The Assam Royal Global University, Guwahati

RSET

B. TECH 8th SEMESTER Semester End Examination, July 2021 Course Title: Computational Fluid Dynamics & Heat Transfer Course Code: MEE022D8021

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section – A

- 1. Attempt all questions. (Maximum word limit 50)
 - a. Write continuity equation in differential and integral form.
 - b. Write 2D N-S equations.
 - c. What are the different types of PDE?
 - d. Define Truncation Error.
 - e. Convert 2nd Order PDE to FDE using CDM.
 - f. Convert Wave equation using FTCS method.
 - g. Write Upwind Scheme for wave equation.
 - h. What is FVM? Explain.

2. Attempt any two of the following:

- a. What are the approximations for laminar sub-boundary layer? Explain with figure.
- b. Derive two dimensional Navier-Stokes equations for steady state and laminar fluid flow.
- c. What do you understand by Consistency, Stability and Convergency? Explain.
- 3. Attempt **any two** of the following:
 - a. State the approximations made in laminar sub-boundary layer, also find the equations using order of magnitude approach.
 - b. Compute Laplace equation for given boundary conditions upto second Iteration.

 $U(x,0) = 2x, \quad 0 \le x < 1 \qquad U(0,y) = 4y, \quad 0 < y < 1$ $U(x,1) = 6x, \quad 0 \le x < 1 \qquad U(1,y) = 8y, \quad 0 \le y \le 1$ Assuming $\Delta x = \Delta y = 1/3$.

c. Compute Wave equation for given boundary conditions upto second Iteration.

 $U(x, 0) = x, \quad 0 \le x < 1$ $U(0, y) = y, \quad 0 \le y < 1$

All other boundary conditions are Zero. Assuming $\Delta x = \Delta y = 1/3$ and Constant as 4. 6 x 2

7 x 2

2 x 8

The Assam Royal Global University, Guwahati RSET B. TECH 8th SEMESTER Semester End Examination, July 2021 Course Title: Computational Fluid Dynamics & Heat Transfer Course Code: MEE022D8021

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section – B

4. Attempt **any two** of the following:

- a. Explain FTFS and FTBS scheme for hyperbolic equation.
- b. What is Dufort Frankel Scheme for parabolic equation? Explain.
- c. Explain Thomas Algorithm for Tri-Diagonal system for Crank-Nicholson implicit method.

5. Attempt **any one** of the following:

a. Compute one dimensional heat conduction equation for given boundary and initial conditions for five-time steps.

B.C.	$U_{x}(0,n)=U,$	at	x = 0
	$U_{y}(1,n)=-U,$	at	x = 1
I.C.	$T(x,0)=\sin x,$		$0 \le x \le 0.5$

Assuming K = 1, $\Delta x = 1/4$ and r = 0.5

b. Solve one dimensional heat conduction equation for given conditions for five time steps.

B.C.	U(0,n)=0,	0 < n
	U(1,n)=1,	0 < n
I.C.	$U(x,0) = \cos x,$	$0 \le x \le 0.5$

Assuming $\Delta x = 1/4$ and r = 1.

14 x 1

-

7 x 2