а				
	properties $\gamma=1.75t/m^3$, $\phi=20^\circ$, $c_u=1.15t/m^2$. Applying Terzaghi's			
	theory, calculate the Ultimate bearing capacity if	a A a		
	i. Water table is at the ground surface.	5		
	ii. Water table is 1m below ground level.			
	iii. Water table is 2m below ground level surface.		2	
	iv. Water table is 3m below ground level surface			
×	(Given: $N_c = 9.23$, $N_q = 2.5$, $N_{\gamma} = 0.8$).			
3 (c)	Construct a strip footing to carry a load of 735kN/m at a depth of 1.6m in a c- ϕ soil having a unit weight of 18kN/m ³ and shear strength parameters as c=20kN/m ² and ϕ =25 ⁰ . Determine the width of the	7	CO 3	BT 3
5 (0)	footing, using a factor of safety of 3 against shear failure. (Given: $N_c=25.1$, $N_q=12.7$, $N_{\gamma}=9.7$)			1
	110 20.1, 114 120, 11 200		1	
		Maulta	CO	DTIONO

Q. No.	Answer any two of the following (Within 300 words each)	Marks	CO	BT Level
4 (a)	Explain the two mechanisms of pile group failure installed in clayey soil deposit.	7	CO 2	BT 2
4 (b)	A pile 12m in length and 300mm diameter is proposed to be driven in a uniform sand deposit where value of $\phi'=40^{\circ}$ and average dry unit weight $\gamma_d=18$ kN/m ³ . The natural water table is at a great depth and is not expected to rise. Applying the static pile load theory, calculate the safe load capacity of the pile with a factor of safety 2.5. Given value of N _g is 137.	7	CO 3	BT 3
4 (c)	It is proposed that 8m long 200mm diameter pile shall be used as a foundation for medium clay deposit having $q_u=100$ kN/m ² . 9 piles are there arranged in square pattern with 500mm spacing between piles. Assuming adhesion factor of 0.9, interpret the ultimate capacity of pile group.	7	CO 2	BT 2

Q. No.	Answer any two of the following (Within 300 words each)	Marks	CO	BT Level
5 (a)	Explain the detail mechanism of behavior of swelling soils.	7	CO 2	BT 2
5 (b)	Interpret the expression for earth pressure at rest condition when soil mass is located below the water table.	7	CO 2	BT 2
5 (c)	Summarize the different types of Geosynthetics along with its application and advantages.	7	CO 2	BT 3

Course Outcomes	Marks Allotted	Percentage	
CO1	10	Approx 61%	
CO2	49	— Approx 61%	
CO3	23	Approx 24%	
CO4	15	Approx 15%	