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5 
Analysis of Stability, Sensitivity Index and                     

 Hopf Bifurcation of Eco-Epidemiological 

SIR Model under Pesticide Application 

 

5.1 Introduction  

This study's logical SIR (susceptible-infected-recovered) plant mathematical model focuses on 

pesticide use as a way to reduce the number of diseases in the plant population. This ecosystem 

research was motivated by concerns about plant diseases and their serious damage to crops 

around the world. These diseases, often caused by pests, threaten public health, affect crop 

yields, and pose a food hazard. Agriculture plays an important role in protecting ecosystems and 
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sustaining people, especially in areas where food is important. Therefore, understanding and 

controlling plant diseases has become important for scientists. The primary goal of this study is 

to improve our understanding of disease transmission in crop populations and evaluate the 

effectiveness of pesticide use in controlling the disease [179].  

The importance of studying eco-epidemiological models, particularly the SIR model under 

pesticide application, cannot be overstated. These theoretical frameworks provide valuable tools 

for testing and predicting the relationships between susceptible, infected, and recovered plant 

populations. By incorporating pesticide application into this model, researchers aim to evaluate 

how various disease control strategies might influence these interactions and overall disease 

prevalence. This research not only advances our understanding of plant disease dynamics but 

also informs practical strategies for managing and mitigating the impact of plant diseases on 

agriculture. Understanding these dynamics is essential for developing effective interventions that 

can protect crop yields, ensure food security, and maintain the health of ecosystems.  

 

5.2 Background and Literature Review 

5.2.1 Summary of previous research on plant diseases 

Plant diseases, which pose a major threat to agricultural output, have long been the focus of 

intense study in order to understand their causes, effects, and disease control measures.  Based on 

the type of pathogens involved, researchers divide these diseases into groups that can spread and 

groups that cannot. Infectious diseases, which are frequently caused by fungi, viruses, or 

bacteria, can range in severity from mild to severe and can cause plant population declines and 

even death. Non-infectious diseases, which are brought on by poor conditions in the 

environment, do not spread from one plant to another, making it easy to stop their spread [181]. 

The presence of plant diseases has caused a significant amount of devastation to the ecosystem. 

The Food and Agriculture Organisation (FAO) estimates that pests destroy approximately forty 

percent of the world's agricultural crops annually. This number demonstrates just how important 

it is to have effective methods to prevent diseases in order to ensure that more people have 

access to food. Experts recommend using pesticides as a common approach to address this 

problem. Between the middle of the 20th century and the present day, there has been a 
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significant increase in the production and application of pesticides. They have a significant role 

in combating diseases and insects, which is an important function. The high production rate 

highlights the crucial role of pesticides in modern day farming. 

 

5.2.2 Mathematical modelling in biology and its applications  

Through the application of mathematical models, it might be possible to comprehend numerous 

biological processes and how they connect with their environment. These models are used by 

biologists to forecast diseases, replicate biological processes, and develop efficient disease 

control measures. The mathematical application of disease dynamics in biology, especially the 

study of disease dynamics, provides insight into the procedures of spread, effects, and possible 

interventions for viral diseases influencing human and plant populations. 

To stop the propagation of plant diseases, it is very important to keep the world's food supply 

free of pests. Plant disease can be brought on by germs like fungi, viruses, and bacteria that enter 

the environment. By spreading disease, insects and other pests can mess up watering systems. 

Numerous factors, such as how predisposed people are to the disease and the number of people 

who catch it, influence how infectious diseases start and spread. A mathematical framework 

called Susceptible-Infected-Recovered (𝑆𝐼𝑅) helps researchers guess what will happen in the 

future with disease eco dynamics in different settings [184]. 

 

5.3 Model Formulation  

5.3.1 Assumptions made for the SIR model formulation 

Here, the SIR model is utilised to assess the impact of pesticide formulation on disease 

prevalence in plant populations. Plant populations naturally develop in disease-free settings due 

to fundamental changes in plant development and surroundings. Certain natural factors make it 

impossible for plant populations to grow. To form the mathematical model, the following 

assumptions are taken into consideration: 

a) In the absence of disease, the plant population grows logistically with an intrinsic 

growth rate 𝑟 > 0 and environmental carrying capacity 𝑘 > 0. 
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b) In the presence of the disease, the plant population is divided into three compartments: 

the susceptible population 𝑆(𝑡), the infected population 𝐼(𝑡) and the recovered 

population 𝑅(𝑡). Therefore, for any time 𝑡, the total plant population is given by 𝑆(𝑡) +

𝐼(𝑡) + 𝑅(𝑡) = 𝑁(𝑡). Then the growth rate of the susceptible plant population is given by 

𝑟𝑆 (1 −
𝑁

𝑘
) or 𝑟𝑆 (1 −

𝑆+𝐼+𝑅

𝑘
). 

c) The susceptible population becomes infected when they come into contact with infected 

populations. This contact process is assumed to follow the kinetics of simple mass action 

using 𝛽 > 0 as the conversion factor. 

d) Only the susceptible population 𝑆(𝑡) can reproduce and the death rate of plants due to 

pests is assumed to be 𝜇 > 0. The natural mortality rate of plants is ignored from the 

incubation period to the death of the plants. However, the infected population 

𝐼 contributes with 𝑆 to population growth towards the carrying capacity 𝑘 > 0. 

e) As a control measure, we assume that a general pesticide 𝑃(𝑡) is used to minimize 

diseases in the population. Due to the application of pesticides, plants within the infected 

compartment transition to the recovered compartment and eventually return to a 

susceptible compartment within a specific timeframe. Pesticides are used in both 

susceptible and infected populations, and it is assumed that the use of pesticides has 

negative impacts on both the susceptible and the infected populations. The negative 

impact of pesticides is ignored for the plant population in the recovered compartment, as 

they have already been exposed to the pathogen or pest and have developed immunity or 

resistance against it. Also, the recovered population eventually reverts to a susceptible 

state after a certain time. For instance, Propiconazole and Tricyclazole are two common 

fungicides primarily targeted at controlling fungal diseases like blast disease and dirty 

panicle disease in rice crops. They are not intended to harm non-infected rice plants 

[67]. Still, their residues and potential for phytotoxicity emphasize the importance of 

responsible and precise application, that can range from mild stress symptoms to severe 

damage and plant death. 

f) The amount of pesticides used is just one of several factors that can influence the contact 

rate between plants populations and pesticides. Let the amount of pesticide used to be 
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𝛼 > 0. The contact rate between susceptible plants and pesticides is assumed to be 

𝑑1̃(𝛼) > 0. Similarly, the contact rate between infected plants and pesticides is assumed 

to be 𝑑2̃(𝛼) > 0. Here, we consider, 𝑑𝑖̃(𝛼) = 𝑑𝑖 , 𝑖 = 1,2, where 𝑑𝑖 are constants. 

Therefore, the term −𝑑1𝑆𝑃 represents the removal of plants from susceptible plant 

compartment due to the application of pesticides. Similarly, the contact rate between 

infected plants and pesticides is assumed to be 𝑑2 > 0. The term −𝑑2𝐼𝑃 represents the 

removal of plants from infected plant compartment due to the application of pesticides. 

g) The presence of plant infections can often lead to the application of pesticides. However, 

the decision to use pesticides depends on various factors, including the severity of the 

infection, the type of pathogen involved, the crop being grown, and the overall 

management practices employed by the farmer. When plants are infected by pathogens, 

it can lead to the development of plant diseases, which can impact the health and 

productivity of the crop. In some cases, farmers may choose to use pesticides to control 

the spread of the pathogens and mitigate the damage caused by the disease. Pesticides 

specifically formulated to target the pathogens causing the infection may be employed as 

a means to suppress or eliminate them. Therefore, we assumed that the infections in 

plants indirectly forces the farmers to apply pesticides. The term 𝜃𝐼, 𝜃 > 0 denotes the 

infective induced rate of pesticides. 

h) The application of pesticides enhances the recovery rate of the infected plants. Let 𝑔 >

0 be the recovery rate of the infected plants due to the application of pesticides. 

i)  Let 𝜈 > 0 be the rate of infected plants which have recovered and returned to the 

susceptible class [4,118]. 

The model splits the whole plant population into three groups: the susceptible (𝑆) group, the 

infected (𝐼) group, and the recovered (𝑅) group. This sorting helps us understand how disease 

dynamics work because it takes into account both the current level of ecosystem within the 

disease and the possibility of subsequent infection and exposure. As suggested in the above 

assumption, the susceptible population is assumed to become infected when it comes into contact 

with the infected population using a conversion factor to measure this interaction. With this 

reduction, it is simpler to mathematically model disease spread in the plant community [190]. 
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5.3.2 Model equations and the interpretation of model parameters and variables 

 

   Table 5.1: Notation and definition of model variables 

Variables Definitions Units 

𝑆(𝑡) Susceptible population [Stems] 

𝐼(𝑡) Infected population [Stems] 

𝑃(𝑡) Pesticides [SI unit] 

𝑅(𝑡) Recovered population [Stems] 

 

 

Table 5.2: Notations and definition of model parameters 

Parameters Definitions of parameters Units 

𝑟 Intrinsic growth rate of the plant population 𝑃𝑒𝑟 𝑑𝑎𝑦 

𝑘 Environmental carrying capacity 𝑃𝑒𝑟 𝑠𝑞.𝑚𝑒𝑡𝑒𝑟 

𝛽 Contact rate between susceptible and infected 

plants 

𝑃𝑒𝑟 𝑑𝑎𝑦 

𝑑1 Contact rate between susceptible plants and 

pesticides 

𝑃𝑒𝑟 𝑑𝑎𝑦 

𝑑2 Contact rate between infected plants and 

pesticides 

𝑃𝑒𝑟 𝑑𝑎𝑦 

𝜇 Death rate of plants due to pests 𝑃𝑒𝑟 𝑑𝑎𝑦 

𝑣 Rate of infected plants which have recovered 

and returned to the susceptible class. 

𝑃𝑒𝑟 𝑑𝑎𝑦 

 

𝑔 Recovery rate of infected plants 𝑃𝑒𝑟 𝑑𝑎𝑦 

𝜃 Infective induce rate of pesticides 𝑃𝑒𝑟 𝑑𝑎𝑦 

𝛼 Amount of pesticides used 𝑃𝑒𝑟 𝑑𝑎𝑦 
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In accordance with the above assumptions and the descriptions of variables and parameters, the 

present model will be governed by the following system of equations: 

  
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆+𝐼+𝑅

𝑘
) − 𝛽𝑆𝐼 − 𝑑1𝑆𝑃 − 𝜇𝑆 + 𝜈𝑅, 

  
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝑔 + 𝜇)𝐼 − 𝑑2𝐼𝑃, 

  
𝑑𝑃

𝑑𝑡
= 𝜃𝐼 − 𝛼𝑃,             (5.1) 

  
𝑑𝑅

𝑑𝑡
= 𝑔𝐼 − (𝜇 + 𝜈)𝑅. 

With initial conditions: 

 𝑆(0) ≡  𝑆0 > 0, 𝐼(0) ≡  𝐼0 > 0, 𝑃(0) ≡  𝑃0 > 0 𝑎𝑛𝑑 𝑅(0) ≡  𝑅0 > 0                 (5.2)                      

 

Here,  
𝑑𝑆

𝑑𝑡
,  
𝑑𝐼

𝑑𝑡
,  
𝑑𝑃

𝑑𝑡
  and  

𝑑𝑅

𝑑𝑡
  represents the rates of change of the quantities 𝑆(𝑡),  𝐼(𝑡), 𝑃(𝑡) and 

𝑅(𝑡) respectively.  

 

5.4 Theoretical Analysis  

5.4.1 Positivity and Boundedness. 

Theorem 5.1 (Positivity): All solutions of the system represented by (5.1) with initial conditions 

(5.2) are positive for all 𝑡 ≥ 0. 

Proof: Let 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡), 𝑅(𝑡) be the solutions of System (5.1) with initial conditions (5.2). 

Integrating both sides of the first equation of (5.1) from 0 to 𝑡, gives, 

𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆 + 𝐼 + 𝑅

𝑘
) − 𝛽𝑆𝐼 − 𝑑1𝑆𝑃 − 𝜇𝑆+≥ −{𝛽𝑆𝐼 + 𝑑1𝑆𝑃 + 𝜇𝑆 − 𝑟𝑆 (1 −

𝑆 + 𝐼 + 𝑅

𝑘
)} 

or 

∫  
𝑡

0

𝑑𝑆

𝑆
≥ ∫  

𝑡

0

− {𝛽𝐼 + 𝑑1𝑃 + 𝜇 − 𝑟 (1 −
𝑆 + 𝐼 + 𝑅

𝑘
)} 𝑑𝑡 
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or 

𝑆(𝑡) ≥ 𝑆(0)exp [∫  
𝑡

0

 − {𝛽𝐼 + 𝑑1𝑃 + 𝜇 − 𝑟 (1 −
𝑆 + 𝐼 + 𝑅

𝑘
)} 𝑑𝑡] 

⟹ 𝑆(𝑡) > 0. 

From the second equation of System (5.1), we get, 

𝐼(𝑡) ≥ 𝐼(0)exp [∫  
𝑡

0

  {𝛽𝑆𝐼 − (𝑔 + 𝜇)𝐼 − 𝑑2𝐼𝑃}𝑑𝑡] 

⟹ 𝐼(𝑡) > 0. 

From the third equation of System (5.1), we get, 

𝑃(𝑡) ≥ 𝑃(0)exp [∫  
𝑡

0

 − 𝛼𝑃𝑑𝑡] 

⟹ 𝑃(𝑡) > 0. 

From the fourth equation of System (5.1), we get, 

𝑅(𝑡) ≥ 𝑅(0)exp [∫  
𝑡

0

  {−(𝜇 + 𝜈)𝑅}𝑑𝑡] 

⟹ 𝑅(𝑡) > 0. 

Hence, the theorem stands proved. 

 

Theorem 5.2 (Boundedness): All solutions of System (5.1) that start in R+
4  are uniformly 

bounded in the solution set Ω = {(𝑆, 𝐼, 𝑃, 𝑅): 0 ≤ 𝑆 ≤
𝑟𝑘

4𝜇
, 0 ≤ 𝐼 ≤

𝑟𝑘

4𝜇
, 0 ≤ 𝑅 ≤

𝑟𝑘

4𝜇
, 0 ≤ 𝑃 ≤

𝑟𝑘θ

4𝛼𝜇
, 0 ≤ 𝑆 + 𝐼 + 𝑅 ≤

𝑟𝑘

4𝜇
}. 

 

Proof: Let 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡), 𝑅(𝑡) be the solution of System (5.1). 

Let 𝑊 = 𝑆 + 𝐼 + 𝑅. 
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Then, 

𝑑𝑊

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝑘
) − 𝜇(𝑆 + 𝐼 + 𝑅) − 𝑑1𝑆𝑃 − 𝑑2𝐼𝑃 − 𝑟𝑆 (

𝐼+𝑅

𝑘
), 

⟹
𝑑𝑊

𝑑𝑡
+ 𝜇𝑊 ≤ 𝑟𝑆 (1 −

𝑆

𝑘
). 

Let 𝑓(𝑆) = 𝑟𝑆 (1 −
𝑆

𝑘
). 

Therefore, 
𝑑𝑓

𝑑𝑆
= 𝑟 −

2𝑟𝑆

𝑘
 and 

𝑑2𝑓

𝑑𝑆2
= −

2𝑟

𝑘
. 

Now, 
𝑑𝑓

𝑑𝑆
= 0 ⟹ 𝑟 −

2𝑟𝑆

𝑘
= 0 ⟹ 𝑆 =

𝑘

2
. 

Then,  
𝑑2𝑓

𝑑𝑆2
= −

2𝑟

𝑘
< 0, which gives a maximum value for 𝑆. 

Therefore, 
𝑑𝑊

𝑑𝑡
+ 𝜇𝑊 ≤

𝑟𝑘

4
⟹𝑊 ≤

𝑟𝑘

4𝜇
+ (𝑊0 −

𝑟𝑘

4𝜇
) 𝑒−𝜇𝑡. 

As 𝑡 → ∞, 𝑒−𝜇𝑡 → 0⟹𝑊 →
𝑟𝑘

4𝜇
⟹𝑊(𝑡) ≤

𝑟𝑘

4𝜇
 and hence 𝑊 is bounded. 

Clearly 𝐼(𝑡) is bounded above by 
𝑟𝑘

4𝜇
. Therefore, the third equation of System (5.1) becomes 

𝑑𝑃

𝑑𝑡
+ 𝛼𝑃 ≤

𝑟𝑘𝜃

4𝜇
, 

⟹ 𝑃 ≤
𝑟𝑘𝜃

4𝛼𝜇
+ (𝑃0 −

𝑟𝑘𝜃

4𝛼𝜇
) 𝑒−𝛼𝑡. 

where 𝑃0 is the initial amount of pesticide used. 

As 𝑡 → ∞, 𝑒−𝛼𝑡 → 0⟹ 𝑃 →
𝑟𝑘𝜃

4𝛼𝜇
⟹ 𝑃(𝑡) ≤

𝑟𝑘𝜃

4𝛼𝜇
 and hence, 𝑃 is bounded for any initial value 

and for all 𝑡. Therefore 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡), 𝑅⃗ (𝑡) are uniformly bounded. 

 

Note: From Theorem 5.2, it is clear that each population is bounded above. So, the total 

population 𝑁(𝑡) is also bounded above whenever time 𝑡 → ∞. 
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5.4.2 Existence and Uniqueness of Solution for the SIPR Model 

In this section, uniqueness theorem and existence of System (5.1) is formulated. Following the 

method used by Samuel et al. [159], the proof of the following theorems is performed. 

“The general first-order ODE is in the form:” 

𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0.          (5.3) 

The questions which can be asked as follows: 

1. Under what conditions the solution of Equation (5.3) exists? 

2. Under what conditions Equation (5.3) has a unique solution? 

To answer the above question, we use the following theorem. 

 

Theorem 5.3 (Uniqueness of Solution): Let D denote the region: 

|𝑡 − 𝑡0| ≤ 𝑎, ∥∥𝑥 − 𝑥0∥∥ ≤ 𝑏, 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), 𝑥0 = (𝑥10, 𝑥20, 𝑥30, … , 𝑥𝑛0).      (5.4) 

Suppose the function 𝑓(𝑡, 𝑥) satisfies the Lipschitz condition: 

   ∥∥𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)∥∥ ≤ 𝑀∥∥𝑥1 − 𝑥2∥∥,                                             (5.5) 

and whenever (𝑡, 𝑥1) and (𝑡, 𝑥2) belong to the region 𝐷 and 𝑀 represent a positive constant.  

Then, ∃ a constant 𝛿 > 0 such that there exists a unique continuous vector solution 𝑥(𝑡) of the 

system (5.3) in the interval |𝑡 − 𝑡0| < 𝛿. 

 

Remark 1: It is important to note that condition (5.5) is satisfied by the requirement that: 

∂𝑓𝑖
∂𝑥𝑗

, 𝑖, 𝑗 = 1,2, … 𝑛, 

is continuous and bounded in the region 𝐷. 
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Lemma 5.1: If 𝑓(𝑡, 𝑥) has continuous partial derivative 
∂𝑓𝑖

∂𝑥𝑗
 on a bounded closed convex domain 

ℛ (i.e., convex set of real numbers), where ℛ is used to denotes real numbers, then it satisfies a 

Lipschitz condition in ℛ. 

Our interest is in the domain: 1 ≤ 𝜖 ≤ ℛ.                       (5.6) 

So, we look for a bounded solution of the form 0 < ℛ < ∞. We now prove the following 

existence theorem. 

 

Theorem 5.4. (Existence of solution): Let D denote the region defined in (5.4) such that (5.5) 

and (5.6) holds. Then, there exists a solution of the equations of System (5.1) which is bounded 

in the region D. 

Proof: From System (5.11), we define the following: 

𝑓1 = 𝑟𝑆 (1 −
𝑆+𝐼+𝑅

𝑘
) − 𝛽𝑆𝐼 − 𝑑1𝑆𝑃 −  𝜇𝑆 + 𝑣𝑅,          (5.7)  

𝑓2 = 𝛽𝑆𝐼 − (𝑔 + 𝜇)𝐼 − 𝑑2𝐼𝑃,                       (5.8) 

𝑓3 = 𝜃𝐼 − 𝛼𝑃,                          (5.9) 

𝑓4 = 𝑔𝐼 − (µ + 𝑣)𝑅,                                (5.10) 

 

We show that 
∂𝑓𝑖

∂𝑥𝑗
, 𝑖, 𝑗 = 1,2, … , 𝑛 are continuous and bounded. We consider the following partial 

derivatives for all the model equations: 

From Equation (5.7): 

|
∂𝑓1

∂𝑆
| = |𝑟 (1 −

2𝑆+𝐼+𝑅

𝑘
) − 𝛽𝐼 − 𝑑1𝑃 − 𝜇| < ∞, |

∂𝑓1

∂𝐼
| = |

−(𝑟+𝛽𝑘)𝑆

𝑘
| < ∞, 

|
∂𝑓1

∂𝑃
| = |−𝑑1𝑆| < ∞, |

∂𝑓1

∂𝑅
| = |

−𝑟𝑆

𝑘
− 𝜈| < ∞. 

From Equation (5.8): 

|
∂𝑓2

∂𝑆
| = |𝛽𝐼| < ∞, |

∂𝑓2

∂𝐼
| = |𝛽𝑆 − (𝑔 + 𝜇) − 𝑑2𝑃| < ∞, 
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|
∂𝑓2

∂𝑃
| = |−𝑑2𝐼| < ∞, |

∂𝑓2

∂𝑅
| = 0 < ∞. 

From Equation (5.9): 

|
∂𝑓3

∂𝑆
| = 0 < ∞, |

∂𝑓3

∂𝐼
| = |𝜃| < ∞, 

|
∂𝑓3

∂𝑃
| = | − 𝛼| < ∞, |

∂𝑓3

∂𝑅
| = 0 < ∞.  

From Equation (5.10): 

|
∂𝑓4

∂𝑆
| = 0 < ∞, |

∂𝑓4

∂𝐼
| = |𝑔| < ∞, 

|
∂𝑓4

∂𝑃
| = 0 < ∞, |

∂𝑓4

∂𝑅
| = | − (𝜇 + 𝜈)| < ∞. 

We have clearly established that all these partial derivatives are continuous and bounded in 𝐷. 

Hence, by Theorem (4.2.1), there exists a unique solution of the system (5.1) in the region 𝐷. 

Hence, the positivity (Theorem 5.1), boundedness (Theorem 5.2) and the uniqueness existence 

(Theorem 5.3) of System (5.1) implies that the model is biologically valid and well behaved. 

The main aim of the theoretical analysis of the SIR model under pesticide application is to 

establish the model's mathematical stability and its implications for ecological and 

epidemiological dynamics. To ensure the boundedness and positivity of the answers, researchers 

must first ensure that the model remains biologically true over time. They prove that the system 

always gives positive answers, even if the starting point is positive.  

 

5.4.3 Analysis of the equilibrium points, including the trivial, disease-free, and endemic 

equilibrium states 

The trivial point, disease-free point, and endemic point are observed in equilibrium point 

analysis. The trivial equilibrium, when all populations are zero, is mathematically intriguing but 

not biologically interesting. Disease-free equilibrium (DFE) is attained when there are no 

diseases in the plant population. The DFE's stability, shown by the fundamental ecosystem term 

𝑅0, governs disease elimination circumstances. The disease is assumed to have died out when 𝑅0 

is smaller than one since the DFE is stable [194]. 
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For finding the equilibrium points, we set the right-hand side of System (5.1) equals to zero as 

follows: 

 
𝑑𝑆

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆+𝐼+𝑅

𝑘
) − 𝛽𝑆𝐼 − 𝑑1𝑆𝑃 − 𝜇𝑆 + 𝜈𝑅 = 0, 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝑔 + 𝜇)𝐼 − 𝑑2𝐼𝑃 = 0, 

 
𝑑𝑃

𝑑𝑡
= 𝜃𝐼 − 𝛼𝑃 = 0,           (5.11)  

 
𝑑𝑅

𝑑𝑡
= 𝑔𝐼 − (𝜇 + 𝜈)𝑅 = 0. 

On solving the above equations, then three equilibrium points in the coordinate (𝑆∗, 𝐼∗, 𝑃∗, 𝑅∗) 

are obtained and are given as follows: 

(i) The trivial equilibrium point 𝑇0(0,0,0,0). 

(ii) Disease-free equilibrium point 𝑇1 (
𝑘(𝑟−𝜇)

𝑟
, 0,0,0). It is seen that the equilibrium point 𝑇1 

consistently exists if and only if 𝑟 > 𝜇. 

(iii) The disease-endemic equilibrium point 𝑇2(𝑆
∗, 𝐼∗, 𝑃∗, 𝑅∗) which is explicitly expressed in 

term of 𝐼∗ as follows: 

𝑆∗ =
1

𝛼𝛽
[𝑑2𝜃𝐼

∗ + 𝛼(𝑔 + 𝜇)], 𝑃∗ =
𝜃

𝛼
𝐼∗, 𝑅∗ =

𝑔𝐼∗

𝜇+𝜈
 and 𝐼∗ is a positive root of the following 

equation: 

Ψ1(𝐼
∗)2 +Ψ2𝐼

∗ +Ψ3 = 0                    (5.12) 

Where: 

Ψ1 = 
𝛼𝑑2𝜃(𝑟+𝛽)+𝑑1𝑑2𝑘𝜃

2

𝛼2𝛽
+ 𝑟 (

𝑑2𝜃

𝛼𝛽
)
2

−
𝛼𝛽𝑟𝑔𝑑2𝜃

µ+𝑣
, 

Ψ2 =
𝛼𝛽[𝛼(𝛼+𝛽)(𝑔+𝜇)+𝑘𝜇𝜃+𝑘𝑑1𝜃(𝑔+𝜇)]+𝛼𝑑2𝜃[(𝑟+1)(𝑔+𝜇)−𝛽𝑟]

(𝛼𝛽)2
+
𝛼𝛽𝑔[𝛼𝛽𝑘𝑣−𝛼𝑟(𝑔+𝜇)]

µ+𝑣
, 

Ψ3 = 
(𝑔+µ)[𝑘𝜇+𝛼2𝛽( (𝑔+µ)−𝛽𝑘]

𝛽
. 
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Equation (5.12) implies, 

𝐼∗2 +𝑀1𝐼
∗ +𝑀2 = 0,         (5.13) 

where 𝑀1 = Ψ2/Ψ1, 𝑀2 = Ψ3/Ψ1. 

From equation (5.13), 𝐼∗ > 0 if one of the following conditions holds: 

(a) 𝑀1 < 0,𝑀2 < 0, 

(b) 𝑀1 < 0,𝑀2 > 0 and 𝑀1
2 − 4𝑀2 > 0, 

(c) 𝑀1 > 0,𝑀2 < 0. 

 

Real and positive solutions of 𝐼∗ give 𝑆∗ > 0, 𝑃∗ > 0, 𝑅∗ > 0. Due to the complexity of the 

model, it is difficult to determine the analytical solutions. So, we proceed our discussions using 

numerical techniques. 

It also demonstrates the ecosystem factors that allow the disease to persist despite management 

efforts. This is endemic equilibrium. The ecosystem-plant coexistence of susceptible, infected, 

and recovered plants with long term pesticide usage is demonstrated by the stability of this 

equilibrium, which is affected by factors like the application of pesticide and plant resistance 

very early on.  

 

5.4.4 Calculation and interpretation of the basic reproduction number (𝑹𝟎) and its 

implications for disease control. 

In this section, the basic reproduction number 𝑅0 is determined. This can be characterised as the 

average number of secondary infections caused by typical cases of infection in the general 

population, which is vulnerable to everyone. 𝑅0 is basically used to measure the potential for 

transmission of a disease. 

 

 

 



 

 
121 

Theorem 5.5: The basic reproduction number of the system (5.1) is given by 𝑅0 =
𝛽𝑘(𝑟−𝜇)

𝑟(𝑔+𝜇)
. 

Proof: The Basic reproduction number 𝑅0 is calculated with the help of the next generation 

matrix method which is given by 𝐺 = 𝐹𝑉−1 [94], where 𝐹 is the newly formed infection matrix, 

𝑉 is the transmitted infection matrix and 𝑉−1 is the inverse of 𝑉.  

Then, 

𝐹𝑖 = (
𝛽𝑆𝐼
0
0

) ,  𝑉𝑖 = (
(𝑑2𝑃 + 𝑔 + 𝜇)𝐼

𝛼𝑃 − 𝜃𝐼
𝑅(𝜇 + 𝜈) − 𝑔𝐼

) , where 𝑖 = 1,2,3. 

Therefore, we get: 

𝐹 = (
𝛽𝑆 0 0
0 0 0
0 0 0

) ,  𝑉 = (
𝑑2𝑃 + 𝑔 + 𝜇 𝑑2𝐼 0

−𝜃 𝛼 0
−𝑔 0 𝜇 + 𝜈

). 

At the disease-free equilibrium 𝑇1, we have 

𝐹 = (

𝛽𝑘(𝑟−𝜇)

𝑟
0 0

0 0 0
0 0 0

) , 𝑉 = (
𝑔 + 𝜇 0 0
−𝜃 𝛼 0
−𝑔 0 𝜇 + 𝜈

) ⇒ 𝑉−1 =

(

 
 

1

𝑔+𝜇
0 0

θ

𝛼(𝑔+𝜇)

1

𝛼
0

−𝑔

(𝑔+𝜇)(𝜇+𝜈)
0

1

𝜇+𝜈)

 
 

. 

Hence, 𝐺 = 𝐹𝑉−1 = (

𝛽𝑘(𝑟−𝜇)

𝑟(𝑔+𝜇)
0 0

0 0 0
0 0 0

) and the basic reproduction number is the dominant 

eigenvalue of G which is given by: 𝑅0 =
𝛽𝑘(𝑟−𝜇)

r(𝑔+𝜇)
.        (5.14) 

The theoretical application of the eco-epidemiological SIR model under pesticide applications is 

heavily dependent on calculating the basic reproduction number, denoted as 𝑅0. 

According to the findings of the studies, 𝑅0 is the average number of secondary cases that can be 

caused by a single infected plant in a population that is entirely susceptible to the disease. It is 

the underlying parameter for this number that determines the likelihood that a disease would 

spread through a population of plants. The model expresses 𝑅0 as 𝑅0 =
𝛽𝑘(𝑟−𝜇)

r(𝑔+𝜇)
, where 𝑟 growth 

rate of the plant population, 𝜇 the death rate due to pests, 𝑔 the recovery rate due to pesticide 
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application, 𝛽 the contact rate between susceptible and infected plants, and 𝑘 the environmental 

carrying capacity. 

Conducting an analysis of 𝑅0 can be beneficial in gaining a better understanding of the dynamics 

of disease control and dissemination. The disease cannot continue to exist in the population if the 

value of 𝑅0 is less than 1. This signifies the complete eradication of the disease from the 

population. Consequently, this indicates that the existing rates of pesticide application and plant 

healing are adequate to stop or at least reduce the progress of the disease. A value of 𝑅0 greater 

than one, on the other hand, indicates that the disease has the potential to spread across the plant 

population. As a result, in order to reduce the infection rate or increase the rate at which infected 

plants heal, it is necessary to use control methods that are more active or targeted. 𝑅0 = 1 

functions as a disease threshold, which means that the disease continues to be active and stable, 

but the likelihood of an outbreak or epidemic of the disease is extremely low [30]. 

 

5.5 Stability Analysis 

In order to study the stability properties, the general Jacobian matrix 𝐽 of the system (5.1) is 

reported as follows: 

 

𝐽 =  

[
 
 
 
 𝐽11

−(𝑟+𝛽𝑘)𝑆

𝑘
−𝑑1𝑆

𝑘𝑣−𝑟𝑆

𝑘

𝛽𝐼 𝐽22 −𝑑2𝐼 0
0 𝜃 𝐽33 0
0 𝑔 0 𝐽44 ]

 
 
 
 

 ,      (5.15) 

Where: 

   𝐽11 = 𝑟 (1 − 
2𝑆+𝐼+𝑅

𝑘
) −  𝛽𝐼 − 𝑑1𝑃 − 𝜇, 

   𝐽22 =  𝛽𝑆 − (𝑔 + 𝜇) − 𝑑2𝑃, 

   𝐽33 = −𝛼, 

   𝐽44 = −(𝜇 + 𝑣). 
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5.5.1 Stability of trivial equilibrium point  

Theorem 5.6: The trivial equilibrium point 𝑇0(0,0,0,0) is stable if  𝑟 < 𝜇 and unstable if  𝑟 > 𝜇. 

Proof: The Jacobian matrix of the system (5.1) at  𝑇0 is given by: 

  𝐽𝑇0 = [

𝑟 − µ 0 0 𝑣
0 −(𝑔 + µ) 0 0
0 𝜃 −𝛼 0
0 𝑔 0 −(𝜇 + 𝑣)

]. 

The eigenvalues of the above matrix are given as follows:  

𝜆1 = 𝑟 − 𝜇, λ2 = −(𝑔 + 𝜇), 𝜆3 = −𝛼  and  𝜆4 = −(µ + 𝑣). 

Clearly, 𝜆2, 𝜆3, 𝜆4 < 0. If  𝑟 − 𝜇 < 0, then 𝜆1 < 0 and the equilibrium 𝑇0  is stable and unstable 

otherwise.  

Hence, 𝑇0 is stable if  𝑟 < 𝜇 and unstable if  𝑟 > 𝜇. 

 

5.5.2 Local stability of the disease-free equilibrium 

 

Theorem 5.7: The disease-free equilibrium 𝑇1 (
𝑘(𝑟−𝜇)

𝑟
, 0,0,0) is locally asymptotically stable if 

𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof: The Jacobian matrix of the system (5.1) at  𝑇1 is given by: 

 

𝐽𝑇1 = 

[
 
 
 
 −(𝑟 − µ)

−(𝑟+𝛽𝑘)(𝑟−𝜇)

𝑟

−𝑑1𝑘(𝑟−𝜇)

𝑟
𝑣 − (𝑟 − 𝜇)

0
𝛽𝑘(𝑟−𝜇)

𝑟
− (𝑔 + µ) 0 0

0 𝜃 −𝛼 0
0 𝑔 0 −(µ + 𝑣) ]

 
 
 
 

.    (5.16) 

Eigenvalues of the above matrix (5.16) are: 

𝜆1 = −(𝑟 − 𝜇), 𝜆2 = 
𝛽𝑘(𝑟−𝜇)

𝑟
− (𝑔 + µ),  𝜆3 = −𝛼  and  𝜆4 = −(µ + 𝑣).    

Clearly, 𝜆1, 𝜆3, 𝜆4 < 0. 

Now, for the system (5.1) to be stable at 𝑇1, we must have  𝜆2 < 0,   

i.e.,  
𝛽𝑘(𝑟−𝜇)

𝑟
− (𝑔 + µ) < 0, 
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=>
𝛽𝑘(𝑟−𝜇)

𝑟
< (𝑔 + µ), 

                        => 
𝛽𝑘(𝑟−𝜇)

𝑟(𝑔+µ)
< 1  , 

                        => 𝑅0 < 1.  

Thus, 𝜆2 < 0 if 𝑅0 < 1, which implies all the eigenvalues of the characteristic equation (5.16) 

have a negative real part. Hence the equilibrium 𝑇1 is locally asymptotically stable. 

 

5.5.3 Local stability of the endemic equilibrium 

 

Theorem 5.8: The endemic equilibrium 𝑇2(𝑆
∗, 𝐼∗, 𝑃∗, 𝑅∗)  is locally asymptotically stable if the 

following condition holds [164]: 

 𝐴1 > 0,  𝐴3 > 0, 𝐴4 > 0  and 𝐴1𝐴2𝐴3 > 𝐴3
2 + 𝐴1

2𝐴4,                 (5.17) 

Where: 

 𝐴3 = 𝑟 (
2𝑆∗+𝐼∗+𝑅∗

𝑘
− 1 ) −  𝛽(𝑆∗ − 𝐼∗) + (𝑑1+𝑑2)𝑃

∗ + (3𝜇 + 𝑔 + 𝛼 + 𝑣), 

𝐴2 = 𝐺1 + 𝛼(µ + 𝑣) − (𝛼 + µ + 𝑣)𝐺2 + 
𝛽(𝑟+𝛽𝑘)𝑆∗𝐼∗

𝑘
, 

𝐴1 = 𝛼(µ + 𝑣)𝐺3 + (𝛼 + µ + 𝑣) (𝐺1 +
𝛽(𝑟+𝛽𝑘)𝑆∗𝐼∗

𝑘
) + 𝑑1𝛽𝜃𝑆

∗𝐼∗ − 𝑑2𝜃𝐼
∗ −

𝑔𝛽(𝑘𝜈−𝑟𝑆∗)𝐼∗

𝑘
, 

𝐴0 = 𝛼(µ + 𝑣) (𝐺1 +
𝛽(𝑟+𝛽𝑘)𝑆∗𝐼∗

𝑘
) − (µ + 𝑣)(𝑑2𝜃𝐼

∗ − 𝑑1𝛽𝜃𝑆
∗𝐼∗) −

𝛼𝑔𝛽(𝑘𝜈−𝑟𝑆∗)𝐼∗

𝑘
. 

Here, 𝐺1 = (𝛽𝑆
∗ − 𝑑2𝑃

∗ − 𝑔 − 𝜇) (𝑟 − 𝜇 −  𝛽𝐼∗ − 𝑑1𝑃
∗ − 

(2𝑆∗+𝐼∗+𝑅∗)𝑟

𝑘
), 

          𝐺2 = 𝛽(𝑆
∗ − 𝐼∗) + (𝑟 − 𝑔 − 2𝜇) − (𝑑1+𝑑2)𝑃

∗ − 
(2𝑆∗+𝐼∗+𝑅∗)𝑟

𝑘
, 

          𝐺3 =
(2𝑆∗+𝐼∗+𝑅∗)𝑟

𝑘
+ 2𝜇 + 𝑔 + (𝑑1+𝑑2)𝑃

∗ −  𝛽(𝑆∗ − 𝐼∗) −  𝑟. 
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Proof: The characteristic roots corresponding to the equilibrium 𝑇2 are given by the equation: 

𝜉4 + 𝐴3𝜉
3 + 𝐴2𝜉

2 + 𝐴1𝜉 + 𝐴0 = 0.                (5.18) 

By Routh-Hurwitz criterion, the equation will have negative roots if 

𝐴1 > 0,  𝐴3 > 0, 𝐴4 > 0  and 𝐴1𝐴2𝐴3 > 𝐴3
2 + 𝐴1

2𝐴4.                 (5.19) 

Hence 𝑇2 is locally asymptotically stable if the above conditions are satisfied and unstable 

otherwise. 

 

5.6 Sensitivity Analysis and Hopf Bifurcation 

5.6.1 Sensitivity analysis performed on 𝑹𝟎 and the implications of the findings 

The basic reproduction number 𝑅0 is a function of five parameters 𝛽, 𝑘, 𝑟, 𝜇, 𝑔. To understand the 

contribution of each of the parameters in the Reproduction number 𝑅0 as given by (5.14), a 

sensitivity analysis [168] is being conducted which let us know how significant each parameter is 

to disease transmission. 

 

Sensitivity index of the system is given as: 

                                               𝑆ℎ
𝑅0 = 

ℎ

𝑅0

𝜕𝑅0

𝜕ℎ
.         (5.20) 

The sensitivity indices of the reproduction number with respect to 𝛽, 𝑘, 𝑟, 𝜇, 𝑔 are given by: 

𝑆𝛽
𝑅0 = 1,  𝑆𝑘

𝑅0 = 1,  𝑆𝑟
𝑅0 =

𝜇

𝑟 − 𝜇
,  𝑆𝜇

𝑅0 =
−𝜇(𝑔 + 𝑟)

(𝑟 − 𝜇)(𝑔 + 𝜇)
,  𝑆𝑔

𝑅0 =
−𝑔

𝑔 + 𝜇
. 

The index table is shown in Table 5.3. 
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Table 5.3: Sensitivity index table. 

Parameters Sensitivity index Sensitivity index values 

𝛽 1 1/𝑑𝑎𝑦 

𝑘 1 1/𝑚2 

𝑟 
𝜇

𝑟 − 𝜇
 0.029/𝑑𝑎𝑦 

𝜇 
−𝜇(𝑔 + 𝑟)

(𝑟 − 𝜇)(𝑔 + 𝜇)
 

−0.938/𝑑𝑎𝑦 

𝑔 
−𝑔

𝑔 + 𝜇
 −0.091/𝑑𝑎𝑦 

 

From Table 5.3, it can be seen that the sensitivity indices change in values with the change in 

values of parameters 𝑟, 𝜇, and 𝑔 except for 𝛽, 𝑘 which has value 1, a constant value i.e., it is 

independent of any parameter. The sensitivity index 𝑆𝑟
𝑅0 is positive i.e., the value of 𝑅0 increases 

as the value of 𝑟 increase and the sensitivity indices 𝑆𝜇
𝑅0 and 𝑆𝑔

𝑅0 are negatives i.e., the value of 

𝑅0 decreases as the value of 𝜇 and 𝑔 increases. The remaining sensitivity indices 𝑆𝛽
𝑅0 and 𝑆𝑘

𝑅0 are 

constants i.e., for any increase or decrease in values of 𝛽 and 𝑘, the value of 𝑅0 remain constant 

throughout. Figure 5.1 and 5.2 describes that the number of infected plants decreases with an 

increase in values of a specific parameter: 𝜇 and 𝑔. 

The purpose of this research is to get an understanding of the manner in which critical 

components influence the propagation of disease throughout the plant population. This will be 

accomplished by doing a sensitivity analysis on the basic reproductive number, which is denoted 

by 𝑅0. It is critical for the ecological system to be dependent on the calculation of sensitivity 

indices for various parameters. These parameters include the contact rate between susceptible 

and infected plants (𝛽), the carrying capacity of the environment (𝑘), the intrinsic growth rate of 
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the plant population (𝑟), the death rate of plants due to pests (𝜇), and the recovery rate of infected 

plants (𝑔). After taking this into consideration, the sensitivity parameter of the plant population 

is presented. When it comes to the process of disease transmission, it is possible to make use of 

sensitivity indices in order to ascertain which components are the most significant. The outcomes 

of these experiments illustrate what happens to 𝑅0 when the values of the parameters are 

changed with respect to the model. 

The findings demonstrate how the growth of plant populations contributes to the transmission of 

disease by showing that the value of 𝑅0 increases as the natural growth rate (𝑟) increases during 

the study. On the other hand, the value of 𝑅0 decreases as both the death rate (𝜇) and the 

recovery rate (𝑔) increase. This illustrates that the disease can be prevented from spreading by 

increasing the pace at which pests die or by increasing the rate at which plants recover 

themselves.  

Furthermore, no changes have been made to the sensitivity measures for the contact rate (𝛽) and 

the carrying capacity of the ecosystem (𝑘). As a result, the changes in these factors do not 

directly impact 𝑅0. In light of this, there is a pressing need for additional study to be conducted 

on the ways in which these factors influence the capacity of the disease to spread. This serves to 

demonstrate the intricate relationship that exists between the rate of disease transmission and the 

dynamics of plant populations. 
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Figure 5.1: Impact of the variation of 𝑔 in the number of infected plant 

population (difference not visible). 

 

Figure 5.2: Impact of the variation of 𝜇 in the number of infected plant 

population. 
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5.7 Hopf bifurcation, its significance in the model, and the conditions 

The investigation into Hopf bifurcation is another important aspect of the study. It aids in the 

identification of circumstances that result in periodic disease outbreaks by gathering data on 

conditions within the model. This can depend on a number of factors, including the application 

of pesticides and the values of contact rate (𝛽) and recovery rate (𝑔). Identifying stable dynamics 

that transition into oscillations at specific points is crucial for effectively managing and 

forecasting long-term diseases. This information is essential for implementing appropriate 

control and prediction measures. 

In the mathematical theory of bifurcation, the term Hopf bifurcation refers to the local 

emergence or disappearance of periodic solutions or limit cycles (self-excited oscillations) from 

equilibrium when a parameter exceeds a critical value. This is the simplest bifurcation that does 

not involve only equilibria and belongs to what is sometimes called dynamic (rather than static) 

bifurcation theory. In differential equations, Hopf bifurcations usually occur when the complex 

conjugate pairs of eigenvalues of the linearized flow at a fixed point are purely imaginary. This 

means that the Hopf bifurcation can only occur in this two-dimensional or higher system. When 

a stable limit cycle surrounds an unstable equilibrium point, the bifurcation is called a 

supercritical Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium 

point, then the bifurcation is called a subcritical Hopf bifurcation. A Hopf bifurcation is also 

known as a Poincar´e-Andronov-Hopf bifurcation and is named after Henri Poincar´e, Aleksandr 

Andronov, and Eberhard Hopf [111]. 

Researchers are particularly interested in Hopf bifurcation when analysing the dynamics of eco-

epidemiological models. When a parameter reaches a critical value, the mathematical event leads 

to strange solutions or limit cycles from a steady state. Researchers use SIR models in 

conjunction with a pesticide model to study Hopf splits. It emphasises the significance of 

understanding disease transmission and disease control in plant population dynamics [196]. 

In this particular study, the infective induce rate of pesticides (𝜃) is considered to be one of the 

most crucial characteristics that are utilised to initiate the investigation of pesticides. This 

phenomenon, known as Hopf bifurcation, which occurs when the dynamics of a plant population 

undergo a transition from a steady state to random leaps that exceed a predetermined threshold 

value of 𝜃, where 𝜃𝐻 represents the prescribed value. With the implementation of the 
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framework, the situation has significantly changed. This has altered our approach to dealing with 

plant diseases and preventing their significant spread. As a means of avoiding unanticipated 

effects on the dynamics of plant populations, it is imperative that the rate of pesticide application 

be carefully controlled [197]. 

The analysis also includes computer simulations to provide a more comprehensive illustration of 

the Hopf bifurcation rate of the model. This is performed in order to provide a more accurate 

representation of the model. The findings of the simulation provide evidence in support of the 

findings of this hypothesis by demonstrating how changing the infective trigger rate of the 

pesticides has an influence on the stability and behaviour of the system. This evidence is 

provided by the simulation's results.  

According to Routh-Hurwitz theorem, the endemic equilibrium 𝑇2(𝑆
∗, 𝐼∗, 𝑃∗, 𝑅∗) is locally 

asymptotically stable if 𝐴1 > 0,  𝐴3 > 0, 𝐴4 > 0  and ∆= 𝐴1𝐴2𝐴3 − 𝐴3
2 − 𝐴1

2𝐴4 > 0. Wei-Min 

Liu [119] introduced an equivalent condition for simple Hopf bifurcation without determining 

eigenvalues. According to the theorem by Liu, the endemic equilibrium 𝑇2 undergoes a simple 

Hopf bifurcation if: 

 CH1: 𝐴1(𝜃
𝐻), 𝐴2(𝜃

𝐻), 𝐴3(𝜃
𝐻), 𝐴4(𝜃

𝐻) > 0 and ∆(𝜃𝐻) = 0. 

                         CH2: 
𝑑∆(𝜃𝐻)

𝑑𝜃
≠ 0.  

Considering 𝛥 as a function of 𝜃, it is obtained that for the parameters in Table 4 with 𝑑1 = 0.5, 

at 𝜃 = 𝜃𝐻 ≈ 0.805340,  𝛥 = 0 (Figure 3). At the point 𝜃 = 𝜃𝐻 ≈ 0.805340, 
𝑑∆(𝜃𝐻)

𝑑𝜃
≈

−0.572197 ≠ 0 (Figure 5.3). Also, 𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0, 𝐴4 > 0  at the point 𝜃 = 𝜃𝐻 

(Figure 5.4). Hence conditions CH1, CH2 are satisfied and the disease-endemic equilibrium 

undergoes a simple Hopf bifurcation at 𝜃 = 𝜃𝐻.  At 𝜃 = 𝜃𝐻, eigenvalues of the Jacobian matrix 

at the disease-endemic equilibrium are −0.874414,−0.110232, ±1.05103 𝑖, which also 

confirms the existence of Hopf bifurcation. In Figure 5.5, the phase portraits are drawn for 𝜃 =

0.78/𝑑𝑎𝑦 and 𝜃 = 0.84/𝑑𝑎𝑦, which clearly depicts the existence of limit cycles.   
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Figure 5.3: Plot of ∆= 𝐴1𝐴2𝐴3 − 𝐴3
2 − 𝐴1

2𝐴4 and 
𝑑∆

𝑑𝜃
 as functions of 𝜃 (Parameters are taken 

from Table 5.4). 

 

 

 Figure 5.4: Plot of 𝐴1, 𝐴2, 𝐴3, 𝐴4 as functions of 𝜃 (Parameters are taken from Table 5.4). 
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Figure 5.5: Phase portrait of the system (5.1) for 𝜃 = 0.78/𝑑𝑎𝑦 and 𝜃 = 0.84/𝑑𝑎𝑦 

(other parameters are considered as mentioned in Table 5.4 with 𝑑1 = 0.5). 

 

5.8. Numerical Simulations  

5.8.1 Numerical methods and software used for simulation 

In this section, the proposed model is analysed numerically to observe the behaviour of the 

spread of disease and the role of control measures on the decline of the disease. Numerical 

analysis is done in MATLAB R2015a. This tool is renowned for its effectiveness in handling 

mathematical figures, graphics, and code. For numerical simulations, we set 𝑆(0) = 2, 𝐼(0) =

0.9, 𝑅(0) = 0.5 and 𝑃(0) = 0.7 and the estimated values of parameters are shown in Table 4. 

The original settings for this scenario were carefully chosen to resemble the real pesticide 

application and the presence of a disease in a certain percentage of the plant population. It is 

observed that the trajectories of the system (5.1), initiating from the mentioned initial points, 

approach to the disease endemic equilibrium 𝐸∗ = (8.3238, 3.1797, 7.9527, 0.2891) (Figure 

5.6).  
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5.8.2 Presentation and interpretation of simulation results 

Table 5.4: Parameter values used for Simulation 

Variables Definitions Value 

𝑟 Intrinsic growth rate of the plant populations 3.5/𝑑𝑎𝑦 

𝑘 Environmental carrying capacity 25/𝑚2 

𝛽 Contact rate between susceptible and infected plants 0.3/𝑑𝑎𝑦 

𝜇 Death rate of plants due to pest 0.1/𝑑𝑎𝑦 

𝑣 Rate of infected plants which have recovered and returned to 

the susceptible class. 

0.01/𝑑𝑎𝑦 

𝑑1 Contact rate between susceptible plants and pesticides 0.1/𝑑𝑎𝑦 

𝑑2 Contact rate between infected plants and pesticides 0.3/𝑑𝑎𝑦 

𝑔 Recovery rate of infected plants  0.01/𝑑𝑎𝑦 

𝜃 Infective induce rate of pesticides 0.5/𝑑𝑎𝑦 

𝛼 Amount of pesticides used 0.2/𝑑𝑎𝑦 

 

Figure 5.6: Time evolution of system (5.1) with the parameters mentioned in Table 5.4. 
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From Figure 5.6, it can be observed that initially the populations of the infected plants are 

dominant over the susceptible, but with an increase in the amount of pesticides use, the infected 

plants population decreases with increase in time. Both the plant populations, after a certain time, 

become stable with the equilibrium state 𝐸∗. For the same parameter set (Table 5.4) with 𝑑1 =

0.5/𝑑𝑎𝑦 , 𝜃 = 0.5/𝑑𝑎𝑦,  the system (5.1) also has a disease endemic equilibrium  𝐸∗̅̅ ̅ =

 (4.4438, 1.6229, 4.0786, 0.14832). Starting from the equilibrium 𝐸∗̅̅ ̅ , we plot the curve of 

equilibrium using 𝜃 as free parameter. The system (5.1) undergoes a supercritical Hopf 

bifurcation at 𝜃𝐻  =  0.805340/𝑑𝑎𝑦. The nature of the Hopf bifurcation is confirmed with the 

first Lyapunov coefficient, which is found to be  −2.453621 × 10−03. Starting from the Hopf 

point 𝜃𝐻, we plot the Hopf bifurcation curve varying parameters 𝜃 and 𝛼 (Figure 5.7) which 

leads to the detection of Generalised-Hopf (denoted as GH) and Bogdanov-Takens bifurcations 

(denoted as BT) at (𝜃 = 0.818986, 𝛼 = 0.000470) and  (𝜃 = 0.825201, 𝛼 = 0) respectively. 

Near the point GH along the curve, the endemic equilibrium displays varying characteristics, 

transitioning from a supercritical to a subcritical state. This Hopf curve separates the  𝜃-𝛼 space 

into stable and unstable. In the unstable region, all the populations of system (5.1) start 

oscillating periodically, i.e., the populations of the susceptible and infected plants oscillate 

periodically. In Figure 5.8, the oscillating populations of the system (5.1) are represented for 𝜃 =

1/𝑑𝑎𝑦. It is seen that though the plant populations are oscillatory in nature, the susceptible 

populations are dominant over infected, i.e., the populations of the susceptible plants oscillate 

with a higher population than the infected. 
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Figure 5.7: Two-dimensional projection of Hopf bifurcation curve with free 

parameter 𝜃 and 𝛼. 

 

 

Figure 5.8: Time evolution of system (5.1) with the parameters mentioned in 

Table 5.4 and 𝑑1 = 0.5/𝑑𝑎𝑦, 𝜃 = 1/𝑑𝑎𝑦. The dotted line represents the amount 

of pesticides used. 
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Figure 5.9: Two-dimensional projection of Hopf bifurcation curve with free 

parameter 𝑑1 and 𝑑2. 

 

Again, starting from the equilibrium point 𝐸̅*, we compute the curve of equilibria with free 

parameter 𝑑1 which leads to a supercritical Hopf bifurcation at 𝑑1
𝐻 = 0.627463/𝑑𝑎𝑦, where the 

first Lyapunov coefficient is −2.227478 × 10−3. From this point 𝑑1
𝐻

, the two-dimensional 

projection of Hopf bifurcation curve is computed with free parameters  𝑑1 and 𝑑2  (Figure 5.9).  

Figure 5.9 represents a parametric region where the endemic equilibrium shows different 

stability. For the unstable region the endemic equilibrium shows periodic oscillatory behaviour. 

The eco system specifically supports coexistence among all populations for numbers above the 

stated range. In comparison, parameter values below the slope cause the populations of 

susceptible and infected plants to vary on a regular basis. This is a sign of a fragile eco system in 

which populations change over time and never reach a stable state [201]. 

It was also very clear what the numbers of the factors used in the simulations were. Important 

factors for the dynamics of the SIR model simulation were the natural growth rate of the plant 

population (𝑟), the carrying capacity of the environment (𝑘), the contact rate between susceptible 

and infected plants (𝛽), and others. Because they have a direct effect on how the disease grows 
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and is managed in the model, these factors are very important for making sure that the simulation 

results are correct [198].  

 

5.9 Conclusion and Future Directions  

In this paper, a compartmental plant-pesticide model represented by a system of ordinary 

differential equations (ODEs) is proposed and analysed. The plant populations are divided into 

three compartments: the susceptible, the infected, and the recovered population. As a control 

measure, pesticides are applied to all the plants to reduce disease transmission from infected to 

susceptible plants. It is assumed that pesticides affect both the susceptible and infected 

populations. The necessary mathematical analysis for the biological validity of the proposed 

model were presented first. The boundedness theorem (Theorem 5.2) implies that each plant 

population is bounded above for 𝑡 → ∞. The total plant population 𝑁(𝑡) is also bounded above 

whenever  𝑡 → ∞, i.e., the system will not be collapsed due to population explosion. Uniqueness 

and the existence of solutions are one of the most important parts of mathematical modeling. In 

our model, unique solutions exist. If the solutions are not unique then there may exist two 

different equilibria, e.g., two different diseases endemic equilibrium. In that context, different 

initial populations may lead to different equilibrium states. In our study, we also determined a 

domain in which solutions of the system exist. Our proposed system has three feasible 

equilibrium points. The first is the trivial equilibrium point 𝑇0, which always exists and is stable 

if  𝑟 < 𝜇 . If 𝑟 > 𝜇 the equilibrium point 𝑇0 becomes unstable resulting the appearance of the 

disease-free equilibrium (DFE) point 𝑇1 and the endemic equilibrium point 𝑇2. Using next 

generation matrix method, we determined the basic basic reproduction number 𝑅0 of the 

infection. Sensitivity analysis was carried out to understand the relation between basic 

reproduction number 𝑅0 and the associated parameters. Finally, a biologically plausible set of 

parameters was employed to conduct numerical simulations, aimed at comparing with analytical 

findings. Additionally, numerical simulations were used to generate Hopf bifurcation curves 

across various parameter spaces. Summarising our analysis, the results can be outlined as 

follows: 
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i. The disease-free equilibrium (DFE) is locally asymptotically stable whenever the basic 

reproduction number of the epidemic is less than unity. It signifies that the disease has 

been eradicated from the plant population. On the other hand, when the basic 

reproduction number exceeds unity, the DFE becomes unstable, indicating the presence 

of the disease in the plant population. 

ii. The endemic equilibrium is found to be locally asymptotically stable under specific 

conditions which can be obtained utilising the Routh-Hurwitz Criteria. For the 

provided parameters, all the population coexists with an endemic equilibrium  𝐸∗ =

(8.3238, 3.1797, 7.9527, 0.2891). 

iii. The sensitivity indices of the basic reproduction number 𝑅0 are determined and the 

impacts of associated parameters have been analysed. 𝑅0 tend to change its value as the 

value of the associated parameter increases or decreases, and remain constant whenever 

the value of the associated parameters is constant. It is observed that the value of 𝑅0 

increases as the value of 𝑟 increases and the value of 𝑅0 decreases as the value of µ and 

𝑔 increases. 

iv. It is observed that initially the population of infected plants predominates over the 

susceptible plants, but as the amount of pesticide increases, the infected plant 

population decreases over time (Figure 5.6). Both plant populations become stable after 

a certain period of time. 

v. The inner dynamics of the system for varying the infective induce rate of pesticides 

was also discussed. It was found that the endemic equilibrium undergoes a supercritical 

Hopf bifurcation at 𝜃 = 𝜃𝐻 ≈ 0.805340 i.e., above this critical parameter, all the 

population starts oscillating periodically and the equilibrium state becomes unstable. 

vi. With free parameter 𝑑1, the model leads to a supercritical Hopf bifurcation at 𝑑1
𝐻 =

0.627463/𝑑𝑎𝑦. A parametric region in parameters (𝑑1,𝑑2), where the endemic 

equilibrium shows different stabilities, is determined. For the parameters 𝑑1and 𝑑2, 

above the curve (Figure 5.9), all the populations coexist within the ecosystem, while 

for parameters below the curve all the populations will start oscillating periodically. 

Hence an unstable ecosystem can be observed where populations will fluctuate, never 

tending to a stable state. 
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Previous studies in the literature have examined eco-epidemic models focusing on either prey or 

predator populations, where they are divided into susceptible and infected categories. However, 

this research emphasizes the plant populations undergoing an epidemic with a disease and is 

partitioned into susceptible and infected. Furthermore, to mitigate the epidemic, the application 

of pesticides is implemented, resulting in the recovery of plant populations. Plant epidemics have 

been documented in various cultivated plants like tea and pineapples, leading to significant 

revenue losses [113]. Rice is the most important economic crop in India, China, East-Asia, South 

East Asia, Africa and Latin America catering to nutritional needs of 70% of the population in 

these countries [55], [109]. Rice diseases caused by fungi are considered the main constraint in 

rice production and cause both qualitative and quantitative losses. In particular, rice blast disease 

caused by Pyricularia oryzae (Magnaporthe grisea) has been reported as the most significant 

disease, resulting in yield losses of up to 50%. Dirty panicle disease or rice grain discoloration 

may be caused by many fungi, viz., Alternaria padwickii, Curvularia lunata, Fusarium 

moniliforme, and Bipolaris oryzae. Propiconazole and Tricyclazole are often applied in rice 

crops as a prevention measure for these fungal diseases. Although they are not intended to harm 

non-infected rice plants, their residues and the risk of phytotoxicity underscore the potential 

consequences, which can vary and lead to plant fatality [107]. This instance is a suitable 

illustration for the proposed model, and the conclusions drawn rely entirely on analytical results. 

Experimental validation will indicate any required modifications to underlying assumptions. 

The work in this paper can be extended to review several important crop epidemics. Also, there 

is a scope for using optimal control theory to optimise the cost-effectiveness of the system [50], 

[147]. The objective will be to minimise the damage caused by the infected plant populations and 

the cost of application of pesticides as a control measure. Application of pesticides does not 

always give immediate recovery of the infected plants. There is a possible delay in the recovery 

process. Our studied model can be extended to a time-delay model using delay differential 

equations. Over the years, researchers have paid much attention to the studies of fractional order 

eco-epidemiological models as well [133], [43], [23]. This work can also be extended using 

fractional order derivatives. Furthermore, researchers with a keen interest can explore this model 

by examining contact rates between plants and pesticides, which are entirely dependent on the 

quantity of pesticides applied. This can be achieved through the utilization of functions that rely 

on the variable 𝛼. 


