Roll No:	Afrika.		40	

The Assam Royal Global University. Guwahati

Royal School of Applied & Pure Sciences B.Sc. Mathematics, 6th Semester Semester End Examination, June 2023 Course Title: Abstract Algebra

Course Code: MAT012C602

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section - A

Attempt all questions. (Maximum word limit 50)

2 x 8

- a. Find the identity element of the binary operation * on \mathbb{N} defined by $a*b = \max\{a,b\}$,
- b. Is the relation $R = \{(x, y): x^2 y^2 \le 5\}$ an equivalence relation on the set of integers \mathbb{Z} ? Justify.
- "Every abelian group is cyclic." Is the statement true? Justify.
- d. Define order of an element of a group. If $f = (123)(45) \in S_5$ then find the order of f.
- Show that every subgroup of an abelian group is normal.
- Is the function $f:(\mathbb{R},+)\to(\mathbb{R},+)$ defined by f(x)=x+1 a homomorphism? Justify.
- If S is an ideal of a ring R and $1 \in S$ then show that S = R.
- Define idempotent elements. Find the idempotent elements in the ring \mathbb{Z}_4 of integers modulo 4.

Section - B

Attempt any two of the following:

6x 2

- a. Show that the sct N with respect to the relation 'division' is a poset. Check if the poset (D_{220}, \div) is a lattice or not, where D_{220} is the set all positive divisors of 220.
- b. Prove that if $f: A \to B$ is a bijection then there exists a bijection $g: B \to A$ such that $g_o f: A \to A$ and $f_o g: B \to B$ are identity functions.
- c. Show that the relation R on $\mathbb{N} \times \mathbb{N}$ defined by $(a,b)R(c,d) \Leftrightarrow ad = bc \quad \forall \ a,b,c,d \in \mathbb{N}$ $\mathbb N$ is an equivalence relation. Also, find the equivalence class of (1,2).

Attempt any two of the following:

7 x 2

- a. Show that an alternating group A_n is a subgroup of S_n . Also, find $[S_n : A_n]$.
- b. Define order of an element of a group with an example. Show that order of every element of a group divides the order of the group.
- (i) If G is a group of order 35 then show that it cannot have two subgroups of order 7.
 - (ii) Let x be an element of a group G such that $x^2 \neq e$ and $x^6 = e$ then what can you say about the order of x? (where c is the identity element)

- Attempt any two of the following:
 - a. If H and K are two finite normal subgroups of co-prime orders of a group G then show that $H \cap K = \{e\}$ and $hk = kh \forall h \in H, k \in K$.
 - State and prove Cayley's theorem.
 - c. If N is a normal subgroup of a group G then show that the mapping $f: G \to \frac{G}{N}$ defined by $f(x) = Nx \ \forall \ x \in G$ is an epimorphism. Also, find the kernel of f.
- Attempt any two of the following:

7 x 2

- a. Prove that a non-empty subset S of a ring R is a subring iff $x y, xy \in S \ \forall \ x, y \in S$.
- b. Prove that an ideal P of a commutative ring R is a prime ideal if and only if $\frac{R}{P}$ is an
- c. Define prime ideal. In the ring of integers $\mathbb Z$, prove that the set $S=\{3r:r\in\mathbb Z\}$ is a prime ideal of \mathbb{Z} generated by 3.

2