The Assam Royal Global University, Guwahati Royal School of Applied and Pure Sciences B.Sc. Mathematics, 2nd semester Semester End Examination, August 2021 Course Title: Ordinary Differential Equation Course Code: MAT012C203

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given. The figures in the right-hand margin indicate marks.

Section - A

1. Attempt all questions. (Maximum word limit 50)

- a. Write the standard form of Clairaut's equation. What is the general solution of $y = px + p p^2$?
- b. Form the differential equation from the relation $y = e^x (a \cos x + b \sin x)$, where a and b are arbitrary constants.
- c. Test whether $y_1 = \sin x$, $y_2 = \cos x$ are linearly independent or not.
- d. Find the complementary function of $\frac{d^2y}{dx^2} + 4y = \cos 2x$.
- e. Verify the condition of integrability for $zdx + zdy + 2(x + y + \sin z)dz = 0$.
- f. Solve $\frac{dx}{z} = \frac{dy}{0} = \frac{dz}{-x}$

g. What is trajectory?

h. Write some applications of ODE.

2. Attempt **any two** of the following:

- **a.** Solve the differential equation $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$.
- b. Solve $4xp^2 8yp x = 0$
- c. Check whether $(x^2y^2 + xy + 1)ydx + (x^2y^2 xy + 1)xdy = 0$ is exact or not. Hence solve it.
- 3. Attempt **any two** of the following:
 - a. Solve by the method of undetermined coefficients $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 5y = 25x^2 + 2$.
 - b. Solve by operator method $xy'' + (x-2)y' 2y = x^3$.
 - c. (i) Solve $(D^2 5D + 6)y = e^x \cos 2x$.

(ii) Prove that $\cos 2x$ and $\sin 2x$ are solutions of the differential equation y'' + 4y = 0and these solutions are linearly independent.

6 x 2

7 x 2

2 x 8

The Assam Royal Global University, Guwahati Royal School of Applied and Pure Sciences B.Sc. Mathematics, 2nd semester Semester End Examination, August 2021 Course Title: Ordinary Differential Equation Course Code: MAT012C203

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section – B

4. Attempt **any two** of the following:

a. Solve the simultaneous equations $\frac{dx}{dt} + 5x - 2y = t$, $\frac{dy}{dt} + 2x + y = 0$.

b. Solve

(i)
$$\frac{dx}{z(x+y)} = \frac{dy}{z(x-y)} = \frac{dz}{x^2+y^2}$$

(ii) $\frac{dx}{xz(z^2+xy)} = \frac{dy}{-yz(z^2+xy)} = \frac{dz}{x^4}$

c. Show that the condition of integrability is satisfied for $(yz + z^2)dx - xzdy + xydz = 0$. Hence solve it.

5. Attempt **any two** of the following:

- a. A particle starting with velocity *u* moves in a straight line with a uniform acceleration *f*. Find the velocity and distance travelled in any time.
- b. Find the orthogonal trajectories of the rectangular hyperbola $xy = c^2$.
- c. Find the orthogonal trajectories of the family of curves f(x,y,c)=0, c being the variable parameter.

7 x 2

7 x 2