that are susceptible to 

and unhealthy. 

The present study utilised the model to investigate and analyse the various ways that pesticide 

application alters plant behaviour. The purpose of this study was to improve our understanding 

of the influence that these treatments have on the spread of diseases among plants by carefully 

studying such interventions. It was discovered through the use of this model that increasing the 

frequency of pesticide sprays as well as the amount of sprays can effectively reduce the rate at 

which a plant population is damaged. Furthermore, the findings of this model indicate that one 

way to improve the care that is provided to plants that have been afflicted by disease is to adjust 

the proportion of susceptible plants to diseased plants. Considering that there are fewer diseases 

spreading, the system is getting closer and closer to an equilibrium that is free of diseases [158]. 

4.8.1 Parameters and Initial Conditions 

𝑆(0) = 100 (100% of plant population), 𝐼(0) = 1 (10% of plant population infected), 𝑃(0) =

10( proportion of pesticide used). 𝑎1 = 0.1, 𝑏1 = 0.001, 𝛽1 = 0.001, 𝛾1 = 0.001, 𝑐 = 0.001, 

𝜇 = 0.06, 𝛽2 = 0.02, 𝛾2 = 0.021 and 𝛼 = 0.02. 

 

4.9 Numerical simulations 

Using the specified parameters and initial conditions, we perform simulations of the model (4.1) 

until 𝑡 = 1200. The results are illustrated in Figure 4.2 through Figure 4.8, considering scenarios 

both with and without control measures, where the application of pesticides is considered as a 

form of control in the proposed plant epidemic model. Additionally, the stability of the model is 

depicted through the phase portraits showcasing the relationship between susceptible and 

infected plant populations in both Figure 4.6 and Figure 4.8. 
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Figure 4.2: 𝑺(𝒕) vs Time under the application of Pesticide 

 

Figure 4.3: 𝑰(𝒕) vs Time under the application of Pesticide 
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Figure 4.4: Amount of Pesticides 𝑷(𝒕) used vs Time 

 

Figure 4.5: 𝑺(𝒕) and 𝑰(𝒕) vs Time under the application of Pesticide 
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Figure 4.6: Phase portrait of 𝑺(𝒕) vs 𝑰(𝒕) under the application of Pesticide 

 

Figure 4.7: 𝑺(𝒕) and 𝑰(𝒕) vs Time without the use of Pesticide 
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Figure 4.8: Phase portrait of 𝑺(𝒕) vs 𝑰(𝒕) without the use of Pesticide 

In the absence of pesticide application, the susceptible plant population demonstrates resistance 

to decline, hindering its attainment of a stable equilibrium, as shown in Figure 4.2. Meanwhile, 

the infected plant population experiences an initial rise, eventually adopting a linear pattern 

without achieving a stable state, as evident in Figure 4.3. Notably, it is evident that the absence 

of control measures leads to a prolonged time frame required for both the susceptible and 

infected plants to reach a steady condition. 

When pesticides are introduced, as depicted in Figure 4.5, a decline in plant infections becomes 

apparent. This results in oscillations in both susceptible and infected plant populations. This 

phenomenon is illustrated in Figures 4.3 and 4.5, where the number of infected plants 

significantly diminishes. However, despite an initial increase in the susceptible plant population, 

its numbers are also impacted by the pesticide's effects, causing a subsequent decrease. The 

conceptual framework of the proposed model suggests that the use of pesticides not only curbs 

infection but may also interfere with the normal growth of the plant population. The phase 

portrait depicting the relationship between susceptible and infected plants reveals a state of 

instability in the absence of control measures, as represented in Figure 4.8. Conversely, when 
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control measures are employed to mitigate the number of infected plants, the trajectory 

converges towards an equilibrium point, as exemplified in Figure 4.6. 

 

4.10 Results and Discussion 

Through mathematical, stability, plant, and numerical studies, this study gives a complete 

understanding of the dynamics of plant epidemics with pesticide intervention. 

Under different pesticide application conditions, the mathematical model shows how a plant 

population can reach an equilibrium state, either disease-free or endemic. The stability analysis 

shows that the system tends to return to a disease-free state when the basic reproduction number, 

𝑅0, is less than one. If the 𝑅0 number is more than one, the disease is still in the population. The 

usual model for diseases in epidemiology says that this is what should happen [167]. 

The sensitivity analysis shows how important some factors are in controlling the disease and how 

well it is controlled. These include the contact rate between plants that are susceptible and plants 

that are infected (𝛽1) and the natural death rate of plant populations (𝜇). These results back up 

what other studies have found about how important transmission dynamics and natural 

population change rates are for effectively controlling plant diseases. The study, for example, 

agrees with the findings of other researchers who have examined the impact of contact rates on 

disease spread in agricultural settings, emphasizing the significance of targeted interventions. 

 

4.11 Conclusion  

This research was able to shed light on agricultural disease management tactics as a result of the 

development of a new plant model that incorporates the use of pesticides. By conducting in-

depth tests such as pesticide and disease testing, the mathematical analysis allows for the 

identification of significant elements that influence the effectiveness of pesticides and the 

dynamics of their application. According to this model, the basic reproduction rate, also known 

as 𝑅0, is one of the most important factors that determines whether plant populations will be able 

to avoid disease spread or become extinct. Summarising our analysis, the results can be outlined 

as follows: 
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I. The positivity and boundedness of solutions of the system are shown to hold indicating 

the system is biologically valid and well behaved.  

II. The point of axial equilibrium, denoted as 𝐸1, represents a scenario where exclusively 

susceptible plants are present. This equilibrium state exists consistently under the 

condition 
𝛽1

𝜇𝑏1
< 1. In this situation, the disease is not spreading rapidly, and the number 

of susceptible plants remains stable. 

III. Through the utilisation of the next generation matrix technique, we have computed the 

basic reproduction number, denoted as 𝑅0, which serves as a crucial threshold parameter 

and determined its value to be 𝑅0 =
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
. 

IV. If 𝑅0 is less than 1, it signifies the elimination of the infected plant population, resulting 

in the eradication of the disease from the plant community. On the contrary, if 𝑅0 exceeds 

1, there is a heightened probability of disease transmission among different plants within 

the population, potentially leading to a disease outbreak. A value of 𝑅0 equal to 1 act as a 

disease threshold, indicating the disease's sustained presence and stability, although the 

likelihood of a widespread outbreak or epidemic remains limited. 

V. To analyse the stability properties of the system, we utilised and calculated the Jacobian 

matrix for the system of equation (4.1). 

VI. It has been shown that the disease-free equilibrium (DFE) 𝐸2 is both locally and globally 

asymptotically stable in cases where 𝑅0 is less than 1. 

VII. Utilising the Routh-Hurwitz criteria, we have established the local asymptotic stability of 

the endemic equilibrium 𝐸∗ within the system (4.1). Furthermore, through the 

consideration of a Lyapunov function, we have determined the global asymptotic stability 

of 𝐸∗. 

VIII. The behaviour of the model remains stable around the disease-free and endemic 

equilibria, both locally and globally. Both susceptible and infected plants exhibit 

oscillatory behaviour and eventually reach a state of equilibrium over time. In the 

absence of any control measures in the plant epidemic model, it requires a longer time for 

both the susceptible and infected plants to reach equilibrium. However, the application of 

pesticides to manage the infection accelerates the attainment of equilibrium for both the 

plants. 
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IX. To identify the most sensitive parameters, it is crucial to understand the relative 

significance of the multiple factors contributing to its transmission. Consequently, 

calculations for the sensitivity index of 𝑅0 concerning various parameters within the 

model have been conducted. These indices provide insight into the individual 

significance of each parameter in the context of disease transmission. It has been 

determined that the most sensitive parameters in our model are the contact rate of 

susceptible and infected plants, denoted as 𝛽1, and the natural death rate of plant 

populations, represented by 𝜇. Identifying and understanding these sensitive parameters 

is crucial for making informed decisions and interventions in disease control and plant 

populations management. It allows researchers and policymakers to develop targeted 

strategies that are more likely to be effective in controlling disease outbreaks, preserving 

plant populations, and maintaining ecosystem health. 

X. In conclusion, numerical simulations have been conducted to validate and further support 

the analytical conclusions presented within the study. 

 

The stability and control of plant epidemic models under pesticide application are complex and 

multifaceted issues. This research offers novel insights that bridge the gap between disease 

management and ecosystem preservation. By optimising pesticide dosages, identifying disease 

hotspots, and understanding the nonlinear dynamics at play, a comprehensive framework is 

presented to guide sustainable management strategies in the plant community. The findings have 

far-reaching implications for the conservation of ecosystems and the protection of plants 

population against infectious diseases and the results show the importance of weighing the pros 

and cons of drugs used to treat diseases. Attention to proper pesticide application is crucial, as 

the model indicates substantial potential reductions in disease rates, emphasizing the need to 

maintain ecological balance and promote plant health.  


