Roll No.

The Assam Royal Global University, Guwahati

Royal School of Engineering & Technology

B.Tech. CSE 6th Semester

Special Supplementary Examination, August 2024

Course: Compiler Design

Code: CSE022C603

Time: 3 hours

Maximum Marks: 70

Attempt all questions as per instructions given

The figures in the right-hand margin indicate marks

	Section-A			
Q. No.	Answer the following in brief (within 50 words)	Marks	CO	BT Level
1(a)	Find the number of tokens: int main () { /* find max of a & b */ int a = 20, b = 30;			
	if (a < b) return b ; else return a; }	2	CO 1	BT 1
1(b)	Show how ambiguity leads to precedence and associativity property violation.	2	CO 2	BT 2
1(c)	Omit non-determinism for the following grammar: $S \rightarrow \beta SS\alpha\alpha S / \beta SS\alpha S\beta / \beta S\beta / \alpha$	2	CO 1	BT 1
1(d)	Which derivation is generated by the top-down parser ?	2	CO 1	BT 1
l(e)	Distinguish between S-attributed and L-attributed Syntax Directed Translation.	2	CO 4	BT 4
1(f)	Define common sub expression elimination with example.	2	CO 1	BT 1
l(g)	Distinguish between basic block and flow graph.	2	CO 4	BT 4
l(h)	What are the issues in the design of code generator?	2	CO 1	BT 1

	Section-B				
Q. No.	Answer any two of the following (Within 300 words each)	Marks	CO	BT Level]
2 (a)	Compare and contrast a compiler and an interpreter with figures.	6	CO 2	BT 2	
2 (b)	Explain the problem of left recursion and explain its solution.	6	CO 2	BT 2	
2 (c)	Omit left recursion of the following: i. $P \rightarrow P + Q$ ii. $A \rightarrow (B) / b$ $B \rightarrow B * A / A$ iii. $S \rightarrow SOS1S / 01$	6	CO 1	BT 1	C

Q. No.	Answer any two of the following (Within 300 words each)	Marks	CO	BT Level
3 (a)	Find if the following grammar is LL(1): $E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/a$	7	CO 1	BT 1
3 (b)	Construct a the DFA and parse table of LR (0) for the following grammar: $S \rightarrow AA$ $A \rightarrow aA / b$	7	CO 3	BT 3
3 (c)	Show if $T \rightarrow T+T / T^*T / id$ is an operator precedence grammar. With the help of the given grammar parse the input string : id +id *id.	7	CO 2	BT 2

Q. No. Answer any two of the following (Within 300 words each)	Marks	CO	BT Level
4 (a) Analyze the following Syntax Directed Translation for evaluation.			
$S \rightarrow AS \qquad \{ \text{ printf } (4) \}$ $S \rightarrow AB \qquad \{ \text{ printf } (2) \}$ $A \rightarrow a \qquad \{ \text{ printf } (5) \}$ $B \rightarrow bC \qquad \{ \text{ printf } (1) \}$ $B \rightarrow dB \qquad \{ \text{ printf } (6) \}$ $C \rightarrow c \qquad \{ \text{ printf } (3) \}$	7	CO 4	BT 4
 4 (b) Construct a DAG using the following basic block: 1. t1 := 4 * i 2. t2 := a [t1] 3. t3 := 4 * i 4. t4 := b [t3] 5. t5 := t2 *t4 	.7	CO 3	BT 3
	4	4	4

	7. prod := $t6$			
	8. $t7 := i + 1$			
	9. i := t7			
	10. if $I \le 20$ goto (1)			
4 (c)	With a neat diagram explain the format of the Symbol Table and find the tree structures representation of scope information.	7	00.0	
	ind the free structures representation of scope information.	/	CO 2	BT 2

Q. No.	Answer any two of the following (Within 300 words each)	Marks	CO	BT Level
5 (a)	Explain the following code optimization techniques with examples. i) Copy propagation ii) Dead code elimination	3+4	CO 2	BT 2
5 (b)	Construct code for the following C program using any code generation algorithm. main () { int i; int a[10]; while (i <= 10) a [i] = 0 ; }	7	CO 3	BT 3
5 (c)	Examine the optimization of basic blocks.	7	CO 4	BT 4

Course Outcomes	Marks Allotted	Percentage
CO1	23	<u> </u>
CO2	35	Approx 60%
CO3	21	Approx 20%
CO4	18	Approx 20%