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Preface 

I have been asked on a number of occasions why the title of my professorship is 
'engineering acoustics' and not 'acoustical engineering'. I reply that, although there is no 
clear dividing line, the distinction is announced by the qualifying adjectives. I under- 
stand 'engineering acoustics' to concern all acoustical and related vibrational aspects of 
engineering design, manufacture, products, systems and operations; and 'acoustical 
engineering' to mean the theory and practice of the manipulation and exploitation of 
sound to achieve useful ends. Engineering acoustics also involves the manipulation of 
sound; but the principal aim in this respect is to control it as an undesirable by-product 
that is potentially harmful to human health and well-being, and has adverse effects on 
the quality of human life, on the effectiveness of human activities, and on aesthetic 
sensibilities. Intense sound can also be responsible for the malfunction of engineering 
systems, such as space satellites, and for damage to mechanical structures, such as gas 
pipelines. Engineering acoustics embraces the broad field of modelling, analysis, design, 
development and testing of engineering systems with the aims of manufacturing, 
installing and operating systems which exhibit acceptable acoustical behaviour. 

It must not be assumed from the foregoing that this is a book about noise control. To 
be such it would need to cover the following: specification of noise control targets; 
regulatory aspects of noise, including statistical considerations; noise measurement 
systems and standardized noise measurement methods; derived indices; noise rating 
methods; noise source identification and quantification techniques; the noise generation 
characteristics of a wide range of machines and plant; noise control system design, 
materials, construction and performance; together with the many non-acoustic aspects 
of noise control systems such as fire resistance, integrity, reliability, weight, volume, 
hygiene, environmental survivability, maintenance and, of course, cost. These important 
aspects of acoustical technology are well covered elsewhere, and lie outside the scope of 
this textbook. 

The title of the book has been chosen to reflect its specific purpose, which is to assist 
readers to acquire an understanding of those concepts, principles, physical phenomena, 
theoretical models and mathematical representations that form the foundations of the 
practice of engineering acoustics. It is not essentially concerned with methodology, 
which would require another volume of similar size. Wherever possible, I have 
introduced a flavour of the practical relevance of the material presented. A list of specific 
references, together with a substantial bibliography, provide sources of background 
reading and information. 

This work has an essentially pedagogic function, based upon the author's 35 years' 
experience of teaching undergraduate, postgraduate and practising engineers. It is 
written principally for senior undergraduate and postgraduate students of engineering 

xiii 
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who have previously followed no course in acoustics, and who wish to acquire a more 
than superficial knowledge and understanding of the subject. Its demands on mathema- 
tical knowledge and skill are modest: namely, an ability to handle complex numbers, 
basic differential and integral calculus, and second-order differential equations with 
constant coefficients. Its scale and scope considerably exceed that which can be 
accommodated within a single semester undergraduate unit. However, it would be 
suitable for serial presentation in the third and fourth years of an undergraduate 
engineering course, or in the first and second semesters of a Master's course. I shall not 
attempt to prescribe which sections are more or less challenging: that is up to the 
individual teacher. 

The book presents a comprehensive exposition of the fundamental elements of audio- 
frequency sound and vibration, with emphasis on those relating to noise generation by 
machinery, vehicles and industrial plant, and to the practice of noise control engineering. 
The specialist area of underwater acoustics is touched upon but not treated in detail. 
Lack of space precludes comparable coverage of the equally important topics of psycho- 
acoustics, auditorium acoustics, auditory function, subjective acoustics, the physiologi- 
cal and psychological effects of excessive sound, and audio-engineering, although 
reference is made to these where appropriate. For the same reason, I have had 
reluctantly to omit a survey of sound measurement equipment. For an overview of this 
extensive subject, readers are initially directed to Parts XVII and XVIII of the 
Encyclopedia of Acoustics cited in the Bibliography (Crocker, 1997), and may consult 
the manuals of reputable instrument manufacturers for practical guidance on use. 

With its orientation towards practical aspects of acoustics, the book will also serve as a 
basic text for professional engineers who lack a formal training in acoustics and who 
wish to understand the fundamentals underlying the information provided by the 
handbooks, guides and software that support professional practice. However, it should 
be understood that it is not a reference book for the provision of guidance in the solution 
of practical problems, for which a selection of the literary resources can be found in the 
Bibliography. 

Great emphasis is placed on the qualitative description and explanation of the 
physical nature and characteristics of audio-frequency acoustical and vibrational 
phenomena. Each chapter begins with a brief survey of the practical importance of the 
area of acoustics that it treats. This is followed by a qualitative introduction to the 
physics of the quantities, processes and phenomena which form the subjects of the 
chapter, as a pedagogical prerequisite to the subsequent introduction of mathematical 
modelling and analysis. A distinguishing feature of this book is the complementation of 
the descriptive and mathematical treatment of acoustical phenomena by recommenda- 
tions and descriptions of procedures for their physical demonstration. Some are briefly 
mentioned at appropriate points in the text. Detailed prescriptions for the more 
elaborate demonstrations and laboratory exercises are presented in Appendix 7. This 
format provides teachers with tried and tested means of motivating the interest of the 
students, assisting them to understand the phenomena involved and to acquire an 
appreciation of the relevance, validity and limitations of associated theoretical models. 

As a result of consultation with a number of academic colleagues teaching acoustics to 
engineering students in many parts of the world, I am aware of a wish by some to find 
fully worked examples throughout the book. This presented me with three problems. 
First, I dislike a text that is fragmented by the regular appearance of worked examples, 
which interfere with its physical and expositional continuity. Second, as a result of many 
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years of teaching, it is my experience that it is all too easy for students to read (not work) 
through a worked example and to mislead themselves into believing that they have 
understood it; they can become competent at solving similar problems without actually 
gaining understanding. Third, the book was taking on mammoth proportions because of 
my emphasis on rather lengthy physical explanations, together with the inclusion of 
recommendations for physical demonstrations and formal laboratory exercises. I there- 
fore decided not to include fully worked examples, but instead to elaborate the answers 
to the questions posed at the end of each chapter by providing guidance, where 
appropriate. I believe that this format forces the student to consult the text in order to 
understand the basis of the question, while helping him or her to gain confidence in the 
exercise of analytical skill and numerical calculation by providing stepping stones on the 
personal journey toward a solution. I hope that this will not cause too much disaffection 
among academic colleagues. 

A no doubt contentious feature of the book is the consignment to an appendix of the 
analysis of free and forced vibration of the damped mass-spring oscillator (see Appendix 
5). The reasons for this relegation are as follows. First, sound experienced in everyday 
life is rarely purely tonal. I consequently wish the reader to get into the habit, at the 
outset, of thinking in terms of wavemotion of arbitrary time dependence, without being 
distracted by the lumped element, single-degree-of-freedom oscillator that involves no 
waves. Second, the oscillator is introduced in mechanics at high school, and subse- 
quently in the first year of most engineering courses, as a basic element of mechanics or 
applied mathematics. It is also introduced in Chapter 4 in terms of its impedance. 

Fourier analysis, together with a brief survey of practical aspects of frequency 
analysis, are similarly consigned to Appendix 2, because, in my opinion, its extensive 
treatment within the main body of an acoustics textbook interrupts the continuity of 
development of the principal subject of the book. It is, in fact, difficult to see where to 
place it logically within the main text. This follows Appendix 1, which presents an 
explanation of the complex exponential representation of harmonic vibration and 
waves, which underpins almost every aspect of the analytical content of the book. 

Appendix 4 is a descriptive attempt to explain the distinction between 'coherence' and 
'correlation'. Appendix 6 gives definitions of mean square and energetic quantities, 
defines the associated logarithmic measures and calculation procedures, and presents a 
very brief introduction to indices that are commonly used as a basis for relating physical 
sound levels to human response and potential risk to health. 

The fields of audiological science, sound perception and physiological effects, in which 
I have no specialist expertise, are vast and complex areas of knowledge, to which a brief 
section in this book could do no justice. They are best studied with the aid of specialized 
books and technical literature. Readers are directed to a good introduction to the 
current knowledge in these areas presented in Fundamentals of Noise and Vibration 
(Fahy and Walker, 1998), cited in the Bibliography. 

Perusal of the Contents List will reveal the structure of the presentation, and the scope 
of material covered by the book. I will therefore highlight here only those features that, 
to some extent, distinguish it from other books in the English language that serve to 
introduce the subject of technical acoustics to students studying it for the first time at 
university level. 

The introductory chapter makes a claim for acoustics as being one of the most 
interesting and rewarding areas of science and technology for students to pursue because 
of its ubiquitous role in everyday life, the vast spread of its practical applications and the 
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interdisciplinary demands it places upon the professional acoustician. Acoustics is 
placed in the general context of modern engineering and society, the role of the 
engineering acoustician and the breadth of associated activities. As an antidote to the 
unavoidable emphasis on noise and vibration control that characterizes so many books 
on acoustics, and as an illustration of the ramifications of the subject, the chapter 
presents a selection of positive applications of sound and vibration in the fields of 
manufacturing industry, medicine, metrology and ecology, among others. 

Chapter 2 explains the physical nature of sound in fluids in qualitative terms and uses 
commonplace examples to illustrate a range of acoustic phenomena that feature in the 
subsequent analytical sections. During my lecturing career, I have become increasingly 
aware that the assumption of a continuum model of media, without some attempt to 
explain the nature of the molecular basis of continuum properties and behaviour, is 
unsatisfying to the more intellectually curious. Therefore, Chapter 3, which ultimately 
leads to the development of the wave equation that governs sound propagation in fluids, 
opens with brief explanations of the reasons for the differences in the dynamic behaviour 
of solids, liquids and gases, together with the molecular basis of pressure and 
temperature. 

A considerable number of those colleagues in many countries whom I consulted in the 
initial stage of this work intimated that their students found difficulty in understanding 
and applying the concept of impedance. Chapter 4 represents an attempt to rationalize 
and explain the utility of a quantity that appears in diverse, and not always consistent, 
guises in the literature. The complexity of sound energy flux in fluids, resulting from 
wave interference, which is universally present in circumstances of practical concern to 
engineers, is not adequately signalled or explained in most introductory textbooks. The 
recent development and widespread application of sound intensity measurement justifies 
the inclusion of Chapter 5 as partial antidote to this lack. 

Sound sources are immensely diverse in mechanism, form and character. This presents 
a challenge for those who aspire to explain them in a manner that is at once rigorous and 
accessible to the less mathematically minded student. I attempt to overcome this 
problem by beginning Chapter 6 with a qualitative categorization of sources on the 
basis of their fundamental physical mechanism as an entr6e to mathematical representa- 
tion in terms of ideal, elementary archetypes. Although some may consider that the early 
introduction of the Dirac delta function and the free-space Green's function is 
premature in a book designed for undergraduate consumption, I consider that they are 
essential to the understanding of the basis of the integro-differential equation that relates 
sound fields to the boundary conditions satisfied by the fluid. This equation is 
implemented in the 'boundary element' software that graduates who aspire to pursue 
an acoustics-oriented career in industry or consultancy will be expected to apply. The 
absence of formal exposition of the theoretical bases of the finite and boundary element 
methods of acoustical modelling and analysis is partly justified by my belief that the 
variational approach to dynamics upon which they rest will be unfamiliar to most 
readers. The practical reason is one of lack of space in which formally to develop the 
underlying theory. The equivalence of forces applied to fluids and dipole sources is 
explained at some length: as is the duality of representation of fluid boundaries as either 
distributions of monopoles and dipoles, or as boundary conditions. The important 
subject of aerodynamic sound generation by non-linear mechanisms of turbulent fluid 
motion is not treated in any detail because its conceptual subtlety and mathematical 
complexity demand a level of understanding of unsteady fluid dynamics greater than 
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that which I have assumed to be necessary for understanding the mathematical content 
of the book. It receives attention in qualitative terms and examples of jet noise 
characteristics are presented at the end of the chapter. 

Dissipation of sound energy into heat provides one of the principal means of 
controlling noise. Chapter 7 opens with an account of the molecular basis of fluid 
viscosity as a prelude to an introduction to the dynamic behaviour of fluids contained 
within the skeletons of porous solid materials. The collapse of acoustic impedance and 
attenuation data on the basis of a non-dimensional parameter akin to Reynolds number 
is explained in terms of the transition from low-frequency, viscosity-controlled fluid 
motion to inertia-controlled motion at high frequencies. Analysis of a number of 
mathematical models serves to emphasize the influence of installation geometry on the 
sound absorption performance of porous materials. Special emphasis is given to the 
crucial influence of the relation between radiation and internal resistances on the 
performance of resonant acoustic and vibrational absorbers, which appears to be largely 
neglected in other textbooks. 

In many systems of practical engineering importance, sound is channelled along ducts. 
Chapter 8 begins with a semi-quantitative description, in terms of multiple reflection of 
plane pulse wavefronts, of the generation of undamped and damped plane wave modes 
and resonances in uniform ducts terminated by reactive and resistive elements. Analysis 
of a simple model of fluid-structure interaction follows a conventional treatment of 
propagation and reactive attenuation of harmonic plane waves in uniform ducts. The 
formation of non-plane modes, together with the phenomenon of modal cut-off, is also 
initially demonstrated by the consideration of the propagation and reflection of plane 
pulse wavefronts. Mathematical analysis of propagation in ducts having both rigid and 
finite-impedance walls leads finally to a brief presentation of performance data for lined 
ducts and splitter attenuators. 

The behaviour of sound in enclosures is of interest in relation to auditoria, broad- 
casting and recording studios, vehicle compartments, petrochemical plant units and 
noise control covers, among others. Chapter 9 opens with an illustration of the temporal 
evolution of an impulsively excited sound field in a reverberant enclosure using an image 
model. A conventional wave model analysis demonstrates that the rapid increase of 
reflection arrivals with frequency that is revealed by the impulse model is complemented 
by a rapid increase with frequency of the density of natural frequencies, to a point where 
deterministic modal modelling is of little value, and response is unpredictable in detail. 
Alternative models in the forms of the diffuse field, and the balance between energy input 
and dissipation balance are introduced, together with the standard simple formulae for 
reverberation time and steady state sound pressure level. In particular, the nature of 
energy flow in quasi-diffuse reverberant fields is discussed. A simple model based upon 
the enclosed space Green's function reveals the factors that govern vibroacoustic 
coupling between structures and enclosed fluids. The chapter concludes with a brief 
introduction to the application of geometric (ray) models of sound propagation in 
auditoria and industrial workshops. 

Chapter 10 is devoted to structure-borne sound, which is the agent of transmission of 
audio-frequency disturbances in many systems of interest to engineers, principally in 
vehicles and buildings. The conventional analytical representation of structural vibra- 
tion in terms of damped normal modes, subject to various forms of force excitation, is 
eschewed for a travelling wave/energetic model which is of far greater use in the audio- 
frequency range. This model balances mechanical power inputs to subsystems against 
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the local rate of dissipation of energy plus rate of transmission of energy to connected 
subsystems. The crucial problem of characterization of inputs in dynamic or kinematic 
form is explained. Expressions for propagation wavenumber, energy density and energy 
flux are developed for the structural wave types of principal interest in engineering 
acoustics. Derivation of the various forms of bending wave impedance of semi-infinite 
and infinite uniform beams illustrates that the parametric dependence of power input is 
quite different for dynamic and kinematic forms of excitation. A simple, but useful, 
model of high frequency vibration isolation is presented. The chapter concludes with an 
introduction to the two principal analytical models of sound radiation from vibrating 
surfaces: namely, the Convolution formulation in terms of the free-space Green's 
function and the spatial Fourier transform approach that underlies Nearfield Acoustical 
Holography. The influence of structural material properties and boundary conditions on 
sound energy radiation is explained and illustrated by examples. 

Chapter 11 on the transmission of airborne sound through single and double 
partitions is largely extracted from my earlier book, Sound and Structural Vibration 
(Fahy, 1987 - see Bibliography), with a more rigorous derivation of an expression for the 
transmission loss of a double panel containing a sound absorbent core and the addition 
of a simple model of a noise control enclosure. 

The mathematical techniques required to deal with problems of scattering and 
diffraction are generally more advanced than those assumed as prerequisites for 
achieving benefit from this book. Consequently, in the final chapter the reader is 
introduced to a graphical technique that broadly elucidates the origin and characteristics 
of diffraction by edges, together with some practical data relating to screens: but no 
diffraction theory is presented. The process of scattering by solid objects as equivalent to 
radiation by virtual sources is explained and illustrated by an analysis of scattering by a 
rigid sphere and a thin disc. The chapter continues with a simple example of the 
application of ray tracing analysis to refraction of sound by a linear gradient of sound 
speed and ends with a brief descriptive account of refraction by wind and temperature 
gradients near the surface of the Earth. 

The Appendices are intended to be essential reading and study: not as 'optional 
extras'. In fact, Appendices 1 to 6 could serve as a unit to be followed early in a course. I 
hope that Appendix 7 will not only provide teachers with a ready-made basis for 
illustrating acoustical phenomena and behaviour described in the text, but may also 
inspire them to develop improved versions and to introduce additions to the list. I look 
forward to receiving feedback for incorporation in a future edition. 

Note on terminology and notation 
The adjective 'harmonic' is used throughout the book to mean 'simple harmonic' or 
'single frequency' in order to avoid a more lengthy adjectival phrase. 

The over-tilde is restricted to complex amplitudes of harmonically varying quantities. 
The rather unwieldy representation of the modulus of a complex amplitude (i.e. the real 
amplitude) is employed because students frequently make a factor of two error by 
confusing mean square quantities and the square of their amplitudes. 

In all the questions posed at the ends of the chapters the fluid is assumed to be air at a 
pressure of 105 Pa and a temperature of 20~ unless otherwise stated. Impedance ratios 
are referred to the characteristic impedance of air under these conditions, unless 
otherwise stated. 
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1 
Sound Engineering 

1.1 The importance of sound 

Sound is a ubiquitous component of our environment from which there is no escape. 
Even in the darkness of a deep underground cavern, the potholer hears the sound of the 
operation of his or her body. In the dark depths of the ocean, creatures communicate by 
sound, which is the only form of wave that propagates over long distances in water. Only 
in the reaches of cosmic space, and in high vacuums created on Earth, are atoms so 
isolated that the chance of interaction, and hence the existence of sound, is negligible. 

Sound is one of the principal media of communication between human beings, 
between higher animals, and between humans and domesticated animals. Sound 
informs us about our environment; as a result of evolution we find some sounds 
pleasant and some redolent of danger. The universal importance of music to human 
beings, and its emotional impact, remain mysterious phenomena that have yet to be 
satisfactorily explained. Unlike our eyes, our ears are sensitive to sound arriving from 
all directions; as such they constitute the sensors of our principal warning system, 
which is alert even when we are asleep. 

So, sound is vitally important to us as human beings. But, apart from audio 
engineers who capture and reproduce sound for a living, why should engineers 
practising in other fields have any professional interest in sound? The short answer 
has two parts. On the positive side, sound can be exploited for many purposes of 
concern to the engineer, as indicated later in this chapter. On the negative side, 
excessive sound has adverse psychological and physiological effects on human beings 
that engineers are employed to mitigate, preferably by helping to design inherently 
quiet machines, equipment and systems: but failing this, by developing and applying 
noise control measures. 

The adverse effects of excessive sound in causing hearing damage, raising stress 
levels, disturbing rest and sleep, reducing the efficiency of task performance, and 
interfering with verbal and musical communication, are widely experienced, recog- 
nized and recorded. In recent years, noise has become a major factor in influencing the 
marketability and competitiveness of industrial products such as cars and washing 
machines, as evidenced by advertising material. Many products are required to satisfy 
legal and regulatory requirements that limit the emission of noise into work places, 
homes and the general environment. Failure to meet these requirements has very 
serious commercial consequences. Aircraft are not certificated for commercial opera- 
tion unless they meet very stringent environmental noise limits. Road vehicles are not 
allowed on the road unless they satisfy legally enforced limits on roadside noise. Train 
noise is currently being subjected to the imposition of noise restrictions. 
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A less widely known adverse effect of excessive sound is its capacity to inflict serious 
fatigue damage on mechanical systems, such as the structures of aircraft, space rockets 
and gas pipelines, and to cause malfunction of sensitive components, such as the 
electronic circuits of Earth satellites. Sound is vitally important to the military, 
particularly with the advent of automated target recognition and ranging systems. 

Sound is a tell-tale. It gives warning that mechanical and physiological systems are 
not in good health. Sound generated by the pulmonary and cardiovascular systems 
provides evidence of abnormal state or operation, as foreseen by Robert Hooke over 
300 years ago. The production of equipment for monitoring the state of machinery via 
acoustic and vibrational signals is a multimillion dollar business. The cost of 
monitoring is small compared with the cost of one day's outage of a 600 MW 
turbogenerator, which runs into more than one million dollars. 

Taken together, these different aspects of the impact of sound on human beings and 
engineering products provide convincing reasons why acoustics is a fascinating subject 
of study and practice for engineers. 

1.2 Acoustics and the engineer 

Engineers conceive, model, analyse, design, construct, test, refine and manufacture 
devices and systems for the purpose of achieving practical ends: and, of course, to 
make money. This book deals with the concepts, principles, phenomena and theories 
that underlie the acoustical aspects of engineering. Not so long ago, the acoustics 
expert was only called in to the chief engineer's office when something acoustical had 
gone wrong; he or she was expected to act as a sonic firefighter. Today, major 
engineering companies involve acoustically knowledgeable staff in all the stages of 
their programmes of new product development, from concept to commissioning. 

The process of predicting the acoustical performance of a product or system at the 
'paper' design stage is extremely challenging. The task is being progressively eased by 
the increasing availability of computer-based modelling and analysis software, 
particularly in the forms of finite element, boundary element and statistical energy 
analysis programs. However, the 'blind' application of these powerful routines brings 
with it the dangers of unjustified confidence in the resulting predictions. As in all 
theoretical analysis, it is vital that appropriate and valid models are constructed. The 
modeller must understand the physics of the problem tackled, particularly in respect 
of the relative influences on system behaviour of its geometric, material, construc- 
tional and operational parameters. Efficient design and development require engineers 
to identify those elements of a system that are likely to be critical in determining the 
sensitivity of system performance to design modifications. 

A major problem facing the acoustical designer is that details that are apparently of 
minor importance in respect of other aspects of performance and quality often have 
a major influence on acoustical performance. This is often not recognized by their 
'non-acoustical' colleagues who may introduce small modifications in ignorance of 
their acoustical impact. Unfortunately, it is frequently impossible to predict this 
impact precisely in quantitative terms because the available models are not capable of 
such precision. One example in point concerns the design of seals for foot pedals in 
cars. The acoustical engineer is fully aware of the adverse effect on interior noise of 
even very small gaps around a seal, but the influence of gap geometry and material 
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properties of the seal on sound transmission is very difficult to predict. Another 
concerns damping, which has a major effect on the influence of structure-borne sound 
on noise level (see Chapter 10). But it is still not possible to model precisely the 
magnitude and distribution of damping caused by joint friction and the installation of 
trim components. 

1.3 Sound the servant  

One might gain the impression from perusal of the titles and contents of many of the 
currently available books on acoustics that practitioners are almost exclusively 
concerned with noise and vibration control. This unfortunately suggests that acousti- 
cians spend most of their time preventing undesirable things from happen ing-  or 
remedying the situation when they do. In fact, engineering for quietness is intellec- 
tually and technically challenging, and most beneficial to society. However, there is 
more to engineering acoustics than noise control, as I hope to convince you in the 
following paragraphs. Sound and vibration can be put to many positive uses apart 
from the obvious ones of sound recording and reproduction. 

Communication via sound waves is not confined to the air. Marine animals use it 
for long distance communication. Divers' helmets largely exclude water-borne sound, 
so they can use a system in which a microphone in the helmet drives a small 
loudspeaker that radiates sound into the water. A sensor in the receiver's helmet 
creates vibration in a bar held between the teeth, from where it is transmitted by bone 
conduction directly into the cochlea. Video pictures and data can be transmitted to 
base from autonomous underwater vehicles used to locate objects and to inspect and 
maintain offshore oil and gas rigs via acoustic waves. The vehicles can also be 
controlled using this form of communication. 

One of the most important practical benefits of waves is that they can be exploited 
to investigate regions of space remote from the operator. Passive reception of sound 
provides information about events occurring in the environment of the receiver. 
Underwater sound has a particular importance in this respect, because the range of 
visibility is always short, and negligible in the depths of the ocean. Sound is used to 
detect and monitor marine animals for census and ecological research purposes. It 
also signals suboceanic geological activity. Its use in sonar (sound navigation and 
ranging) systems in the marine military sphere is well known. In a recent development, 
the reflection from objects of naturally occurring underwater sound provides a means 
of detection that does not reveal the presence of the listener: this is called 'acoustic 
daylight'. Ultrasound cameras for underwater use are under development. Sound is 
increasingly used to locate and classify military vehicles on the field of battle. The 
vision system of most robots is based upon ultrasonic sensors. The chambers of 
nuclear reactors can be monitored for the onset of boiling by means of structure-borne 
sound transmitted from the fluid along solid waveguides. 

Passive sound reception and analysis has been used for centuries as a means of 
monitoring the activity and state of the internal organs of animals, as exemplified by 
the sound of turbulence generated by the narrowing of arteries. It is now used to 
indicate the activity and state of health of the fluid transport systems of trees and 
tomato plants. Optimal watering regimes are based upon this phenomenon. Machine 
condition-monitoring systems that utilize sound and vibration signals as one of a set 
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of indicators of machine 'health' are of vital importance to industry and system 
operators because they automatically signal malfunction and provide information 
about its cause, as well as allowing operators to avoid unnecessary maintenance and 
outage. Through a phenomenon known as 'acoustic emission', the structure-borne 
sound generated by strain indicates the occurrence of flaws in pressure vessels and 
other vital structural components. Ultrasonic tension measurement is applied to 
monitor bolt clamping force more accurately than the conventional torque measure- 
ment technique. Leaks in water pipes are detected and located by means of measuring 
the resulting sound at points on either side. Hardwood being dried in kilns is 
monitored acoustically to avoid over-rapid drying with consequent splitting. Acoustic 
detectors are used to monitor the presence of creatures that attack stores of grain in 
silos. The noise of shingle may be used to monitor transport rates in coastal erosion 
studies. The electrical response of the brains of persons under anaesthesia to sound 
impulses provides a good indication of the depth of unconsciousness and minimizes 
the possibility of conscious awareness of an operation. 

Sound waves are used actively to detect the presence and nature of obstacles of all 
sorts, especially by bats, and under water, as in mine detection. Water flow in the 
Thames river, which flows through London, is monitored by an acoustic Doppler 
system. Ultrasound is increasingly exploited in 'blind vision' systems. Persons who have 
become blind as adults say they can 'see' better when it's raining. Why do you think 
that is? Sound is used in sodar (sound and radar) systems to monitor meteorological 
phenomena in the atmosphere. The application of ultrasound in medical diagnostics is 
well known. The Doppler frequency shift of sound reflected from moving surfaces 
reveals heart motion and blood flow. Intense ultrasound is focused to break up kidney 
stones in a procedure called 'lithotripsy'. The sound transmission characteristics of the 
heel bone provide an early warning of the onset of osteoporosis. 

Ultrasound has many industrial applications, including cleaning, cutting, drilling 
and peening, and, most importantly, in evaluating the quality of welds in thick pressure 
vessels and gas distribution pipes. It has a host of metrological applications, not only in 
industry, but, for example, to measure the shape of the cornea of the eye in clinical and 
surgical work. An acoustic meter of domestic gas flow is currently replacing millions of 
mechanical systems in Europe. Profiling of the ocean bed is performed by sonar 
systems. Insonification of chemical mixtures speeds up reactions. Very intense low 
audio-frequency sound causes particles in the exhaust stacks of power stations to 
agglomerate so that they may be more easily removed by scrubbers. 

Some of the more unusual applications include the following. The ripeness of fruits 
of various kinds may be evaluated from the speed of sound that passes through them. 
Pulses of ultrasound, emitted by piezoelectric transducers driven by light transmitted 
down an optical fibre, are used to actuate pneumatic switches in a few milliseconds. 
Fishing nets that radiate sound are employed to protect whales that lead fishermen in 
Canada to fish shoals from becoming enmeshed in the fishing nets. Acoustic shark 
barriers are also in use near swimming beaches. Acoustic refrigerators are now 
commercially available and thermoacoustic engines are under development. In Den- 
mark, photo-acoustic sensors are deployed by the civil defence service to detect very 
small traces of nerve gas. Intense low-frequency sound generated at Heard Island in 
the Indian Ocean is transmitted around the world and received at a number of 
stations many thousands of miles away to monitor the temperature of the sea as part 
of global warming research. 
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These are but a fraction of the multitude of practical applications of sound. Most of 
them require a thorough understanding of the physical behaviour of sound for the 
designs to be efficient and effective. Engineering acousticians will have plenty of 
challenges other than noise control in the future. 



2 
The Nature of Sound and Some 

Sound Wave Phenomena 

2.1 Introduction 

As a prelude to the analytical expositions presented in the succeeding chapters, this 
chapter presents a brief descriptive introduction to the nature of sound, qualitatively 
describes a range of phenomena exhibited by wave fields, and draws the attention of the 
reader to some examples of acoustic wave phenomena that are experienced in everyday 
life. Although we usually associate the subject of acoustics with sound in fluids (gases 
and liquids), sound may also be considered to travel in solid structures in the form of 
audio-frequency vibrational waves. The characteristics and forms of behaviour of 
structure-borne waves are more complex and difficult to analyse than those of fluid- 
borne sound. Structure-borne sound is briefly introduced in this chapter, but a detailed 
exposition is postponed until Chapter 10. This chapter focuses principally on sound in 
fluids, particularly in air. 

2.2 W h a t  is sound? 

The phenomenon of sound in a fluid essentially involves time-dependent changes of 
density, with which are associated time-dependent changes of pressure, temperature and 
positions of the fluid particles. (The concept of 'particle' will be explained more precisely 
in the next chapter, but for the moment we shall simply take it to mean a very small 
element of the fluid.) At levels of sound experienced in everyday life, the changes of 
density, pressure and temperature are extremely small in relation to their mean values in 
the absence of sound. Weather reports and barometers familiarize us with the fact that in 
atmospheric air the pressure and temperature vary with time; consequently, air density 
also varies in accordance with the gas law. However, these changes are very slow 
compared with those associated with audible sound. The distinguishing feature of 
acoustic disturbances is that they propagate rapidly through a fluid medium at a speed 
that depends principally on the type of fluid but is also influenced by the ambient 
conditions: this is known as the 'speed of sound'. 

Fluids exhibit the property of elasticity in that a fractional change of the volume 
occupied by a fixed mass of fluid (volumetric strain) produces a proportional reactive 
pressure, as you can observe in air if you hold your finger over the outlet of a (good) 
bicycle pump and rapidly push in the handle; upon release, the handle returns almost to 
its original position. (Even in an ideal frictionless pump, whose walls accept no heat from 
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the air, the handle would still not completely return to its original position because the 
air itself is not perfectly elastic, as explained in Chapter 7.) The mechanism of sound 
propagation involves interplay between pressures generated by elastic reaction to 
volumetric strain, which act so as to change the momentum of fluid particles, and the 
fluid inertia that 'resists' these attempts. Sound propagation requires that volumetric 
strains, and the associated pressures, vary with position, so that fluid particles experience 
differences of pressure across them, the associated forces producing particle accelera- 
tions. Sound results from the link between accelerations and volumetric strains, both of 
which are functions of particle displacement. The speed of propagation is determined by 
the mean density of the fluid and a measure of its elasticity known as 'bulk modulus', 
which relates acoustic pressure to volumetric strain. The density of water is about 800 
times that of air, but its bulk modulus is about 15 000 times that of air; consequently the 
speed of sound in water (about 1450 m s - i )  is much higher than that in air (about 
340 m s-1). 

Acoustic disturbances propagate in the form of waves. A wave in a material medium 
may be defined as a process by means of which a disturbance from equilibrium is 
transported through the medium without net transport of mass. For example, observa- 
tion of lightweight flotsam disturbed by straight-crested waves in deep water reveals that 
the surface water particles move principally in circular orbits in the vertical plane in a 
process governed by the interaction of gravity-induced hydrostatic pressure and fluid 
inertia: the particles don't  seem to 'go anywhere'. (Closer observation will reveal a slow 
net transport of the floating objects, but this is a secondary effect, and they clearly do not 
move at the speed of the wave.) Waves also transport energy and momentum associated 
with the disturbances. 

If one could observe the motion of the fluid particle in a sound wave generated by a 
sound source operating in a largely non-reflecting environment, such as the air above a 
hay field, one would see it moving to and fro along the direction of 
propagation. Consequently, sound waves in fluids are longitudinal waves, unlike the 
aforementioned water waves. However, where sound waves arrive simultaneously from 
many directions, the particles describe much more complicated motions. This is not 
because the sound waves interact to affect each other: at the levels of sound experienced 
in everyday life, sound waves arriving from different directions pass through each other 
unchanged. This is fortunate; consider what would otherwise happen in the concert hall 
or in the lecture theatre. Such behaviour is said to satisfy the principle of linear 
superposition. However, very intense sound, such as that in the exhaust pipes of internal 
combustion engines, near the exhausts of turbo-jet aero engines or close to explosive 
events, does not satisfy this principle, with the consequence that the form of the 
disturbance varies as it propagates. 

2.3 S o u n d  and v i b r a t i o n  

The words 'sound' and 'vibration' are often linked; the generation of sound is usually 
attributed to the vibration of solid objects and sound is explained as 'vibration of the 
air'. The close link between mechanical vibration and sound is evidenced by the fact that 
many textbooks on acoustics open with chapters on the vibrational behaviour of mass- 
spring oscillators, followed by analyses of the vibration of strings, bars, membranes and 
plates. We think of vibration as to and fro (oscillatory) motion, in some cases sustained 
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by continuous excitation, in others following some transient disturbance such as a 
mechanical impact. But some sounds are short and sharp (impulsive), like those of a 
firecracker, so it is not obvious that sound is necessarily appropriately described as 
'vibration of the air'. Here, we try to resolve this terminological question by considering 
the process of sound generation by a readily available source of impulsive sound, namely 
your hands. 

Consider the effect of clapping your slightly cupped hands together when standing in 
the open air. Air is expelled from the region between your hands at an increasing rate 
until the flow ceases extremely rapidly as the hands meet. The flow can be detected by 
placing the hands close to the lips. Try it. Notice that the resulting sound does not appear 
to be associated with the maximum outflow; little sound is noticeable until the hands 
meet. This observation suggests that the effectiveness of sound generation is related to 
the rate of change of flow rather than to magnitude of the flow, a conclusion confirmed 
by theoretical analysis in Chapter 6. The rate of change of the initial 'intrusion' of the air 
displaced by the hand into the immediately surrounding air is sufficiently slow that it can 
be accommodated by the movement of the latter with very little increase of fluid density 
and pressure. However, the sudden cessation of outflow from the hands cannot be 
similarly accommodated, because the initially displaced moving air possesses momen- 
tum, which cannot be changed instantaneously, except by an unrealisable infinite force. 
Hence, as the hands meet, a region of the immediately surrounding air is locally 
'stretched', resulting in a rapid and substantial reduction of local density and pressure. 
This causes an imbalance of pressure with the air a little further out, which accelerates 
the local air inwards until local equilibrium is restored. This process of slow outward 
displacement followed by rapid inward displacement is passed on to the surrounding air 
in the form of a thin moving shell, within which the air is temporarily disturbed from its 
previously quiescent state; and so the disturbance propagates away from the source in 
the form of a compact wave. After the shell o f  disturbance has passed, the air returns to its 
former undisturbed state." it does not continue to vibrate. The strength of the disturbance 
decreases in proportion to the distance travelled until it disappears into random 
molecular motion (heat). 

Contrast this process with the same handclap heard in a large, empty sports hall. After 
one or two distinct echoes, the sound will appear to be continuous as it dies away. As 
each reflection reaches the listener, a discrete, temporary disturbance occurs; the 
direction of air motion depends upon the direction of arrival of the reflection. Thus 
discrete reflections (echoes), separated by a brief moment of silence, are initially heard. 
The rate of arrival of reflections increases in proportion to the square of the time elapsed 
since the occurrence of the handclap. Thus the individual disturbances eventually merge 
into a continuous state of disturbance, known as reverberation. The air undergoes 
continuous complex oscillatory motion until all the sound energy is dissipated into heat, 
largely through interaction of the sound wave with the room boundaries. In this case, 
sound is naturally considered to be vibration of the air. Air, whether enclosed or 
unenclosed, will also exhibit continuous oscillatory motion in response to a continuous 
source of sound, such as a running engine. Again, we may speak of vibration of the air. 

The point of citing these examples is to emphasise that sustained vibratory motion 
following disturbance is not intrinsic to acoustic waves, in the way that it is to a 
disturbed pendulum. Vibration is only sustained if the source itself is in continuous 
action, or if many reflections of the initial disturbance return in rapid succession to the 
point of observation. Sudden, short disturbances also propagate throughout solid 
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structures in the form of waves, but because they generally possess strongly reflecting 
boundaries, and the speed of bending waves increases with frequency, solid structures 
behave more like air in the sports hall than in an outdoor environment and appear to 
exhibit continuous vibration in response to transient disturbances. 

2.4 Sound in solids 

Sound is often transmitted from one volume of fluid to another by means of audio- 
frequency waves in solid media. This phenomenon has come to be called 'structure- 
borne sound' after the title of the definitive book on the subject, entitled K6rperschall 
(Cremer et al., 1988- Bibliography). It is most commonly experienced in buildings when 
airborne sound is transmitted through partition walls, impact noise is caused by footfall 
or door slam, or water systems announce their operation. The waves involved take three 
forms: a quasi-longitudinal form in which the principal motion is in the direction of wave 
propagation, as in a pneumatic drill bit that is impacted by an air-driven piston; a shear 
wave in which the motion is in a direction perpendicular to the propagation direction 
and rectangular sections distort into lozenge shapes; and bending, or flexural, waves 
which are sinuous in form and involve a combination of the longitudinal and shear 
distortion. These are illustrated in Figs 10.2-10.4. Bending waves are of particular 
importance in acoustics because, of the three, they couple most easily to contiguous 
fluids to receive and radiate fluid-borne sound energy. However, the other forms are also 
instrumental in transporting sound energy within structural components. 

The modelling and analysis of sound propagation in structures is far more compli- 
cated than that in fluids because the wave types couple with each other at structural 
junctions. Further complication arises because the speed of bending waves varies with 
frequency. The effect can be observed - in cold climates - when a large stone is pitched a 
long distance onto an ice sheet on still water. The sound has a rapidly falling pitch 
because the higher-frequency bending waves in the ice travel faster than those of lower 
frequency. Most solid structures continue to vibrate for some time after local impact 
because the resulting waves repeatedly return after reflection from structural disconti- 
nuities. Structure-borne sound is the subject of Chapter 10. 

2.5 A qual i ta t ive  in t roduct ion  to w a v e  p h e n o m e n a  

This section presents a brief qualitative account of forms of behaviour that are 
characteristic of mechanical waves, with particular reference to sound waves in fluids. 
The phenomena of reflection, scattering, diffraction and refraction are treated in more 
detail in Chapter 12. 

2.5.1 Wavefronts 

Imagine that a small electric spark is generated between two electrodes in the form of 
two thin wires, separated by a small gap, which are attached to a high-voltage source. 
The air local to the gap is suddenly heated and it rapidly expands, displacing the air 
around it and altering its density and pressure. As described in the previous Section 2.3, 
a disturbance of particle position, density, pressure and temperature then propagates 
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Fig. 2.1 Pressure-time history of sound generated by an electric spark. 

away from the source at the speed of sound c characteristic of the type of fluid. An 
example of the temporal variation of pressure which was generated by a spark source is 
illustrated in Fig. 2.1. Because the source volume is very small and the fluid is uniform, 
this disturbance propagates uniformly in all directions in the form of an expanding 
spherical shell, as shown in Fig. 2.2. Any surface on which an acoustic waveform feature 
(e.g., pressure peak, or null) is simultaneously received is known as a 'wavefront'. In this 
case, the wavefronts are clearly spherical. The disturbance arrives at a distance r from the 
source with a time delay between emission and reception given by r/c. Analysis presented 
in Chapter 3 will show that the disturbance created by each source element must decrease 
in inverse proportion to the distance travelled. 
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Fig. 2.2 Spherical propagation of a pulse. 
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(b) 

(c) 

Fig. 2.3 Wavefronts at three different times after generation by a line array of impulsive point 
sources showing progression from quasi-cylindrical to quasi-spherical fields. 

Imagine now that a linear array of sparks is generated simultaneously. The principle 
of linear superposition allows us to construct the wavefront diagram shown in Fig. 
2.3(a). Note that the pressure does not peak uniformly over the surface of the wavefront 
envelope because pressure doubling occurs at the points where wavefronts from the 
individual sources intersect. The time history of the pressure at any point within the 
envelope, subsequent to its passage, becomes increasingly complicated as the number of 
sources increases and as their individual wavefronts pass the point. As we progressively 
increase the time elapsed since the initiation of the sparks, the resulting wavefront 
initially approaches a circular cylindrical surface, at least over much of the length of the 
array, as illustrated by Fig. 2.3(b). At much greater elapsed times the wavefront envelope 
becomes almost spherical (Fig. 2.3(c)). In continuously generated, steady sound fields, 
wavefronts are surfaces of uniform phase (but not necessarily uniform amplitude). 

The concept of the wavefront is embodied in Huygens principle, by which the 
progression of a wavefront may be visualized by considering each of a set of closely 
spaced points on a wavefront to generate hemispherically spreading wavelets. The 
envelope of the set of 'wavefrontlets' represents the new wavefront surface. Figure 2.4 
shows the plane wavefronts generated in water by the combination of many circular 
wavefronts caused by the fall on the surface of an angler's cast line. A simple extension of 
this principle underlies the approach to sound field analysis known as 'ray' or 'geometric' 
acoustics, in which 'rays' of disturbance propagate in directions normal to the local 
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Fig. 2.4 Huygens principle illustrated by ripples created by the fall of an angler's cast line. 

wavefront. This model is the basis of many models of acoustic propagation in the 
atmosphere, under water and in large spaces such as concert halls (see Chapters 9 and 
12). Propagating disturbances are quantified in terms of energies and intensities, which 
have no phase; rays cannot therefore mutually interfere in the manner of waves. This 
form of sound field analysis is not presented in any detail in this book for lack of space: 
the reader is referred to Pierce (1989), listed in the Bibliography, for a comprehensive 
exposition. However, it should be noted that geometric acoustics is not appropriate in 
cases where sound waves are radiated by, propagate in, or interact with, systems that are 
not very much larger than a wavelength. This is exemplified by the fact that speech 
communication can take place between mutually unseen neighbours over a high garden 
wall, which would be disallowed by the geometric acoustics model. 

2.5.2 Interference 

The process of interference that results from the linear superposition of wave distur- 
bances underlies many commonly encountered acoustic phenomena. Superposition 
applies to any linear sound field, whether continuous or transient; whether generated 
by discrete compact sources, such as small sparks, or by complex sound sources that are 
extended in space, such as vibrating machines; or created by the sound field radiated by a 
source together with reflections of that field by surrounding obstacles. Interference 
occurs even if sources are random in time and broadband in frequency; but interference 
is only evident if the sound field is analysed into many finely resolved frequencies. 
Spatially steady patterns of interference between the sound fields of more than one 
source are only observed in cases where the contributing sources are coherent, or phase 
related (see Appendix 4). In cases where various discrete, steady sources, or regions of an 
extended steady source, operate with a common frequency and fixed phase relationship, 
constructive ('additive') and destructive ('subtractive') interference creates steady spatial 
patterns of high and low sound pressure amplitude. The interference field produced by a 
pair of nominally identical point sources is presented in Fig. 2.5. 
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Fig. 2.5 Interference between waves generated by two nominally identical point sources in a ripple 
tank. Reproduced with permission of Arnold Publishers from Newton, R.E.I. (1990) Wave 
Physics. Edward Arnold, London. 

Interference produced by the coherent reflection of sound is most noticeable as one 
walks around in a reverberant room excited at any single frequency by a loudspeaker; the 
wall reflections create the interference pattern, which is stationary in space and therefore 
known as a 'standing wave'. At certain distinct frequencies lying in a range where the 
acoustic wavelength is not very much smaller than the smallest room dimension, the 
average level of sound is particularly high. These are acoustic resonance frequencies, at 
which the interference pattern 'fits' neatly into the room geometry. The associated 
interference patterns are called 'acoustic modes'. Individual resonances and acoustic 
modes are not observable in the higher frequency range where the acoustic wavelengths 
are much smaller than the smallest room dimension because the resonances overlap and 
obscure each other, as seen in Fig. 2.6. This demonstrates that standing waves in an 
enclosure are not exclusively associated with its resonance frequencies and are not 
synonymous with modes. Contrary to commonly held belief, standing waves cannot be 
banished from a reflective enclosure by altering its shape, but the acoustic mode 
frequencies and mode shapes will be altered. Resonance peaks in room response can, 
however, be reduced by introducing sound-absorbing (energy-dissipating) elements into 
a room. Room acoustics will be analysed in Chapter 9. 

The spatial directivities exhibited by sound radiators are manifestations of the effects 
of interference. It is common experience that direct radiator loudspeakers radiate bass 
frequency sound more or less omnidirectionally, while the treble radiation is concen- 
trated near the cone axis. This effect is a manifestation of interference between the sound 
generated by the various regions of the loudspeaker cone. Radiation from a vibrating 
rigid piston, to which a loudspeaker approximates in the lower frequency range of its 
operation, is analysed in Chapter 6. Figure 2.7 shows the interference pattern generated 
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Fig. 2.6 Pressure frequency response of a small room to loudspeaker excitation. 

Fig. 2.7 Interference between waves generated by (a) in-phase (b) anti-phase point sources. 

by antiphase vibration of sources. Note that there is no disturbance in the plane of 
symmetry and maximum disturbance on the axis joining the source points. 

One of the principles of active noise and vibration control is to introduce secondary 
sources whose sound or vibration fields interfere destructively with the field to be 
controlled. 

2.5.3 Reflection 

A mechanical wave is reflected (literally 'bent back') by encounter with an interface 
between the wave-supporting medium and some other medium having different dynamic 
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Fig. 2.8 Reflection of a transverse wave in a stretched spring: (a) at a rigid termination; (b) at a 
junction with a thin string that offers no transverse constraint. Reproduced with permission of 
Arnold Publishers from Newton, R.E.I. (1990) Wave Physics. Edward Arnold, London. 

properties.  Two examples of  the reflection of  a transverse wave in a stretched spring are 
shown in Figure 2.8. In case (a) the wave meets a rigid suppor t  and the effect of  its 
constra int  is to generate  an inverted reflected wave whose displacement  at the suppor t  
cancels that  of  the incident wave to produce  zero net displacement  at that  point.  In case 
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(b) the spring wave meets a thin string, which offers little resistance to transverse motion. 
In spite of this lack of constraint (actually because of it) the wave does not continue into 
the 'foreign' medium in which the relation between transverse force and velocity is so 
different from that in the spring: it turns tail and flees- but in an uninverted form. This 
latter case is analogous to that of a sound wave travelling in a tube in an organ pipe. The 
air just outside the open end of the tube is so easy to move in comparison with that 
confined within the walls of the pipe that the sound wave is unable to sustain its pressure 
amplitude: consequently an inverted reflected pressure wave is generated. At the 
sounding frequency of the pipe, the interference between the outgoing and returning 
waves serves to sustain the oscillation of the sound-generating flow. The process of 
reflection of sound waves travelling in ducts is analysed in Chapter 8. This behaviour is 
fundamental to the operation of wind instruments and is also exploited in the design of 
exhaust silencers for internal combustion engines. 

We have seen that the acoustical properties of liquids and gases are very different. 
When the sound generated by an overflying aircraft meets the calm surface of a lake, the 
sound pressure in the air at the interface cannot accelerate the much denser liquid to the 
same degree that it could had the water been air. The result is almost complete 
suppression of the particle motion normal to the water surface, together with nearly 
doubling of the pressure at the interface. As a result a wave travels back into the air: this 
is the reflected wave. Reflection is not perfect; about one-thousandth of the energy of the 
incident wave is transmitted into the water. If a reflecting surface is smooth and extensive 
compared with the wavelength of the incident sound, the reflected wave will obey Snell's 
law of optical (specular) reflection; the angle of incidence equals the angle of reflection. 
An important consequence of specular reflection is that the sound field in the air will 
exhibit interference between incident and reflected field. This has implications for the 
selection of microphone positions for the measurement of environmental sound above 
ground or water. 

Had the sound been incident upon a level grassed sports field, reflection (and 
interference) would be weaker because the incident wave would be able to drive air to 
and fro into and out of the surface, against a reaction created by the motion of the air 
within the surface pores. A considerable proportion of incident sound energy would 
enter the porous ground. Here it would be turned into heat by the action of viscous 
stresses in the boundary layer created by the relative motion of the air particles and the 
solid material, which constitutes the principal mechanism exploited in porous and 
fibrous sound absorbers as described in Chapter 7. 

2.5.4 Scattering 

If we replace the calm lake of the previous section by a choppy sea, the sound wave will 
still be strongly reflected because of the disparity of fluid properties, but it is intuitively 
apparent that the reflected sound energy will be scattered in a multitude of directions. In 
fact, only those frequency components having acoustic wavelengths in air less than, or 
similar to, the longest water wavelengths will be substantially scattered; the longer 
wavelengths will suffer largely specular reflection. On the basis of this example, 
scattering may be considered as a form of reflection in which the organized wavefronts 
of the incident sound are fragmented. Obstacles that are much smaller than an acoustic 
wavelength scatter sound in all directions, albeit very weakly, unless they are capable of 
resonance. Scattering is the mechanism by which active sonar and radar detect the 
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presence of targets. Scattering is particularly strong from resonant targets such as the 
swim bladders of pelagic fish, gas bubbles in liquids, and the cases of marine mines. 
During the past few years it has become common practice to install in concert halls and 
recording studios cunningly designed reflectors, called quadratic residue diffusers, which 
scatter sound energy more or less equally in all directions [2.1]. They comprise arrays of 
channels of differing depths so that the reflected sound emerges with a range of 
differential time delays, so 'breaking up' the reflected wavefronts. 

Scattering is therefore seen to be a form of reflection in which a proportion of the flow 
of incident sound energy is redistributed into many directions. An interesting result of 
scattering is produced by clapping hands near an iron fence formed from periodically 
spaced vertical rods. The sound scattered from each rod arrives at the listener in almost 
periodic sequence, producing reinforcing interference of certain frequency components; 
the effect is to produce sound having a distinct tonal quality. Multiple scattering of 
sound by the trunks of a densely populated forest produces distinct reverberative effects 
within it and strong echoes from its edge. (Try clapping your hands on a windless cold 
day while standing at about 50 m from the edge of a densely planted area of woodland.) 

2.5.5 Diffraction 

Diffraction is an effect created by the presence of one (or more) partial obstacles to wave 
motion that deform the shape of wavefronts as they pass. The phenomenon is caused by 
the 'removal' of some portion of the incident wavefront and can be qualitatively 
understood in terms of Huygens principle described earlier. A commonly observed 
example is produced when straight-fronted water waves fall upon a small gap between 
large rocks protruding through the water surface. The transmitted wavefronts take the 
form of circles centred on the gap (Fig. 2.9). In fact, waves are also 'reflected' from the 
gap; these are superimposed upon the waves reflected from the surfaces of the rocks to 
form a complex interference pattern. The same phenomenon is in action when noise is 
transmitted under or around a poorly fitting door. Diffraction is also responsible for 
allowing people who cannot see each other to converse over the garden wall. The more 

Fig. 2.9 Diffraction of plane waves by a small aperture. 
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Fig. 2.10 Diffraction of water waves by a breakwater. Reproduced with permission of Arnold 
Publishers and HMSO from Newton, R.E.I. (1990) Wave Physics. Edward Arnold, London. 

or less spherical wavefronts generated by the speaker are diffracted by the presence of the 
rigid wall in such a way that those that enter the optical shadow region seem to emanate 
from the edge of the wall, which behaves as if it were a secondary source. The degree of 
penetration of this region depends upon frequency, the positions of the speaker's mouth 
and listener's ears, and the height of the wall, as explained in Chapter 12. The strength of 
the diffracted field decreases with frequency, so the timbre of the voice alters as the 
speaker, or listener, approaches the wall. A spectacular example of water wave 
diffraction is illustrated in Fig. 2.10. 

The 'apparent secondary source' phenomenon associated with diffraction by edges is 
created by the sharp edges of loudspeaker cabinets. Sound waves travelling outwards 
along the front surface of the cabinet are diffracted by the sudden cessation of the 
constraint imposed by the cabinet so that some sound appears to emanate from the 
edges. Good designs minimize the adverse effect by placing the drive units off any axis of 
symmetry and by rounding off the edges. 

2.5.6 Refraction 

Readers will be familiar with the 'bent stick' and 'false depth' effects produced by 
refraction at the surface of water, showing that light travels more slowly in water than 
in air. The simplest way of visualizing the effect is to imagine a plane light wavefront in 
the water approaching the interface at an angle. As each 'element' of the wavefront 
emerges, its propagation speed increases, thereby 'bending' the direction of propagation 
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Fig. 2.11 Refraction at an air-water interface. 

away from the normal to the interface. One consequence is that fish see the whole above- 
water scene within a circle on the surface. Refraction of sound waves at this interface 
produces the opposite effect because sound travels more rapidly in water than in air. 
According to the principle of reciprocity, the paths of refracted light rays and refracted 
sound 'rays' are independent of direction of travel; therefore sound 'rays' entering water 
from air are refracted away from the normal. At about 14 ~ of incidence, the refracted 
'ray' grazes the water surface, as shown in Fig. 2.11. Beyond this angle, plane sound 
waves travelling in air cannot be transmitted as plane waves into fresh water; they 
produce disturbances in the water that are localized in a region very close to the surface, 
and all the incident energy is reflected back into the air. Rainbows are caused by a 
combination of refraction and internal reflection of light incident upon raindrops. 

The sound speed in air increases with temperature. The most common daytime 
condition, in which the air temperature near the ground decreases with height, bends 
the direction of propagation upwards. This has the generally beneficial effect of reducing 
the noise of traffic and industry in the surrounding environment by producing a shadow 
zone. However, temperature inversions can occur, particularly on windless evenings 
following hot days, when the ground cools more rapidly by radiation than the air, which 
is a poor heat conductor. In this case noise levels at some considerable distance from a 
source can exceed those at nearer stations. At considerably higher altitude the sound 
speed increases with height. It is on record that the noise of Saturn rocket launches could 
sometimes be heard at a distance of over 100 km, but not at distances between 50 and 
100 km. 

Refraction is of paramount concern in predicting sound propagation patterns in the 
ocean. The speed of sound in water varies in opposite senses with temperature and 
hydrostatic pressure. The combined effect is to form sound channels near the surface 
that reduce the attenuation associated with spherical spreading and allow sound to 
travel great distances. This phenomenon is exploited in the Herd Island experiment in 
which intense sound generated in the Indian Ocean is picked up at listening stations 
distributed around the globe. The time delay depends upon the temperature distribution 
in the intervening ocean and provides a means of monitoring global warming. Refractive 
effects also provide acoustic havens for submarines that defy sonar detection. Refraction 
by temperature gradients in the atmosphere protects the land surface from the sonic 
boom produced by high-flying supersonic aircraft. 
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Fig. 2.12 Illustration of the Doppler effect showing the trajectories in time and space of the sound 
waves. 

2.5.7 The Doppler effect 

This is the well-known phenomenon, named after the Austrian physicist C. J. Doppler, 
by which the pitch of a whistle or siren on a moving vehicle falls as it passes from 
approach to recession. The effect may be understood by reference to Fig. 2.12. The 
vehicles move at speed V along straight trajectories in the x- t  plane. They each emit a 
periodic sequence of impulsive sounds, at times indicated by the stars superimposed on 
the trajectories. Pulses are simultaneously generated at the position of the central 
stationary observer, as indicated by the stars distributed along his time axis. The pulses 
emitted by the vehicles travel along the ray trajectories at the speed of sound, c, to be 
received by the two flanking 'alter ego' observers at the times indicated by the stars on 
their time respective axes. It is clear that the period of the pulse sequence received from 
the receding vehicle exceeds that of the sequence emitted at the observer position. In 
turn, this period exceeds that of the pulse sequence received from the approaching 
vehicle. All the harmonics of the pulse sequence are altered in the same proportion as the 
fundamental. Therefore the pitch is altered, but the timbre (quality) is unchanged. 

The same phenomenon occurs when an observer is in motion relative to a fixed source, 
or to a moving source if the relative speed is non-zero. (Construct the corresponding 
trajectories and pulse sequences.) If one were able to distance oneself from the source at 
the speed of sound, no sound would be heard. On the contrary, no Doppler frequency 
shift is caused by a steady wind. This phenomenon, which allows astronomers to 
estimate the recession speeds of stars, is also exploited by laser Doppler instruments for 
measuring vibration and fluid flow. 

2.5.8 Convection 

Acoustic disturbances are transported in a flowing fluid at a velocity that is the vector 
sum of the wave velocity and the local flow velocity. A rather good example of 
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exploitation of this phenomenon is provided by wind tunnels which are driven by 
sucking the air through the test section into an evacuated vessel. The acoustic 
disturbances produced by the turbulent expansion of the air into the receiving vessel 
may be prevented from propagating upstream and disturbing the flow in the test section 
by interposing a convergent-divergent section in which the flow speed in the throat is 
equal to the local speed of sound. However, some residual disturbances can bypass the 
main flow within the reduced speed flow in the boundary layer at the throat. 

Convection by the wind in the boundary layer close to the ground produces refraction 
because the wind speed increases with height, hence bending the propagation direction 
of sound travelling against the wind upwards, and that propagating with the wind 
downwards. In the former case, a sound 'shadow' is formed, as with temperature lapse. 
This is the principal reason for the difficulty of communicating speech to someone 
located upwind, contrary to the popular fallacy that sound cannot travel against the 
direction of airflow. The combined effects of convective and thermal refraction by 
atmospheric turbulence causes the unsteadiness of the sound of overflying aircraft. 

2.6 S o m e  m o r e  c o m m o n  examples  of  the  behav iour  of  sound 
w a v e s  

Before embarking upon a detailed analytical exposition of the fundamentals of acoustic 
wave motion in the next chapter, it is instructive to point out some further examples of 
observations that we can make in everyday life, from which we can glean information 
about the behaviour of sound. You are invited to add to the list and to send your 
suggestions to me (fjf@isvr.soton.ac.uk) for possible inclusion in a subsequent edition. 

The fact that sound travels in air at about 340 m s -  1 is enshrined in the 'three seconds 
per kilometre (five seconds per mile)' rule for estimating the distance of a flash of 
lightning. When the sound of the ensuing thunder is heard to 'roll around' surrounding 
hills we are observing the effect of multiple reflections. 

The fact that traffic noise is attenuated by its passage over permeable ground surfaces 
may be confirmed by climbing up a shallow hill separated from a busy highway by a flat 
field. Loose-lying snow very clearly absorbs road vehicle noise because sound can enter 
via its interstices; packed snow has less effect. In contrast, the clear audibility of 
conversations between the occupants of boats on a calm lake at a considerable distance 
from the observer demonstrates that sound is strongly reflected from interfaces between 
fluids of very different density and speed of sound. 

The conversations of hot air balloonists at considerable height are clearly audible 
because of the lack of a ground effect combined with little wind noise: in accordance with 
the principle of acoustic reciprocity, they will equally well hear your Earth-bound 
utterances, provided the noise of their flight through the air is sufficiently weak. It is 
common experience that the presence of a strong wind makes it difficult to converse with 
someone located upwind of the speaker. It is widely, but erroneously, believed that this is 
because sound does not easily travel against the wind. The wind speed increases with 
height above ground and sound travels at a constant speed relative to the air. Therefore 
the speed of sound propagation against the wind direction relative to the Earth decreases 
with height; the direction of propagation is increasingly refracted upwards with distance 
travelled, producing a zone of zero reception beyond a certain distance from the speaker. 
Because the speed of sound in air increases with temperature, a variation of air 
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temperature with height also causes refraction, but is less easily observed than wind- 
induced refraction. 

The common misconception that sound travels in straight lines is confuted by one's 
ability to hear the noise of a road vehicle even when it passes out of view behind an 
isolated building. The frequency dependence of the diffraction phenomenon accounts 
for the fact that only the lower-frequency components manage to circumvent the 
obstacle. By means of the same phenomenon, sound can be heard to emerge from a gap 
under a heavy closed door between two rooms. 

That sound waves transport energy is evidenced by the rattling of the window pane by 
a passing truck; energy has clearly been transferred to the window. The decay of the 
climatic final chord of a romantic symphony into silence can only be explained by a 
conversion of the sound energy produced by the orchestra into some inaudible form. It 
is, in fact, largely transformed into heat in the clothing of the audience. 

The independence of intersecting sound waves has already been seen to give us the 
ability to understand speech and to enjoy music in enclosed spaces. The remarkable 
capability of the human auditory system to make sense of the jumble of multiple wave 
reflections from the enclosing surfaces does the rest. 

The fact that sound can be generated by mechanisms other than the vibration of solid 
bodies is evidenced by the hum of a cooling fan and the roar of a jet engine; you can also 
try blowing against the tip of your finger. The delicacy of aerodynamic sound generation 
mechanisms, essential to wind instruments, is typified by the human whistle. Try slowly 
moving the edge of a piece of horizontally held thin card towards the opening between 
the lips. You might also like to try to ascertain by what mechanism you change the pitch 
of your whistle. The 'clack' of colliding snooker balls is caused by their sudden 
accelerations and decelerations, and not by their resulting vibration, which occurs at 
frequencies above the audible range. If you don't play snooker (or pool), you might like 
to observe the sound of pebbles crashing together on a beach lashed by a stormy sea. 

These, and many more examples, reveal sound as a fascinating phenomenon that we 
shall now proceed to analyse in a more scientific, quantitative manner in the next 
chapter. 

Quest ions 

The fluid is assumed to be air at a pressure of 105 Pa and a temperature of 20~ unless 
otherwise stated. Impedance ratios are referred to the characteristic impedance of air 
under these conditions, unless otherwise stated. 

2.1 Write a computer program to determine the sound pressure field generated by a line 
array of ten impulsive, omnidirectional point sources spaced at equal intervals of 
300 mm. Assume that the pressure-time history of the sound field radiated by each 
source takes the form p = Po/r for the period r/c - At  <_ t < r/c and p = - P o / r  for 
the period r/c < t <_ r/c + At,  where r is the distance travelled and At is 10 .2  ms. 
Evaluate the sound pressure fields in any plane containing the array at intervals of 
elapsed time of 1 ms up to a total of at least 20 ms. P0 is arbitrary. A colour scale 
plot of lOgl0 p would be useful. 



3 
Sound in Fluids 

3.1 Introduction 

This chapter concerns the mechanisms and mathematical expression of sound in fluids. 
A brief account of the physical properties of fluids, which determine the form of acoustic 
wave that they support, is followed by a descriptive treatment of the kinematic, dynamic 
and thermodynamic processes involved. The mathematically based section presents the 
derivation of various forms of the general equation that governs the behaviour of 
acoustic waves in fluids, together with some examples of their solutions and interpreta- 
tions. Suggestions for demonstrations and experiments that assist the understanding of 
the behaviour of sound waves are provided in Appendix 7. 

3.2 The physical characteristics of fluids 

Although the acoustic behaviour of most commonly encountered materials in the audio- 
frequency range may be analysed without explicit reference to their molecular nature, it 
may be helpful to the reader to review briefly the different molecular structures of solids, 
liquids and gases, in preparation for the introduction of the continuum model. The 
molecules that form material substances attract each other except where they are in very 
close proximity, when they exert strong forces of mutual repulsion. Therefore, when 
molecules approach each other under the influence of the mutually attractive force, they 
lose potential energy-  as does a falling apple. At the point where the interaction force 
changes from attractive to repulsive, the sum of the potential energies associated with the 
two forces is a minimum, known as the 'pair dissociation energy'. This state of 
equilibrium may be disturbed by the impact of other molecules. If the average kinetic 
energy of the intruder is much less than the dissociation energy it will be captured, and 
eventually a large conglomerate of bound atoms will form: this is the case in the solid 
phase of matter. On the other hand, if the average kinetic energy greatly exceeds the 
dissociation energy, molecules will never 'bond' for any significant time: this is the 
gaseous phase of matter. Liquids fall in between these two states where 'bonds' are 
temporarily made and then broken by encounter with molecules of higher than average 
energy. (This account is loosely based upon that presented in Three Phases of Matter 
(Walton, 1983)- see Bibliography.) 

The spacing of molecules in solids is such that the shape of the structure is maintained 
by strong attractive forces. The molecules simply undergo very small vibrational 
motions unless they acquire so much energy due to heating that they break free of the 
attractive forces to form a liquid (or, where supplied with sufficiently high thermal 
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energy, to sublime directly into a vapour). In liquids, the molecules move relative to each 
other in complex paths under the combined influence of forces of attraction and 
repulsion, allowing the fluid readily to undergo large changes of geometric form under 
the action of applied forces, so that they adapt their shape to conform to that of a rigid 
container. In gases, the average spacing of the molecules is so large that attractive forces 
are very weak; any individual molecule may translate over a substantial distance before 
coming sufficiently close to another for the force of repulsion to produce a rapid 
exchange of momentum, in analogy with the collision of billiards balls. For example, the 
average distance travelled by a molecule between successive collisions in the air around 
you is 8 x 10 -8 m, which is about 25 times the average molecular spacing; so, on average, 
each molecule passes 24 others between collisions. Gases, unlike liquids, characteristi- 
cally fully occupy any container. (Some molecules near the free surface of contained 
liquids temporarily escape to form a co-existing gas-like vapour that occupies the 
volume of a container not occupied by the liquid.) 

The term 'fluid' implies flow. Flow is usually spatially non-uniform in that it entails 
relative motion of different elements of the medium and frequently involves intermixing 
of fluid elements. A principal distinction between fluids and solids is that the former 
cannot resist steady applied shear forces, which act so as to 'slide' adjacent layers of 
material over each other. Liquids and gases are therefore both fluids. Solids react to 
steady shear forces by undergoing shear distortion, which generates proportional 
opposing forces, so that a state of static equilibrium is attained. Fluids produce no 
equivalent reaction to steady shear. However, in common with solids, fluids resist 
changes of volume occupied by any fixed mass of molecules (volumetric strain); this 
property is essential to the phenomenon of sound in fluids. 

Fluids also exhibit fluid friction, or viscosity, whereby they resist relative 'sliding' 
motion associated with differential velocities of adjacent elements; this acts most 
noticeably in boundary layers close to bodies moving through fluids. The principal 
mechanism of viscosity in liquids is intermolecular attraction. Given the freedom of gas 
molecules, it is somewhat surprising that gases also exhibit viscosity. The principal 
mechanism is an exchange of mean (time-average) molecular momentum via random 
molecular transport between adjacent fluid layers moving at different mean velocities. 
Molecules moving from a fluid element possessing a certain mean velocity into one 
having lower mean velocity bring with them greater mean momentum than those in the 
slower element. Satisfaction of conservation of momentum in the absence of external 
forces requires that the mean momentum of the slower element increases, and vice versa. 
The effect is to reduce the relative velocities between the elements; the associated rates of 
change of momentum may be attributed to an internal viscous stress. Fluid viscosity has 
profound effects within the fibrous and porous materials used as sound absorbers, and in 
thin tubes. It is also central to the processes of sound generation by turbulent fluid flow. 

3.3 Molecules and particles 

In the air around you, a cube of 1 mm side length contains 2.687 x 1016 molecules. For 
the practical purposes of engineering acoustics it is convenient and scientifically 
acceptable to model fluids as continuous media. The discrete molecular model is 
implicitly replaced by a voidless medium of which the properties, state and behaviour 
at a 'point' are expressed in terms of quantities that are governed by the average state of 
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the multitude of molecules within a 'small' volume containing that point. These 
quantities are known mathematically as the variables of the model. A region may be 
considered to be 'small' if the spatial changes of the variables across it may be accurately 
expressed as the products of the local spatial gradients of the variables and the width of 
the region. We shall use the term 'element' to express this concept. 

The concept of the 'particle' is adopted by fluid dynamicists in describing the 
kinematic (motional) state of a fluid. This is a fictitious entity that allows us to express 
the average position, velocity and acceleration vectors of the molecules in a small region 
surrounding the point of interest. Note carefully that particle velocity (vector) does not 
relate to the average speed (scalar) of the associated molecules; the square of the latter is 
characterized by the local temperature of the fluid as a measure of the average molecular 
kinetic energy. In a fluid that is at rest in a continuum sense (quiescent), the mean vector 
velocity of the molecules is zero, unlike its temperature. However, the root mean square 
speed of gaseous molecular motion in any individual direction is very close to the speed 
of propagation of sound, which is consistent with the concept of the molecule as the 
acoustic 'messen ger'. 

3.4 Fluid pressure 

The principal mechanism of pressure in gases derives from random molecular motion, 
and the contribution from intermolecular forces of attraction is negligible, whereas they 
are of comparable effect in a liquid. Here we shall concentrate on gases, leaving a brief 
discussion of liquids to Section 3.8. 

Imagine a very thin rigid sheet suspended within a gas which, in a continuum sense, is 
at rest. A molecule approaching one surface of the sheet is repulsed by the solid 
molecules and 'bounces off the sheet; hence its vector momentum is changed. The 
sheet is thereby subjected to an impulse equal to this change. Because the individual 
impulse is so small, and the mean rates of impacts occurring on both sides of the sheet 
are extremely high and equal, the sheet is subject to zero mean force. The mean rate of 
change of momentum of the molecules that impact upon unit area of one side of the 
sheet is defined as the fluid 'pressure': it has the dimensions of force per unit area. If the 
sheet is removed infinitely slowly, the fluid may be assumed to remain at rest in a 
continuum sense. Across the former plane of separation there is clearly a symmetry to 
the exchange of molecules and to exchange of momentum via molecular collision. In 
terms of the continuum model, the pressures exerted on each other by the formerly 
separated fluid elements are equal. Since molecules move randomly in all directions with 
equal probability, the imaginary sheet may be placed in any plane, demonstrating that 
fluid pressure is not preferentially directed: it is a scalar quantity, unlike a force. 
However, the action of pressure on any surface, whether that of a solid, that of an 
interface between different fluids, or that of a fluid element, produces a force that is 
directed normal to that surface. Area elements possess both size and spatial orientation 
and are thus vector quantities: scalar pressure times vector area creates vector force. 

3.5 Fluid temperature 

Temperature is a measure of the average kinetic energy per molecule. Reference to the 
earlier discussion of dissociation energies and phases of matter qualitatively explains the 
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transition from solid, through liquid, to gas, as temperature is increased by the action of 
some energy-providing agent. It does not, however, explain the sudden transitions 
between phases that are undergone by very large conglomerations of molecules. We shall 
not be concerned further with this incompletely understood phenomenon. 

3.6 Pressure, density and temperature in sound waves in a gas 

We have seen how the concepts of pressure and temperature, as attributed to a gaseous 
continuum, can be understood in terms of molecular motion. Continuum density is a 
measure of the average total molecular mass per unit volume of fluid. Molecules in a 
region of gas that is stationary with respect to some appropriate frame of reference, such 
as the local surface of the Earth, move in all directions with equal probability. 
Consequently, their centre of mass is stationary in that respect, even though some 
molecules may leave, and an equal number enter, the region. The concept of continuum 
particle displacement implies that the molecules associated with the particle have a non- 
random average displacement superimposed upon their random displacements, so that 
their associated mass undergoes displacement: similarly with velocity and acceleration. 
Sound waves involve time-dependent changes of all these continuum quantities. We shall 
now study the associated relations between them. 

The equilibrium pressures and temperatures of gases, which form components of most 
systems of interest in engineering acoustics, are such that the gases very closely obey the 
Equation of State of a Perfect (or Ideal) Gas. This is expressed by 

Pip = R T  (3.1) 

where P is pressure, T is absolute temperature (degree Kelvin), p is density and R is a 
factor that is a function of the type of gas. For air, R is 287 J kg -  1 K -  1. This fundamental 
relation remains true whatever the process that changes the state of  the gas. 

The relation between variations of density about its mean value and associated 
variations of pressure about its mean value determines the speed of propagation of 
sound in fluids. Isaac Newton assumed that the temperature of the air remains constant 
in a sound wave and arrived at a speed which is 16% too low. Equation (3.1) indicates 
that the implication of his isothermal assumption is that sound is a linear phenomenon in 
which pressure is proportional to density. Over a century was to elapse before, in 1816, 
Pierre Simon, Marquis de Laplace, finally published a derivation of the correct speed, 
after many others had failed. 

The temperature actually rises and falls in concert with pressure and density in a sound 
wave in a gas; but, at audio frequencies, negligible heat flows between the regions of 
increased and reduced temperature. These regions are so far apart (half a wavelength in a 
plane travelling wave) that the temperature gradients are too small to produce significant 
heat conduction. Thus sound in air is an adiabatic process in which the pressure is related 
to density in the form P = c~p ~, where c~ is a constant and the exponent 7 is the ratio of 
specific heats at constant pressure and constant volume, which has the value 1.4 for air. 
Sound is therefore an essentially non-linear phenomenon, as illustrated by Fig. 3.1. 
However, the fractional changes of density and pressure associated with sound levels 
tolerable by human beings are so small that the non-linearity has negligible effect, and 
the slope of the tangent to the curve in Fig. 3.1 at the equilibrium point is a sufficiently 
accurate measure of the variation of sound pressure with density. (For example, 1 m 
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Fig. 3.1 Adiabatic pressure-density relation. 

from the mouth of a typical male speaker, the fractional changes of pressure and density 
are of the order of 10-6.) This slope is given by 

(~P/~P)o = (c~TP ~- 1)0 = [ ( ] ? / P ) ( ~ P T ) ] 0  = 7Po/Po = 7RTo (3.2) 

in which the subscript 0 indicates the condition of equilibrium, and P0, P0 and To are the 
equilibrium pressure, density and temperature, respectively. Note that the partial 
derivative of pressure with respect to density is used because pressure is a function of 
other variables. Derivation of an expression for the variation of temperature with 
density and pressure in terms of these equilibrium values is delegated to the student as an 
exercise. 

Changes of density are associated with changes of volume occupied by a given mass. 
The preceding relation between sound pressure and density can be expressed as one 
between sound pressure and volumetric strain. For a fixed mass M occupying mean 
volume V0, and small changes of volume and density 5 V and 5p, 

M = po Vo = (p0 + 5p)(Vo + 5V) (3.3) 

Therefore, correct to first order (products and squares of small quantities neglected), 

and 

5p = - po (5 V/Vo) (3.4a) 

~p/~ V = - po/Vo (3.4b) 

Using Eqs (3.1) and (3.4), 

6 e  = e - Po = ( a e / @ ) o  6p = - (~e0) (6 v / v  o) = - (Tn  po To) (6 V / V  o) (3.5) 

in which 5V/Vo  represents volumetric strain (note the negative sign in Eq. (3.5)). The 
deviation from equilibrium pressure P -  P0 is termed the 'acoustic' or 'sound pressure'; it 
will henceforth be denoted by p and the associated density deviation will be denoted by 
p'. Hence ~ p / ~ V  = - 7 P o / V o .  Fractional changes of pressure, density and absolute 
temperature in sound waves in air are very small. The value of zero dB in Table 3.1 
corresponds to an rms fractional pressure deviation of 2 x 10-10 (see Appendix 6). 

Equation (3.5) illustrates the essentially elastic behaviour of ideal gases in response to 
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Table 3.1 Examples of typical sound pressure levels 

Source/Environment Sound pressure level 
Lp (dB(A)) 

Launch noise outside rocket payload bay 
Heavy artillery at gunners' heads 
Threshold of pain 
Large jet engine at 30 m; within large symphony orchestra playing 

fortissimo 
10 m from loudspeakers at rock concert; 1 m from pneumatic chipping 

hammer 
Inside a textile factory; in an old-fashioned underground train 
Shouted male voice at 1 m; dense, accelerating road traffic at kerbside; 

inside jet airliner at take-off 
Dense, free-flowing road traffic at 3 m from kerbside 
Busy restaurant; two-person conversation 
Average commercial office 
Residential, urban neighbourhood, far from main roads, at night; library 

with no air-conditioning 
Theatre with full audience just before curtain up 
Empty recording studio; empty symphony hall 
Male human breathing at 3 m 
Average threshold of hearing of 1 kHz tone of normally hearing young 

persons 

160 
140 
130 
120 

110 

90 
80 

70 
60 
50 
40 

30 
20 
10 

c. 0 

small volumetric strain; the resulting stress (acoustic pressure) is linearly proportional to 
strain, in accordance with Hooke's law. The constant of proportionality, 7P0 or 7RpoTo, 
is the adiabatic bulk modulus of the gas. In air at sea level its value is approximately 
1.4 x 10 s N m -2 (Pa). The inverse of the bulk modulus is termed 'compressibility'.  In 
accordance with our previous description of the nature of fluids, we note that it is only 
volume strain that can generate a reactive stress; changes of shape cannot be resisted. 

At this point it is timely to try to draw the distinction between acoustic and non- 
acoustic pressures. This task cannot be accomplished with complete rigour in this 
introductory textbook; acousticians have argued about it for 50 years without reaching a 
complete consensus. Instead, a few examples will be presented in a qualitative manner, 
which it is hoped will not enrage the cognoscenti. It is well known that if you speak 
closely into a microphone that is not fitted with a windscreen, an unpleasant 'pop' noise 
will be superimposed on the recorded voice sound. This will not be apparent to someone 
listening to you speak 'live' as you make the recording. The microphone is recording 
some pressure fluctuations that are not associated with sound transmitted to the 'live' 
listener's ear. These are non-acoustic pressure fluctuations associated with unsteady fluid 
motion in the airstream leaving your mouth. It will be present if you gently blow on the 
microphone, producing turbulent flow, even though little live sound can be heard. Both 
the voice sound and the turbulent flow contain pressure gradients that produce fluid 
particle accelerations, but the natures of the two flow fields are clearly different: one 
generates a disturbance propagating at the speed of sound; the other is localized and 
propagates at the local flow speed. The first is an acoustic field; the other is not. In 
Chapters 6 and 10 we shall encounter acoustic field components close to sources of 
sound that do not propagate away from the source; but even here the acoustic relation 
between pressure and density fluctuations, derived in the previous section, holds good. 
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In the low-speed turbulence of your breath, the density fluctuations are negligible, and 
the pressure fluctuations are predominantly associated with the momentum fluctuations 
of an effectively incompressible fluid. These are the origin of the low-frequency noise that 
you hear when the wind blows past your ears -  so-called 'pseudo sound'. 

3.7 Particle motion 

Kinematics concerns the geometry of motion without regard to the causes of motion. 
Dynamics concerns the forces that cause motion and their effects. The kinematic state of 
a fluid at any instant of time is represented in terms of the instantaneous spatial 
distribution of vector velocities of the particles of fluid. In terms of classical mechanics, 
which may be assumed to apply to all the systems of interest in engineering acoustics, the 
rates of change of particle velocities are related to the total forces acting on them in 
accordance with Newton's second law of motion. Although viscous forces significantly 
affect fluid motion very close to solid surfaces, and also dissipate sound energy into heat 
during sound propagation, the general behaviour of sound fields in both gases and 
liquids may be analysed with sufficient precision for most practical purposes by 
assuming them to be inviscid (lacking viscosity). The effects of viscosity are described 
and analysed in Chapter 7. 

As a consequence of this assumption, together with the assumption of the absence of 
electromagnetic forces, the only remaining internal forces acting within a fluid to cause 
particle accelerations are those due to spatial gradients of pressure. External forces can 
be applied by gravity and by contiguous solid surfaces, such as that of a vibrating 
loudspeaker cone. Gravitational forces play little direct part in controlling acoustic 
motion in fluids, although they do control the spatial variations of mean pressure and 
density in all fluids and also influence the relatively slow variations associated with 
thermal convection. 

3.8 Sound in liquids 

We have already had a brief look at the differences between gases and liquids in terms of 
molecular structure. In spite of these differences, audio-frequency sound behaves 
similarly in homogeneous gases and liquids in that its existence and propagation speed 
depend upon the interaction between inertia and elastic stresses produced by volumetric 
strain. Liquids are obviously less compressible than gases because of the relative 
closeness of their molecules and the resulting influence of intermolecular repulsion. The 
bulk modulus depends principally upon the type of liquid, hydrostatic pressure, 
temperature and, in the case of sea water, salinity. The difference between the adiabatic 
and isothermal bulk moduli is generally very small, being less than 1%. 

In the case of water, the variation of speed of sound with hydrostatic pressure at a 
fixed temperature is nearly linear, but at fixed pressure it rises to a maximum and then 
falls as temperature is increased. The presence of salt slightly increases the sound speed 
in water. An empirical expression for the sound speed in sea water in the temperature 
range 0-20~ and pressures between 105 and 107 Pa was developed by Wilson [3.1] as 
c = 1490 + 3.6 AT + 1.6 • 10 -6 Ps § 1.3 AS m s -1, where AT = T(~ - 283.16, p is 
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the absolute static pressure in Pa and AS = S -  35, where S is the salinity in grams of 
salt per kilogram of water. 

The large difference between the compressibility of gases and liquids allows the 
presence of very small proportions of gas in a liquid to have a profound effect on the 
speed of sound and also on the attenuation of sound waves through the processes of 
scattering and absorption. The relatively very large compressibility of small bubbles of 
gas within a liquid relieves the stresses that would otherwise be produced by volumetric 
strain: the liquid can intrude upon the gas volumes without inducing significant pressure. 
The effective bulk modulus is therefore greatly reduced but the mean fluid density is little 
changed. 

Bubbles of gas resident in liquids act as resonators, the stiffness being supplied by the 
gas and the inertia being supplied by the locally surrounding liquid. The resonance 
frequency is inversely proportional to bubble diameter. A commonly observed natural 
phenomenon that results from the transient response (ringing) of bubbles of many 
different sizes is that of the 'babbling' of a brook. 

3.9 M a t h e m a t i c a l  mode ls  of  sound w a v e s  

3.9.1 The plane sound wave equation 

Sound waves exist in the four dimensions of space and time. The essence of mechanical 
wave motion is that spatial and temporal variations of the physical quantities involved 
are linked. In the case of acoustic waves this linking is via thermodynamic, kinematic 
and dynamic relations, some of which have been explained in earlier sections of this 
chapter. In certain cases, sound waves take a particularly simple form in that the 
wavefronts are plane. This means that each acoustic quantity is uniform over any plane 
surface normal to the direction of propagation. As time progresses, the values of each 
quantity in any plane vary synchronously according to the time dependence of the 
sound-generating mechanism. 

The simplest practical example is that of a sound field that is generated by a sliding 
rigid piston at one end of a rigid tube of uniform cross-section that is terminated by a 
non-reflective (anechoic) termination at the other end. Those familiar with fluid 
dynamics will immediately object that the particle motion cannot be completely uniform 
over the entire cross-section of the tube because of the presence of a boundary layer at 
the tube surface in which the particle motion is constrained to be zero at the wall. Thus 
we are forced to introduce an assumption into the model that the fluid lacks viscosity 
(that is to say it is inviscid). Analysis of the propagation of sound in a viscous fluid in a 
tube, presented in Chapter 7, demonstrates that the viscous boundary layer only 
influences sound propagation to a significant extent in tubes of very small diameter, 
such as capillary tubes. It is, however, responsible for dissipating sound energy into heat 
to a small extent in all cases where sound waves exist in fluids bounded by rigid surfaces. 
Viscosity also acts to produce weak attenuation in all propagating sound waves. 

The inviscid assumption greatly simplifies the analysis of sound fields, and it can be 
justified here by the fact that its neglect produces insignificant error in the analysis of 
many problems of practical engineering interest. It must, however, be accounted for in 
the models of sound absorption mechanisms and materials that are presented in Chapter 
7. Additional assumptions about the nature of fluids made extensively throughout this 
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Fig. 3.2 Plane wave strain. 

book are that they possess the same properties everywhere (they are homogeneous), that 
these properties are direction independent (they are isotropic), and that gases satisfy the 
Perfect Gas Law, as expressed by Eq. (3.1). Any deviation from these assumptions will 
be explicitly signalled. We shall also assume that the acoustic disturbances are 
sufficiently small for the fluid to behave as a linear elastic medium. This would not be 
true, for example, in the exhaust pipes of internal combustion systems, which also 
present analytical difficulties because the gas is not at uniform temperature and flows at 
high speed. 

Having established the assumptions of our model, we may now return to the plane 
wave in a tube. In the absence of viscous shear stresses, the only remaining internal 
forces that can accelerate fluid particles result from spatial variations of sound pressure. 
Since sound pressure is proportional to volumetric strain (Eq. (3.5)), we must suppose 
that spatial variation of strain is an essential feature of sound waves. Hence we begin our 
analysis with a graphical representation of strain (Fig. 3.2), which, by the nature of plane 
waves, is a function of only one space variable: the shape of the tube cross-section is thus 
immaterial. 

The left-hand face of a fluid element of unstrained length 6x is assumed to undergo a 
displacement ~ due to some acoustic disturbance. Strain is introduced by assuming the 
right-hand face to be displaced by a different amount ~ + 6~. The differential displace- 
ment ~ may be expressed as (~/~x)  6x; the higher-order terms in the Taylor expansion 
~(X -+- ~X) = ~(X) -~- ( ~ / ~ X )  (~X -~- (~2~/~X2) (~X2/2) + . . .  are neglected in accordance 
with our previous definition of a 'small' element. The partial derivative is employed 
because ~ will also be a function of time. Hence the volumetric strain is 

6 V/Vo = S[~ + (~/~x)  6 x -  ~]/S6x = ~ / ~ x  (3.6) 

where S is the cross-sectional area of the tube. The associated acoustic pressure in a gas is 
given by Eq. (3.5) as 

p = -TPo(~ /~x)  (3.7) 

In a liquid, 7P0 would be replaced by the relevant bulk modulus. 
If the strain ~ / ~ x  were uniform over the length of the tube, so would be the pressure, 

and no wave motion would exist because each fluid element would be in static 
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equilibrium. The equivalent expression for a uniform solid rod under static tension is 
cr = E(O~/~x), where ~ is the normal stress and E is the elastic modulus (Fig. 3.3). 
However, there is a vital difference. The walls of the tube prevent lateral displacement of 
the fluid, whereas the stress-free boundary of the rod allows lateral strain to occur: this is 
the Poisson effect. It can be clearly observed when a rubber band is stretched. 

An alternative approach to the derivation of Eq. (3.7), which is more readily extended 
to more than one dimension, is to define a 'control volume' that is fixed with respect to 
the frame of reference relative to which fluid motion is defined. Figure 3.4 shows the 
rates of flow of mass (flux) through the two faces of the control volume. In accordance 
with the principle of conservation of mass the instantaneous rate of increase of mass 
contained in the volume must equal the instantaneous difference between the rates of 
mass flow into and out of the volume. Thus 

S 6x (~p /~ t ) -  S [ p u -  (P +-~x -~x (3.8) 

where u - ~/Ot is the particle velocity, and p - P0 + P' as defined below Eq. (3.5), so 
that ~p/~x = ~p'/~x and Op/~t = ~p'/Ot. 

Linearization of this equation by the neglect of second-order quantities yields 

~p'/~t = - po(~U/~X) (3.9) 
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Fig. 3.5 Acceleration of a boat travelling down a narrowing river. 

Now, according to Eqs (3.4) and (3.5), p'/Po = p /TPo,  so that Eq. (3.9) can be written 

~p/~ t  = - 7Po(~U/~X) (3.~0) 

which is the time derivative of Eq. (3.7). 
As already mentioned, it is spatial gradients of pressure that cause the accelerations of 

fluid elements that are essential to wave motion. We now appeal to Newton's Second 
Law of Motion (N2LM) to relate motions to forces. The mathematical expression of 
particle acceleration in fluid flow (for sound is a flow phenomenon) is not so simple as for 
solids because of the phenomenon of particle convection (transport). 

Physical understanding may be aided by considering the motion of a small boat 
floating along a narrowing stream (Fig. 3.5). The flow at any one point is time 
independent; that is to say the flow is s teady .  But the boat accelerates as it is carried 
downstream into progressively faster flowing water: this is the convec t i ve  contribution to 
acceleration that applies even in steady flow. It is expressed mathematically by dividing 
the velocity change as it moves from x to x + 6 x  by the time to traverse distance fix: 

~U6x_u)] ~u ~x Ou ( u + ~  _ _ __ 
ac --  6 t -~x • - ~  U a x  (3.11) 

where b x / 6 t  ~ u as 6t ~ O. If, however, a sluice gate is suddenly opened upstream of the 
boat, the flow speed at any point will vary with time; the flow is u n s t e a d y  and at -- Ou/~t. 

Under these circumstances the boat's acceleration will be a function of both position and 
time. The total acceleration is then expressed as the sum of two independent contribu- 
tions: 

~u ~u 
a -- ac + at -- u ~----~x + ~t  (3.12) 

In sound waves in otherwise quiescent fluids, at amplitudes small enough to satisfy the 
assumption oflinearity, the ratio of the second term to the first term in Eq. (3.12) is of the 
order of the ratio of the speed of sound to the particle speed. Since particle speeds are 
typically of the order of 10 -3 m s-1, the first term can safely be neglected. However, it 
may not be neglected in models of turbulent fluid dynamic noise sources such as jet 
engine exhausts or in the analysis of sound propagation in fluids undergoing net 
transport (mean flow). 

The net force in the x-direction on the fluid in the control volume of Fig. 3.4 is 
produced by the difference of pressures at x and x § 6 x  (Fig. 3.6). All the internal forces 
between the particles in the control volume sum to zero by virtue of Newton's Third Law 
of Motion (N3LM). 
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Thus 
@ @ 

F- S[p - @ + ~x6X) ] - -S-~x6X 
The linearized form of N2LM is therefore 

(3.13) 

S 6x po(aU/Ot) = - S  6x(~p/�9 

or po(au/at) = - ~p/ax (3.14) 

in which p has been replaced by p0. 
Differentiation of Eq. (3.14) with respect to x yields 

~2 u ~2p 
= ( 3 . 1 5 )  P0 ~t ax ax 2 

and differentiation of Eq. (3.10) with respect to t yields 

~2 U O2p 
7P0 ~t ~------~ = at z (3.16) 

Hence, 

~ 2 P - - ( P o )  ~2p (3.17) 
~X2 -- ~ 0  ~t2 

which is the plane acoustic wave equation in sound pressure. Density and temperature 
fluctuations are linearly related to p and hence satisfy the same equation, as do particle 
displacement, velocity and acceleration. 

3.9.2 Solutions of the plane wave equation 

Equation (3.17) has been derived without reference to any specific sound-generating 
mechanism; solutions therefore represent all physically possible forms of plane sound 
fields. To use a phrase loathed by students, 'it can be shown' that the equation has the 
following generation solution: 

p(x, t) = f[(TPo/po) 1/2 t -  x] + g [(TPo/Po) 1/2 t + x] (3.18) 

where f and g are arbitrary functions of their arguments that are determined by the 
kinematic or dynamic conditions imposed upon the fluid at its boundaries. ! justify 
'pulling this rabbit out of a hat' by the fact that the proof is involved and adds little to 
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understanding. However, if you wish to indulge in a little masochism, assume a solution 
to Eq. (3.17) of the form p = f(u), where u is some function of 7Po/Po, x and t. The less 
demanding reader will be satisfied by the back substitution o f f  and g into Eq. (3.17). In 
the case of an anechoically terminated tube, only one of the two functions exists and the 
wave is said to be 'travelling' or 'progressive'. 

It is clear that, whatever its form, f is  constant if the observation point x and time t are 
related by [(TPo/Po) 1/2 t -  x] = constant, which implies that if the observer travels at 
speed (TPo/Po) 1/2 in the x-direction, the observed sound pressure will not change with 
time. This demonstrates that (TPo/po) 1/2 is the acoustic wave speed, or speed of sound, as 
illustrated by Fig. 3.7. The function g clearly represents a wave travelling in the negative- 
x direction. The speed of sound is conventionally represented by the symbol c: Eq. (3.1) 
shows that c is equal to (TRTo) 1/2 and is therefore a function only of absolute temperature 
for a specific gas (given values of 7 and R). Equation (3.18) can now be written 

p(x, t) - f ( c t -  x) + g(ct + x) (3.19) 

From Eqs (3.4) and (3.5) we may now write p = c2p ', which is true everywhere in a linear 
sound field. The adiabatic bulk modulus 7P0 equals poc 2. 

3.9.3 Harmonic plane waves: sound pressure 

Equation (3.19) applies for any form of time-dependence imposed by a source of sound. 
As explained in Appendix 2, harmonic (single frequency, pure tone) wave behaviour is of 
fundamental importance, particularly in an analytical sense, since any form of time 
dependence can be constructed from, and analysed into, a set of harmonic functions. The 
most convenient form of mathematical expression of harmonic time dependence is the 
'complex exponential representation', which is fully explained in Appendix 1. A time- 
harmonic plane sound pressure field is represented by the expression p(x, t )=  
/~(x) exp (jcot), in which co is the angular frequency and/~(x) represents the spatial 
distribution of the complex amplitude pressure, yet to be determined. Introducing this 
expression into Eq. (3.17) yields the one-dimensional form of the Helmholtz equation 

d21~(x)/dx 2 + (co/c)215(x) = 0 (3.20) 

which has converted the linear, second-order, partial differential equation into a linear, 
second-order, ordinary differential equation, of which the standard trial function takes 
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the form ,4 exp (2x). A is the complex amplitude of pressure at x = 0. Substituting the 
trial function into Eq. (3.20) gives 

(/%2 + k2)p(x) = 0 (3.21) 

in which k = co/c is the wavenumber, which represents spatial frequency, as explained in 
Appendix 3. Hence the non-trivial (physically meaningful) solution is 

2 = ( -k2)  ~/2 = + j k  (3.22) 

There are two solutions because the differential equation is of second order. The 
complete solution is 

p(x,t) = A exp [j(cot - kx)] + ;B exp [j(ogt + kx)] (3.23) 

The exponents can be made compatible with the arguments o f f  and g in Eq. (3.19) by 
writing ogt +_ kx  = k (ct -t- x), giving 

p(x,t) = A exp [( jk) (c t -x)]  +/~ exp [(jk)(ct + x)] (3.24) 

The presence of the negative sign in the exponent of the first term indicates that it 
represents the positive-going wave and the positive sign indicates a negative-going wave. 
(Note: physicists and mathematicians generally employ the exp (-jo~t) convention, in 
which case the significance of the signs reverses.) Appendix 1 introduces the graphical 
'phasor' representation of a harmonic function. Each of the terms in Eq. (3.23) is 
harmonic in both time and space. In the complex plane, the phase of the pressure may be 
visualized by multiplying the complex amplitude A, which is time independent, by an 
anticlockwise rotating unit phasor exp(j~ot), representing time dependence, and by 
another representing space dependence, which takes the form of a clockwise rotating 
phasor exp ( - j k x )  for the positive-going wave and an anticlockwise rotating phasor exp 
(jkx) for the negative-going wave. 

Consider the pressure variation in time at a f ixed  position x = 0, illustrated by Fig. 
3.8(a). In the absence of specified boundary conditions, the complex amplitudes A and/~ 
are arbitrarily represented. As time progresses, both phasors rotate in an anticlockwise 
direction at speed co, as does the phasor representing the sum of the two waves. The 
projection of the resultant phasor on the real axis, which represents the physical 
pressure, describes a harmonic oscillation. 

Now we f ix  the time at the initial value t = 0 and move the observation point in space 
in the positive-x direction. Figure. 3.8(b) shows that the phasor representing the space 
dependence of the positive-going wave rotates by kx  in the clockwise direction (because 
of the negative sign), while that representing the negative-going wave rotates by kx  in the 
anticlockwise direction. The resultant phasors have different magnitudes and different 
phases from that in the position x - 0. Now we allow time to progress and this resultant 
phasor rotates at speed o9 in an anticlockwise direction, the projection on the real axis 
describing a harmonic oscillation of different phase and amplitude from that observed at 
the position x = 0. We can now combine these temporal and spatial variations on a two- 
dimensional plot. First, we represent only the positive-going wave as shown in Fig. 
3.8(c), which reveals why c is known as the 'phase speed' of the wave: the phase is 
constant for an observer travelling at this speed in the positive-x direction. Note that the 
physical amplitude is independent of position x, but the phase of the pressure varies 
linearly with x. In Fig. 3.8(d), we represent the sum of oppositely directed waves. Note 
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Fig. 3.8 Phasor representations of pressure in a harmonic field. (a) Variation in time at a fixed 
position in an interference field formed by oppositely directed plane waves. (b) Variation in space 
at a fixed time in the interference field. (c) Variation in space and time in a plane progressive wave, 
and (d) in the interference field. 

that both the physical amplitude and phase vary with x in Figs 3(b) and 3(d). This is the 
result of interference - not of interaction. 

Equation (3.23) clearly satisfies the principle of linear superposition" the sound 
pressures of each wave simply add to produce the total pressure. The resulting 
interference can be most easily seen in the expression for the time-averaged (mean) 
square pressure. Appendix 1 presents a simple (and almost foolproof) short cut to 
deriving an expression for the mean square value of any physical quantity that has 
harmonic time dependence. If y = X exp (jcot), the mean square value of y is given by 

1 ~ ,  , ~ 1 ,  V2XX, in which the asterisk indicates the complex conjugate. The time exponent is 
therefore extracted from Eq. (3.23) to give the x-dependent complex amplitude of 
pressure, and its complex conjugate, as 

#(x) = .4 exp ( - jkx)  + B exp (jkx) (3.25a) 

and 

/~*(x) = .4" exp (jkx) + B* exp ( - jkx)  (3.25b) 

Hence, the mean square pressure is given by 
]~ ~* 

p2(x) = ~p(x)l~ (x) = �89 .4 2 + t/~ 2 + .~*/~ exp (2jkx) + i{B* exp ( -  2jkx)] (3.26) 

in which the modulus sign J( denotes the magnitude of complex amplitude J(: in other 
words, the real physical amplitude. (I adopt this apparently unwieldy notation because I 
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Fig. 3.9 Spatial distribution of mean square pressure in an interference field formed by oppositely 
directed, harmonic plane waves: R = B/A.  

have found that students frequently confuse squared amplitudes and mean square 
values, leading to an error of a factor of two.) 

By setting .~ to a + jb and/~ to c + jd, you may show that the mean square pressure is 
real, positive and independent of time, which it must be. The first two terms in Eq. (3.26) 
are independent of x, but the third and fourth terms vary as cos 2kx  and sin2kx. 
Interference produces maxima and minima of mean square pressure, separated by one- 
quarter wavelength, as illustrated by Fig. 3.9. The pattern of mean square pressure is 
stationary in space. But, as we have seen, this does not mean that the phase of the 
pressure is the same at all positions. If the complex wave amplitudes .~ and/Y were equal, 
the maximum and minimum values of pZ(x) would be 2 z~] 2 and zero, respectively. In this 
case, the wave is a pure 'standing wave' and the phase changes by ~z at spatial intervals of 
half a wavelength. Pure standing waves are rarely generated in practice because they 
involve no mean energy transport, and energy must travel from a source to regions 
where it is dissipated into heat. However, the concept of the standing wave is useful 
because it forms the basis of the modal representation of sound fields in ducts and 
enclosures, as explained in Chapters 8 and 9. In this case, energy dissipation is accounted 
for by introducing the concept of modal damping. 

Author's  advice" It is absolutely vital that students acquire confidence in manipulating 
complex algebraic expressions of harmonic sound fields. Failure so to do will seriously 
impede progress in developing analytical dexterity and physical comprehension. 

3.9.4 Plane waves: particle velocity 

It is not sufficient to restrict the study of sound fields in fluids to the consideration of the 
sound pressure alone. It is necessary also to determine the kinematic acoustic behaviour 
of fluids in order to analyse and understand the processes of acoustic energy transmis- 
sion and absorption (dissipation), interaction with solid materials, and radiation from 
vibrating surfaces, among others. The general relation between pressure and fluid 
motion is expressed by the equation of conservation of momentum (Eq. (3.14)). In the 
special case of progressive plane wave fields, the general solutions for particle displace- 
ment in positive- and negative-going waves take the same form as those for pressure, to 
which it is linearly related, so that we may express particle displacement in a positive- 
going wave as ( + (x, t) - h(ct - x). Differentiation with respect to time gives the particle 
velocity 

+ + 
u ( x , t ) = ~  / S t - c h '  (3.27) 
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where the prime indicates differentiation of the function with respect to its argument. 
Differentiation with respect to x gives an expression for the pressure from Eq. (3.7): 

+ c 2 h' p (x, t) = P0 

Equations (3.27) and (3.28) give 

(3.28) 

+ (x,  t) poC (3.29a) p (x ,  t ) /u  + = 

for positive-going waves. A similar analysis gives 

p - ( x ,  t ) / u - ( x ,  t) = - poe (3.29b) 

for negative-going waves. 
The quantity poC, which has the dimensions of pressure/velocity ( M L  - 2  T -1) and 

units of kg m - 2  S-- 1, is a special form of an impedance (see Chapter 4). Since the acoustic 
properties of a fluid are completely characterized by the mean density p0 and the speed of 
sound c, it is thus known as the 'characteristic specific acoustic impedance'. Its unit is 
named the 'rayl' (after Lord Rayleigh). The presence of the minus sign in Eq. (3.29b), 
which is because particle velocity is a vector, is explained by Fig. 3.10. The particle 
velocity field associated with the general plane wave interference field analysed in the 
preceding section is given by 

u(x,  t) - (1/poC) [f(ct - x)  - g(c t  + x)] (3.30) 

and the corresponding harmonic form is 

u(x,  t) = (1/poc) [A exp ( - j k x )  - B  exp ( jkx)]  exp (jcot) (3.31) 

It is left as an exercise for the student to demonstrate that the mean square particle 
velocity exhibits a similar form of stationary pattern to that of the pressure, but with 
positions of maxima and minima interchanged. 

3.9.5 The wave equation in three dimensions 

The derivation of the wave equation in three space dimensions is simply an extension of 
that of the plane wave equation. Figure 3.11 shows a rectangular parallelepiped control 

p 
+ _ _ _ U _ _  _ _ ~  

--,~ 

Fig. 3.10 Illustration of the relation between pressure and particle velocity in progressive plane 
waves travelling in opposite directions. 
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Fig. 3.11 Mass flux through a control volume. 

volume described in rectangular Cartesian coordinates x, y, z, together with the mass 
fluxes through the six faces associated with the three associated components of the 
velocity vector u, v, w. In analogue to Eq. (3.8), conservation of mass is satisfied by the 
equation 

~p au 

~p av 

aw ~P &z) (w + &z) ] &x&y + [ P w - ( P + -~z -~z 

(3.32) 

of which the linearized form is 

ap'/at = - p o  (au/ax + av/ay + aw/az) (3.33) 

The term au/az + av/ay + aw/az is termed the divergence of the velocity vector. In vector 
notation, V 'del' is a vector operator expressed as (a/ax) i + (a/ay) j + (a/az) k in which i, 
j, k are the unit vectors in the three coordinate directions. The scalar product of V and 
the velocity vector u = u i + v j + w k, expressed as V.u, yields the divergence, which is a 
scalar quantity. 

Figure 3.12 shows the pressures acting on the faces of the element. Linearization of the 
equations expressing N2LM in the three coordinate directions, performed in the same 
manner as for the one-dimensional case, yields 

~p/ax = -- Po au/at (3.34a) 

ap/ay - - po av/at (3.34b) 

ap/az = - po aw/at (3.34c) 
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Fig. 3.12 Fluid element subjected to pressure gradients. 

These equations may be expressed in more compact form by 

Vp = - Po ~u/~t (3.34d) 

which is termed the 'gradient' ofp. 
Differentiation of Eq. (3.33) with respect to time, and of Eqs (3.34a), (3.34b) and 

(3.34c) with respect to x, y and z, respectively, yields the linearized wave equation for 
sound pressure expressed in terms of rectangular Cartesian coordinates: 

eZP F ezp ezp I eZp (3.35) 
x--5 - ~ + ~z---2 = c- 5 ~ t----T 

The left-hand side may be abbreviated by the use of the Laplacian scalar operator 
V'V = V 2 = ~2/~x2 + ~2/~y2 + ~2/~z2 ' so that 

1 ~2p (3.36) 
V2P -- r 0t 2 

Students of fluid dynamics may recall that, for incompressible fluids, in which the speed 
of sound is infinite, Laplace's equation is written VZp = 0. 

3.9.6 Plane waves  in three  dimensions 

Plane sound waves are not one-dimensional waves since they exist in three dimensions. 
They are functions of a single space variable if we choose that coordinate to coincide 
with the direction of propagation. However, we shall wish to analyse the behaviour of 
plane waves in systems in which this convenient choice is inappropriate. Hence we need 
to introduce a formalism for representing plane wave propagation in some arbitrary 
direction in three-dimensional space. Note that, for this special form of wave, we do not 
need to use Eq. (3.36) because the selected coordinate system does not change the physics 
o f  wave propagation. We may use the general solution to the plane wave equation (Eq. 
(3.19)) and simply transform it into an expression in terms of the three rectangular 
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Fig. 3.13 A plane wavefront in two dimensions. 

Cartesian coordinates. The pressure in a plane wave propagating in the direction of a 
general linear coordinate s can be expressed as 

p(s, t) = f ( c t -  s) (3.37) 

which may also be expressed as 

p(r, t) = f ( c t -  r.n) (3.38) 

in which the position vector r = xi + yj and n = cos 0 i + sin 0 j is the unit vector 
defining the direction of propagation. 

Under some conditions, for example in bubbly gas-liquid mixtures, sound waves are 
dispersive (that is to say that the phase speed is frequency dependent), and then it is more 
convenient to consider harmonic waves. For  this purpose we define a wavenumber  
vector k = kn where the magnitude k equals co/c and the direction n is normal to the 
planes of uniform phase (the harmonic wavefronts). Since the wavenumber vector may 
be decomposed into Cartesian components as k = k cos0i  + k sin0j ,  the explicit 
expression for a wavefront in terms of the x, y coordinate system is k.r = (k cos 0) 
x + (k sin 0) y = constant as illustrated by Fig. 3.13. The general form of expression of 
spatial phase k.r applies to plane waves in any dimension and coordinate system, and a 
condition of constancy of this product defines a wavefront surface in any harmonic field. 
It should be carefully noted that wavelengths should never be similarly decomposed into 
components because, in addition to formal incorrectness, attempts so to do can easily 
lead to errors of interpretation. Note also that the wave itself is not decomposed into 
components that can be summed to restore the whole; the wavenumber vector 
components appear in exponential terms that are multiplied together to form the 
complete expression. 

Interference fields in two- and three-dimensional space exhibit complex spatial 
distributions of particle velocity and, as we shall see in Chapter 5, of energy flow. The 
following expression represents a pressure field formed by the superimposition of four 
co-harmonic plane waves having wavenumber vectors parallel to the x - y  plane and 
0 = n/4, as shown in Fig. 3.14: 

p(x, y, t) = A exp[j (cot - (k cos 0) x - (k sin 0)y)] 
+ A exp [j(cot - (k cos 0) x + (k sin 0)y)] 
+ A exp [j(cot + (k cos 0) x - (k sin 0)y)] 
+ A exp [j(cot + (k cos 0) x + (k sin 0)y)] (3.39) 
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Fig. 3.14 Wavenumber vectors of four plane waves. 

~ X  

Fig. 3.15 Particle velocity field in the interference field produced by the four waves. 

An expression for the particle velocity field can be obtained by applying Eqs (3.34a) 
and (3.34b), together with the relation between particle acceleration and velocity in a 
harmonic field. The vector field is shown in Fig. 3.15. 

Plane waves are particularly simple in form, but they are very important. This is not 
only because they predominate in many cases of practical interest to the acoustical 
engineer, for example in tubes, pipes and ducts, but also because any form of sound field 
may be expressed as an infinite sum of plane waves, albeit that some may have imaginary 
wavenumbers. This fact is central to the measurement technique known as nearfield 
acoustic holography (NAH) by means of which sources of sound such as diesel engine 
structures can be imaged by making measurements of sound pressure at an array of 
points distributed over a plane at a short distance from the source [3.2]. NAH is widely 
used by automotive manufacturers to detect sources of unacceptably high levels of noise 
generated by their products. However, this synthetic form of representation is not 
helpful for studying and understanding many fundamental problems in acoustics, and 
we now turn to another equally important non-plane wave solution to the wave 
equation. 

3.9.7 The w a v e  equat ion  in spherical  coord inates  

Coordinate systems other than the rectangular Cartesian system may be used to derive 
alternative forms of the wave equation. Although this could be done from first principles 
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Fig. 3.16 Spherical coordinates. 

by deriving alternative forms of the equations of conservation of mass and momentum 
appropriate to each coordinate system, it is simpler to apply standard coordinate 
transformation formulae, as found in mathematical textbooks, to Eq. (3.36). The form 
most appropriate to any problem is selected on the basis of the geometrical form of any 
sources or fluid boundaries present. Since no one direction in an unbounded uniform 
isotropic fluid is any different from any other, a sound wave generated by a very localized 
disturbance of fluid density spreads out in all directions; waves produced on the surface 
of a pond by the entry of a small pebble provide a two-dimensional analogue. Such 
waves can be represented by infinite sums of plane waves, but it makes much more sense 
to select, respectively, spherical and cylindrical polar coordinates in which to express 
these wavefields. 

Figure 3.16 shows a spherical coordinate system. The Laplacian in Eq. (3.36) becomes 

V 2 _  1 8 r2 �9 1 ~ s i n 0  
--  r -5 8~ ~ + r 2 sin 0 80 8r 

and the components of the gradient operator become 

8 1~ 1 8 
Vr -- ~r' V0 -- and Vr - 

r ~0 r sin r 8r 

3.9.8 The spherically symmetric sound field 

In Chapter 6 we shall discover that any form of sound source may be represented by an 
array of elementary sources that, in isolation, radiate uniformly in space. It therefore 
makes sense to transform Eq. (3.36) into spherical coordinates and to assume that the 
acoustic variables are functions only of time and the single radial coordinate. 

The Laplacian reduces to (1/r 2) ~/~r (rZ~/~r) and Eq. (3.36) becomes 

2(Op)  182p 
~2p  ~ - -  _ (3.40) 
Or --T- r ~r c 2ot 2 

This equation has the same form as the plane wave equation (3.17) with p replaced by rp. 
Hence, the general solution follows from Eq. (3.18): 

p(r, t) = l - [ f (c t -  r) + g(ct + r)] (3.41) 
- I  

r 

The function f ( c t -  r) represents a wave travelling outwards from the coordinate origin 
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and g(ct + r) represents a wave converging on the origin. The latter is rare, but is of 
importance in lithotripsy, in which ultrasound is focused on a kidney by a ring of 
radiators in order to fragment stones within. The converging wave will not be considered 
further. Plane and spherically propagating wavefronts travel at the same frequency- 
independent speed. Therefore the sound pressure-time history takes the same form at 
any point in the fields; but, in the case of spherical propagation, the magnitude of the 
outward-going acoustic disturbance decreases linearly with distance from the origin. The 
corresponding sound pressure level decreases by 6 dB per doubling of distance. Chapter 
5 shows that, in both these forms of field, the rate of transport of acoustic energy per unit 
area of wavefront (known as the sound intensity) is proportional to the square of the 
sound pressure. The product of the area of a spherical surface (proportional to r 2) and 
the sound intensity (proportional to r -z) is independent of r, thereby satisfying the 
requirement for conservation of energy. The solution given by Eq. (3.41) is not valid at 
r = 0. This problem does arise in the application of a general solution to the problem of 
sound radiation from vibrating bodies that will be introduced in Chapter 6. However, 
alternative forms of solution are available for overcoming this problem, some of which 
are exploited in commercial computer software. 

3.9.9 Particle velocity in the spherically symmetric sound field 

Transformation of the equation of conservation of momentum from rectangular to 
spherical coordinates yields a linearized relation between radial particle acceleration and 
radial pressure gradient of the same form as for the plane wave: 

ap/~r - - Po ~Ur/at (3.42) 

There is no tangential component of fluid motion in a spherically symmetric field. 
Explicit solution of Eqs (3.40) and (3.42) requires specific forms of the function f, of 

which the analytically most illuminating and practically most useful (thanks to Fourier) 
is the time-harmonic form 

p(r, t) = --exp [ j ( o t -  kr)] (3.43) 
r 

The associated radial particle velocity is given by Eq. (3.42) as 

l ~Ur j ~p 
- - -  . . . .  

Ur jco at o~p0 ~r (3.44) 

The relation between complex amplitudes of pressure and particle velocity is 

P/ar = poc[jkr / (  ] + jkr)] (3.45) 

which is illustrated by Fig. 3.17. Now we see a crucial difference between the plane 
travelling wave field and the outgoing spherical waves field. In the former, the particle 
velocity is linearly proportional to, and in phase with, the pressure. The latter exhibits 
the same relation at positions at a great distance from the origin compared with a 
wavelength, where kr >> 1. But at distances where kr << 1, the magnitude of the ratio of 
pressure to particle velocity is much less than the plane wave value of poc and the relative 
phase approaches ~z/2 as kr tends to zero. In relation to sound fields generated by the 
elementary model of an omnidirectional source, treated in detail in Chapter 6, and 
known as a 'monopole', this characteristic leads to the concepts of a 'near field' and a 'far 
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Fig. 3.17 Relation between pressure and radial particle velocity in a spherically symmetric field: (a) 
magnitude; (b) phase. 

field'. Consideration of the energetic aspects of such a field in Chapter 5 yields the 
concepts of the 'reactive' and 'active' components of the field. This terminology refers to 
the fact that sound energy is transported by the action of sound pressure on moving 
particles. In a harmonic, spherically symmetric, sound field, energy is transported to the 
far field only by the cooperation of the sound pressure and that component of particle 
velocity that is in phase with the pressure. Cooperation between the pressure and the 
quadrature component of particle velocity produces a localized form of energy transport 
in which the associated local energy density oscillates between purely kinetic and 
potential states, without net transport. This latter phenomenon is characteristic of the 
reactive component of the field. 

3.9.10 Other  forms of sound field 

Sound sources and acoustic environments are infinitely diverse; so are the forms of 
sound field that they produce. However, the two particular forms of field treated in this 
chapter are generic in as much as they can be harnessed to form the building blocks of a 
wide range of fields of practical interest. One general form that has not been dealt with is 
the cylindrically spreading field such as that which would be generated by a uniformly 
pulsating, infinitely long, circular section tube. It is a curiosity of wave fields that such a 
field exhibits a more complicated form of space-time dependence than plane or spherical 
fields. This is because, at any one observation point in the radiation field of a tube that 
undergoes a very brief (impulsive) expansion or contraction, the initial disturbance that 
arrives from the nearest part of the source is followed by progressively smaller 
disturbances that arrive sequentially from more and more remote points on the tube: 
the field is therefore said to exhibit a 'tail'. In the special case of harmonic pulsation this 
phenomenon creates a radial dependence of the acoustic variables. This dependence is 
mathematically described by Hankel functions, which are a particular solution to 
Bessel's differential equation. Although presentation of a detailed analysis of this form 
of field is not considered to be appropriate in this book, it is of considerable practical 
importance in the mathematical modelling and analysis of sound propagation and 
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radiation from vibrating pipes, which constitute a significant proportion of serious 
industrial noise sources. Treatment of radiation from tubes can be found in Sound, 
Structures and their Interaction (Junger and Feit, 1986), cited in the Bibliography. It is 
also relevant to the propagation and control of sound generated by linearly extended 
sources such as dense road traffic. In relation to the traffic noise problem, it is important 
to know that the rate of reduction with radial distance of the sound pressure level 
generated by a line source is, in theory, 3 dB per doubling of distance, but is nearer 4 dB 
in practice. Noise barriers are also less effective in countering line source noises than 
point source noises. 

Questions 

3.1 By perturbing each variable in the Ideal Gas Equation (3.1) and in the equation 
expressing the adiabatic relation between pressure and density, and neglecting 
second-order quantities, show that the relation between fractional change of 
temperature and fractional change of pressure is 6 T/To = (P/Po) [(1 - 1/7]. 

3.2 The complex amplitudes of pressure in oppositely-directed plane waves are 
A = 1 + 3j and/~ = 2 - 2j. Derive expressions for the real pressure amplitude and 
mean square pressure as function of position in the interference field. 

3.3 What is the ratio of maximum to minimum mean square pressure in the field 
specified in Question 3.2? Express it as a ratio and in terms of dB. 

3.4 A large number of polystyrene foam balls of 3 mm diameter is distributed randomly 
throughout a volume of water. Assuming that they have the same bulk modulus as 
air, and that the average density is 105 balls per m 3, estimate the approximate speed 
of sound in the compound medium. 

3.5 The sound pressure in a harmonic sound field is expressed as p = A exp [j(cot - kx)], 
where A = (0.5 + 0.5j). Derive an expression for pZ(x, t). 

3.6 Evaluate the root mean square (rms) pressure and density, together with particle 
displacement, velocity and acceleration, in a 250 Hz plane travelling wave of which 
the sound pressure level is 74 dB (see Appendix 6). 



4 
Impedance 

4.1 Introduction 

One of the principal tasks of an engineer who specializes in acoustics is to analyse and 
predict the acoustical and vibrational behaviour of systems consisting of assemblages of 
structural components surrounded by, and/or containing, one or more types of fluid. 
The former support vibrational waves of various types and the latter support acoustic 
waves. The dynamic behaviour of a system is determined partly by the properties of the 
individual components and partly by the dynamic interactions between them. These 
interactions involve the incidence of vibrational or acoustic waves upon the junctions, 
connections and interfaces between components, together with their reflection and 
transmission. Wave energy may also be dissipated into heat at interfaces such as metal- 
to-metal joints, bolted, riveted or screwed connections, and by gaskets between engine 
components and seals of all sorts. It is of the essence of wave-bearing systems that the 
dynamic response of any one element or component to external excitation is influenced 
by the dynamic properties of all directly, or indirectly, connected components; this 
influence will tend to decrease with increase of separation distance through the agencies 
of dissipation and diffusion. 

The degree to which waves incident upon junctions are scattered, transmitted and 
dissipated depends upon the dynamic behaviours of both connected components. 
However, textbooks on the fundamentals of structural vibration deal principally with 
isolated structural elements, such as uniform beams, plates and shells, subjected to given 
force (or moment) distributions, or to imposed boundary motions. Consequently, 
students are often unsure how to analyse the behaviour of assemblages of different 
components of which, perhaps, only one is subject to a given input; the forces and 
displacements to which other connected components are subject are then not known a 
priori. This is where the concept of 'impedance', and its companion 'mobility', come into 
play. They characterize the dynamic behaviour of components in such a manner that the 
system that they form can be represented as a network. Mathematical expression of the 
impedances, together with the conditions governing forces and motions at connections, 
produce a set of equations that can be solved once the external excitation mechanisms 
are specified. 

As we shall see, impedance come in many guises. In relation to structural systems, 
'mechanical impedance' is defined formally as a ratio of complex amplitude of applied 
harmonic force, moment or couple, to complex amplitude of associated harmonic 
translational or rotational velocity. 'Mobility' is a complementary quantity defined as 
the ratio of complex amplitude of velocity to complex amplitude of associated force, 
moment or couple. In acoustics, impedance relates the complex amplitude of fluid 

48 
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pressure, or the corresponding force, to the complex amplitude of fluid particle velocity 
or volume velocity: the ratio of particle velocity to sound pressure is termed 'admit- 
tance', instead of mobility. Transfer impedances and mobilities may also be defined: 
these relate forces at one point to velocities at another. These quantities may only be 
employed to describe the dynamic behaviour of linear systems. Although they are 
generally complex, the symbols used herein to represent them are not capped by a tilde; 
this notation is restricted to the representation of complex amplitudes of harmonically 
varying quantities. In most practical cases, excitations and responses are not harmonic, 
and not necessarily even time-stationary; but application of the Fourier integral trans- 
form (Appendix 2), which expresses arbitrary time dependence in terms of a super- 
position of time-harmonic components, allows us to exploit the concept of impedance in 
all linear cases. For the purposes of modelling and analysing acoustic networks and 
vibration isolation systems, mobility representation is sometimes preferable to impe- 
dance representation. 

Acquisition of a thorough understanding of the impedance concept, and of a 'feel' for 
the physical significance of its mathematical expression, is vital for the student and 
practitioner of engineering acoustics. The transmission of sound and vibration through a 
system can be controlled by the appropriate selection of the impedances of components 
forming the transmission path. To suppress transmission, impedances of connected 
components should be made as different (mismatched) as possible. In order to effect 
efficient transmission, impedances should be made as similar (matched) as possible. It is 
re-emphasized that the impedance 'seen' at any point on an individual component that 
forms part of a larger system is affected not only by the dynamic behaviour of that 
component, but also by arrival of waves that are reflected/scattered back to that point 
with significant amplitude from any region of the whole system. 

The following are examples of systems employing impedance matching to promote 
wave transmission. In the middle ear, the three smallest bones in the body, the auditory 
ossicles comprising the malleus, the incus and stapes, act so as to match the impedance of 
the air in the ear canal, coupled with the tympanic membrane (eardrum), to the very 
different impedance of the oval window backed by the liquid contained in the cochlea: 
they act as an acoustic transformer. When an ultrasonic transducer is applied to the 
surface of the human body for diagnostic investigations, ointment is used to eliminate 
any intervening air that would reduce efficient coupling by creating an impedance 
mismatch. In high-power electroacoustic systems that employ a compression driver, the 
moving diaphragm is light and small to minimize its inertia. However, a small 
diaphragm cannot radiate well at low audio frequencies because it has a low radiation 
impedance. Therefore, a horn is employed as an impedance-matching element between 
the diaphragm and the open air to increase the efficiency of generation of sound energy. 

Systems may also exploit impedance mismatch to impede wave transmission. The 
expansion section in an exhaust silencer system introduces a double impedance 
mismatch between it and the smaller diameter exhaust pipe, thereby producing attenua- 
tion by means of reflection. Automotive engines are separated from their supporting 
subframes by resilient elements of much lower impedance than either in order to reduce 
vibration transmission to the vehicle. One of the principles of active noise control is to 
arrange a secondary acoustic source to alter the radiation impedance 'seen' by the 
primary source in such a way as to reduce its output; the sound energy of the source is 
not 'cancelled'; the source is simply not allowed to generate as much energy as it would in 
the absence of control. This phenomenon is also evident when stereo loudspeaker units 
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are incorrectly connected with opposite polarity, effectively forming a dipole at bass 
frequencies. These are just a few examples of the great practical importance of 
impedance in controlling the behaviour of vibroacoustical systems. 

The impedances of two interacting systems determine the degree to which wave energy 
is transferred from one to another. A rough appreciation of the physical role of 
impedance in this respect may be gained by considering the very different forms evolved 
by the table tennis bat and the cricket (or baseball) bat, which are dynamically matched 
to the objects they are designed to strike. Very little of the energy of a strongly swung 
cricket (baseball) bat (high impedance) would be transferred to a struck table tennis ball 
(low impedance) - the contact force is too small because the mass and stiffness of the ball 
are too small. And very little of the energy of a rapidly swung table tennis bat (low 
impedance) would be conveyed to a cricket ball (high impedance)- the speed imparted is 
too small. However, a considerable proportion of the energy of the swing will be 
painfully transferred from the arm to the wrist, which are much better matched. 

4.2 Some simple examples of the utility of impedance 

Before we embark upon a general exposition of the definitions and characteristics of the 
various forms of vibroacoustic impedance, the reader may gain an early appreciation of 
the utility of the impedance concept from some simple examples of application to 
systems comprising coupled elements. 

Consider first a vibroacoustic system consisting of a cone loudspeaker unit mounted in 
a closed cabinet (Fig. 4.1). At frequencies below the lowest structural resonance 
frequency of the cone structure, the cone plus coil may be modelled as a single 
concentrated (lumped) mass mounted on a damped spring in the form of the cone 
suspension structure. The in vacuo velocity response of this system to unit electromagne- 
tically generated harmonic force on the coil may be determined from the simple 
oscillator equation presented in Appendix 5. However, this would give a totally incorrect 
result for the response of the system in air. The air contained in the cabinet presents a far 
stronger elastic reaction to the cone displacement than the mechanical suspension; and 
the reaction of the air external to the cabinet contributes significant damping, and some 

Front suspension 

Cone 

"//////A / 
Rear suspension Voice coil 

J 

die 

Fig. 4.1 Cross-section of a moving-coil direct radiator loudspeaker in a baffle. Reproduced from 
Borwick, J. (ed.) (1988) Loudspeaker and Headphone Handbook. Butterworth, London. 
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Fig. 4.2 Plane waves in an open-ended tube. 

additional mass, to the cone. So, the simple oscillator equation should include three 
extra force terms on the right-hand side; but these depend upon the motion of the cone - 
which is the quantity sought. We seem to have one equation and four unknowns. This is 
where impedance comes to our rescue. It links forces (or pressures) and motions, so that 
the fluid reaction forces generated by cone motion can all be expressed as linear 
functions of cone velocity, the factor of proportionality being the relevant equivalent 
mechanical impedance. Hence, these terms may be taken to the left-hand side of the 
oscillator equation to join the mechanical mass, stiffness and damping terms, yielding a 
solution for cone response velocity: ~ = F/(Zv + Zm + Zrad -+- /s),  in which Zm, Zra d 
and Zs represent the inertial, radiation damping and elastic components of mechanical 
impedance associated with fluid reaction, and Zv is the in vacuo mechanical impedance. 
The radiated power is W = �89 2 Re{Zrad}. Expressions for Zm, Zrad and Zs are obtained 
from acoustic theory presented in later chapters. 

Let us now consider a purely acoustic problem. Plane sound waves generated in a 
duct, such as an engine exhaust pipe or an organ pipe, are partially reflected when they 
meet an open end, so that an interference field is formed within the duct (Fig. 4.2). Wave 
energy that is not reflected is radiated away into the surrounding air. The principle of 
conservation of mass, together with Newton's third law of motion, dictate that both the 
pressure and fluid volume velocity at the open end are equal immediately inside and 
immediately outside the opening. In terms of a (known) complex incident wave 
amplitude A, and (unknown) reflected wave amplitude/~, the pressure at the opening is 
given by A + /~ ,  and the volume velocity by (A-/Y )S/poC, where S is the cross-sectional 
area of the pipe. The ratio of complex amplitude of pressure to that of the associated 
volume velocity is defined as the acoustic radiation impedance Za,ra d presented by the 
open air to the air in the pipe. Knowledge of the radiation impedance allows solutions to 
be found for the amplitude of the reflected field in terms of the amplitude of the incident 
field, and hence for the sound fields inside the duct and the sound power transmitted into 
the surrounding air. 

Our final example concerns a common vibration problem. We wish to install a small 
sensitive instrument on a massive table on the upper floor of a building that is subject to 
vibrational disturbance by installed machinery and passing rail traffic. For simplicity, we 
adopt the idealized model shown in Fig. 4.3. Suppose that we have measured the 
maximum vertical vibration velocity amplitude Y0 of the unloaded floor, which is likely 
to occur at the lowest resonance frequency of the floor. The presence of the table alters 
the floor mo t ion -  but by how much? Let the common velocity amplitude of the floor and 
installed table be denoted by Yi, and the vertical vibrational impedances of the unloaded 
floor and table be denoted by Zf and Zt, respectively. The amplitude of the force applied 
to the table by the floor is, by definition of mechanical impedance, Fr - Zt Yi. According 
to N3LM, it is equal and opposite to the force applied by the table to the floor. Hence, 
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Fig. 4.3 Model of a table on a vibrating floor. 

the amplitude of the loaded floor velocity is given by its unloaded value minus 
Fr/Zf = Zt Yi/Zf. The solution is ~ - Y0/[1 + Zt/Z~ ]. This shows that the floor vibration 
is little affected if its impedance is much greater than that of the table. This may not be 
the case at the resonance frequencies of the unloaded floor, because mechanical 
resonance is always characterized by an impedance minimum. 

In all these examples, the responses of directly excited system components (the cone, 
the duct and the floor) that are coupled to other components can be determined by using 
a knowledge of the excitation, the dynamic properties of the directly excited components 
and the impedances of the components coupled to them. The principal advantage of the 
impedance concept is that impedances are catalogued for many general forms of 
component incorporated in complex systems and, by means of the application of 
continuity of force (or pressure) and velocity (or volume velocity) at interfaces, networks 
of subsystems of known impedance may be constructed to represent complete systems. 

As mentioned above, impedances take a number of different forms; this is a source of 
confusion and uncertainty to students encountering them for the first time. Some 
systems are subject to very localized excitation, such as those produced by small 
loudspeakers and mechanical impacts: structural components are often locally con- 
nected by small brackets, vibration isolation mounts, pipe hangers and the like. In such 
cases, local impedances are appropriate. However, many components are connected over 
spatially extended regions, such as at the joints between walls and floors, or interfaces 
between structures and contiguous fluids. Audio-frequency waves propagate through 
the solid and fluid components, being reflected, scattered, diffracted, transmitted and 
dissipated at various stages of their passage. Consequently, it is necessary also to define 
'wave impedances' that relate spatially distributed forces and velocities associated with 
assumed forms of wave motion. The sections below define and explain a range of 
impedances in common use. Introduction to the impedances of simple forms of 
structural element will be found in Chapter 10. Readers are directed to Noise and 
Vibration (White and Walker, 1986), listed in the Bibliography, for information on the 
more specialized forms of structural impedance. 

4.3 Mechanical  impedance 

The term 'mechanical impedance' relates principally to solid structures, although, as we 
have already seen, the reaction forces imposed by fluids on vibrating structures may also 
be expressed in terms of an equivalent mechanical impedance. Vibrational excitation 
generates a number of different forms of wave in solid structures; those most important 
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Fig. 4.4 Net force on a mass. 
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in vibroacoustics are illustrated in Figs 10.2-10.4. Each has an associated set of 
impedances, some of which will be introduced in Chapter 10. All forms of vibration are 
manifestations of the presence of waves. However, in cases where vibrational wave- 
lengths are very much larger than the dimensions of the structural component modelled, 
the whole component may either be assumed to undergo uniform motion, or to be 
subject to uniform strain. In accordance with the dictionary definition of the verb 'to 
lump', which is to 'put together in one mass, sum or group without discrimination or 
regard for particulars, or details', a component may then be modelled as a 'lumped 
element'. As shown later in this chapter, the same concept may also be applied to a 
region of fluid which has dimensions very much less than an acoustic wavelength. 

4.3.1 Impedances of lumped structural elements 

The most elementary vibrational model consists of a lumped mass connected to a rigid 
'earth' by means of a lumped, linear, massless spring element. More complex systems 
may be modelled as networks of masses and springs, which is how J. L. Lagrange first 
modelled wave motion in a stretched string. The mechanical impedance of a lumped 
mass is defined as the ratio of complex amplitude of the net harmonic force on the body 
to that of the associated velocity (Fig. 4.4). N2LM gives the relation between the net 
force on the mass and its acceleration as 

dZx du (4.1) 
F - -  M-d-~- -  M d-- ~ 

The mechanical impedance of the mass under harmonic excitation/~ exp (jcot) is 

Z m = F / 1 ~  = jcoM = Z M ( 4 . 2 )  

Note that inertial impedance is characteristically imaginary, proportional to ~ and, where 
harmonic motion is represented by exp (jcot), positive. 

The stiffness of a massless elastic spring is defined as the inverse of the net change of 
length per unit applied force: the internal force must necessarily be uniform throughout 
the spring (Fig. 4.5). The impedance is defined as the ratio of the complex amplitude of 
the force applied at one end to that of the associated differential velocity of the two ends. 
Hence it is 

Zm = F/jcoA2 = - j K/CO = Zs (4.3) 

where K is the spring stiffness. Elastic impedance is characteristically imaginary, inversely 
proportional to co, and negative.* These models have acoustic analogues in fluids as 
shown in Section 4.4.1. 

*Some texts use exp (-jcot) to represent harmonic motion: in this case the signs of the impedences in Eqs (4.2) 
and (4.3) are reversed. 
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Fig. 4.5 Definition of spring stiffness. 
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Fig. 4.6 Impedance 'seen through' a rigid mass. 
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Fig. 4.7 Impedance 'seen through' a spring. 

We now consider how mathematical expressions can be derived for combinations of 
inertial and elastic elements. Figure 4.6 shows a rigid inertial lumped element 'attached' 
to an arbitrary system having an impedance Zt. N2LM gives 

P -  Z t l ~  --  jcoM ~. (4.4) 

and the impedance of the combined system 'seen through' the mass is 

Z m = F / z7  = Z t -4-- Z M (4.5) 

In electrical terminology, the two components are connected in series because they share 
the same velocity, so that the impedances simply sum. 

Figure 4.7 shows an elastic spring terminated by a system of impedance Zt. The spring 
force is given by 

P -  a2zt  = (a] - a2) Zs (4.6) 

Elimination of u2 gives the impedance of the combined system 'seen through' the spring 
a s  
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Fig. 4.8 Earthed mass-spring system. 
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Fig. 4.9 Earthed two-degree-of-freedom mass-spring system. 

Z m  -- filial = Z t  Z s / ( Z t  - 1 - / s )  (4.7) 

In electrical terms, the components are in parallel because they share the same force. 
The impedance of the earthed mass-spring system shown in Fig. 4.8 is the sum of the 

impedance of the mass and of the spring with Zt put to infinity in Eq. (4.7): 

Z m -- f / l~-- -  j ( c o M -  K/co) (4.8) 

The natural frequency of free vibration coo is given by the condition that the Zm is zero - 
no driving force necessary. Hence 

coo = (K /M)  1/2 (4.9) 

At frequencies well below coo, Zs dominates; at frequencies well above coo, ZM dominates. 
A two-degrees-of-freedom (2-d-o-f) mass-spring system is shown in Fig. 4.9. An 

expression for the impedance of the whole system may be derived by working away from 
the earthed point. The impedances of the systems to the right of points D, C, B and A 
are, respectively, 

Z D =- Zs2 (4.10a) 

Z C -- ZM2 -Jr- Z D (4.10b) 

Z B = Z C Z s l / ( Z  C + Zsl  ) (4.10c) 

Z A = ZM1 + Z B =-- [ZM1 (ZM2 n t- Zs l  n t- Zs2 ) Jr- Zs l  (ZM2 Jr- Z s 2 ) ] / [ Z M 2  n t- Zs2 -t- Zs l  ] 

(4.10d) 

The two natural frequencies are given by the condition Z A -  0. 
A further generic lumped element may be added to the mass-spring system in the form 

of a linear, massless, viscous damper (Fig. 4.10). Its damping rate (or coefficient) C is 
given by the inverse of the differential velocity Ur of its terminals per unit force applied to 
either terminal. Hence 

Zm = F/AtTr = C = Zd (4.11) 



56 Foundations of Engineering Acoustics 

Fig. 4.10 Ideal viscous damper element. 

It is characteristically real, positive and frequency independent. This element is most 
commonly employed in parallel with an elastic spring to give a combined impedance of 
Zm = C - j K / o o .  It is conventional to represent structural damping by assuming the 
elastic modulus (or spring stiffness) to be a complex quantity of which the imaginary part 
is called the 'loss factor', normally symbolized by r/. It represents a dissipative force 
proportional to displacement but in phase with velocity. Care should be exercised in 
using this model because it is strictly invalid for all except harmonic motion. 

The impedance of the viscously damped single-degree-of-freedom (s-d-o-f) system is 

Zm = C + j(~oM- K/oo) (4.12) 

We cannot now simply set this complex impedance to zero in order to determine a 
'natural frequency' because the real and imaginary parts cannot cancel each other. The 
solution for the free vibration of a damped oscillator presented in Appendix 5 shows that 
it takes the form of exponentially decaying oscillations, whereas only an oscillation of 
constant amplitude can be considered to have a single frequency. Hence, we can only use 
the impedance formalism in the case of forced periodic excitation, or its equivalent in 
terms of Fourier representation of a continuous aperiodic excitation (see Appendix 2). 
The resonance frequency of the damped s-d-o-f system, defined as the excitation 
frequency which produces maximum displacement response, is obtained by maximizing 
the modulus of the inverse ofjooZm. 

The impedance approach can be extended to lumped elements that rotate rather than 
translate. Rotational impedance is defined as the ratio of complex amplitudes of couple 
or torque to rotational velocity. The inertial impedance is associated with the rotational 
inertia of a rigid body and the elastic impedance is associated with the torsional stiffness. 
The equations of free and forced vibration take the same forms as those above. 
However, the student should be aware that the dimensions and units of rotational 
impedance are different from those of translational impedance. It is appropriate to issue 
a piece of advice at this point: because there are a large variety of forms of impedance, 
always check the dimensional consistency of any relations in which they are involved. 

Introduction to the mechanical impedances of extended structures such as beams and 
plates must be delayed until Chapter 10, where the necessary wave equations are derived. 

4.4 Forms of acoustic impedance 

The concept of acoustic impedance has a wide range of applications in the mathematical 
modelling of sound fields. In addition to its analytical utility, it is valuable in facilitating 
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qualitative understanding of the acoustic interaction between coupled regions of fluid 
because it provides an indicator of the degree of similarity (or dissimilarity) between the 
acoustic properties of the regions. This determines the degree to which sound waves in 
one region are reflected and transmitted at the interface. It is also used in the analysis of 
the interaction between fluid and solid systems in relation to sound absorption, reflection 
and transmission, and to the fluid loading imposed upon vibrating solids. Furthermore, 
it relates the flow of acoustic energy through a fluid to the amplitudes of the associated 
pressure or velocity. 

Acoustic impedance expresses the ratio of complex amplitude of harmonic pressure 
(or associated force on a surface) to the associated particle velocity (or associated 
volume velocity 'through' a surface). It takes a variety of forms, and the terminology 
used to label them varies from book to book. This is a common source of confusion, 
particularly because only one of these forms is actually termed the 'acoustic impedance'. 
The terminology and notation used in this book is summarized in Table 4.1 (pp. 66-7). 

4.4.1 Impedances of lumped acoustic elements 

The sound field in any fluid volume exists in the form of a wave field that satisfies the 
wave equation and the imposed boundary conditions. However, in modelling the 
acoustic behaviour of 'small' regions of fluid, which are often partially confined by 
solid boundaries, it is permissible to avoid the explicit expression of wave behaviour and 
to define lumped acoustic elements that are analogous to the lumped mechanical 
elements of mass, spring and damper described above. A fluid region may be considered 
to be small, and treated as a lumped acoustic element, if all its principal dimensions are 
very much less than an acoustic wavelength, on the basis that either the pressure or the 
particle (or volume) velocity vary very little over the region, thereby allowing one of 
them to be treated as a discrete variable. 

This concept is now illustrated by considering a harmonic plane wave interference 
field: a fluid contained within a rigid tube of uniform cross-section S (Fig. 4.11). 
Expressions for the pressure and particle velocity fields are given by Eqs (3.23) and 
(3.31), respectively. The difference of complex amplitudes of pressure at stations x(1) and 
x + d(2) is given by 

Pl - fi2 = A exp ( -  jkx) [1 - exp ( -  jkd)] + B exp (jkx) [1 - exp (jkd)] (4.13a) 
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Fig. 4.11 Closely separated positions in a plane wave interference field. 
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The sum of complex amplitudes of particle velocity is given by 

poc 021 + z72) = A exp ( -  j k x )  [1 + exp ( -  jkd)] - B exp ( jkx)  [1 + exp (jkd)] (4.14a) 

If distance d is 'acoustically small', that is to say kd  << 1, these become 

1~1 - lY2 ~ j k d  [A exp ( -  j k x )  - B exp (jkx)] (4.13b) 

and 

poc (if1 + fi2) ~ 2 [A exp ( - j k x )  - B exp (jkx)] (4.14b) 

The ratio of complex amplitudes of pressure difference across the region to mean particle 
velocity with kd  << 1 is 

2(P~1 -/~2)/(ffl + ff2) ~ jcopod (4.15) 
which is independent of A and/~. 

Comparison of the form of this expression with that of Eq. (4.3) indicates that it 
corresponds to an equivalent inertial mechanical impedance ofjcopodper unit area. The 
ratio of complex amplitudes of mean pressure to particle velocity difference across the 
region with kd  << 1 can similarly be shown to be given by 

(t61 +/~2)/2(ffl - a2) ~ -jpocZ/cod (4.16) 

which represents an equivalent elastic mechanical impedance of  jpocZoo/d per unit area. 
Schematic representations of these two forms of lumped acoustic impedance are 

shown in Fig. 4.12. It may be argued on physical grounds that in model (a) the pressure 
difference represents the cause (input) and the mean particle velocity represents the effect 
(output); in the other case, that the velocity difference represents the cause (input) and 
the mean pressure represents the effect (output). The magnitude of the elastic impedance 
in the form of Eq. (4.16) outweighs that of the inertial impedance in the form of Eq. 
(4.15) by a f a c t o r  ( k d )  - 2  , which greatly exceeds unity under the assumed conditions. 
This large disparity has important consequences for the modelling fluid in acoustically 
short sections of tube that connect larger fluid volumes, such as in holes in perforated 
plates and in the necks of Helmholtz resonators, wherein we may assume the fluid to 
move incompressibly. 
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Fig. 4.12 Alternative forms of lumped specific acoustic impedance: (a) based upon mean velocity; 
(b) based upon mean pressure. 
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Fig. 4.13 Graphical representation of specific acoustic impedance in terms of pressure and particle 
velocity phasors. 

The expressions in Eqs (4.15) and (4.16), which involve the ratio of pressure to particle 
velocity, are examples of 'specific acoustic impedance'. It is conventionally denoted by 
lower case symbol z, which is generally complex. The real part r is termed the specific 
acoustic resistance and the imaginary part x is termed the specific acoustic reactance. 
Graphical representation in terms of phasors of the relation between pressure and 
particle velocity implied by z is illustrated by Fig. 4.13. Normalization by the 
characteristic specific acoustic impedance of the fluid produces the 'specific acoustic 
impedance ratio', which will henceforth be denoted by z' - Z/poC. 

The use of this particular form of impedance to characterize the acoustical behaviour 
of lumped elements in the case analysed above is made possible by the assumption of 
plane wave motion in which both quantities are uniformly distributed over the cross- 
section of the tube. However, the concept of the acoustic lumped element is more useful 
in general cases where neither quantity is so distributed. This occurs where sound waves 
encounter 'sudden' changes in the geometry of solid surfaces that bound the fluid region 
in which they are propagating: for example, at the open end of an exhaust pipe; at the 
junction between two pipes of different cross-sectional area; at a tee junction between 
pipes; at the face of a perforated plate; or at a side opening in the wall of a tube, such as 
that in a musical wind instrument. The wave fields generated in the vicinity of such 
'discontinuities' are very complex, even if the sound wave incident upon them is as simple 
as a plane wave. This is caused by the requirement that the field satisfies the boundary 
condition imposed by the boundary geometry. 

Consider the incidence of a plane wave in a pipe upon a junction with a pipe of smaller 
diameter, illustrated in Fig. 4.14. Clearly, a plane wave field cannot satisfy the boundary 
condition imposed by this discontinuity of cross-sectional area. The axial particle 
velocity must be zero over the area of the connecting plate, but will be non-zero over 
the remaining open region of the junction; and there must also exist components of 
particle velocity normal to the axis of the tubes. It is, of course, possible to solve the wave 

R 
" 1  <--~ < ~ < > 

Fig. 4.14 Particle velocities produced by the incidence of a plane wave upon a sudden change of 
cross-sectional area of a duct. 
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equation subject to these boundary conditions, but it is far more convenient to 
characterize the acoustic behaviour of the fluid in the vicinity of the discontinuity in 
terms of an impedance of a single lumped element by which plane waves in one tube are 
'connected' to plane waves in the other tube. Even if the axial particle velocity and 
pressure over the cross-sections of the tubes is non-uniform, the conditions of continuity 
of force and volume velocity must hold across any cross-section. Consequently, another 
form of impedance is defined as follows: 

( l /S) fs/5 dS 
Z =  = (/3)/0 (4.17) 

~s /~n d S  

in which U n is the component of particle velocity normal to the selected surface, Q is the 
volume velocity, and the force is, by convention, normalized to unit cross-section area in 
the form of space-average pressure (/5). This is known simply as the 'acoustic 
impedance'. It is a complex quantity conventionally denoted by Z = R +jig. It is 
normalized on the characteristic acoustic impedance of a plane wave in a uniform duct 
of cross-sectional area S as Z' = Z/(poc/S). Note that Z' = z' for plane waves. 

The practical advantage of this form of characterization is that the acoustic 
impedances of a wide range of discontinuities have been determined by detailed analysis. 
Their availability allows simple forms of wave field to be connected through a region of 
discontinuity without the need to solve the wave equation explicitly in each case; this 
represents a 'black box' approach to the connection problem. Specific examples will be 
presented in Chapter 8, in which networks of acoustic transmission lines are analysed. 

Although we have adopted an inviscid fluid model for the purpose of deriving the 
acoustic wave equation, in practice sound energy is dissipated by various mechanisms, as 
explained in Chapter 7. In lumped element acoustic models, the combined action of all 
dissipative mechanisms is conventionally represented by an equivalent viscous damping 
element. 

The lumped element mechanical oscillator treated in Section 4.3.1 has an acoustic 
analogue in the Helmholtz resonator, named after the eminent German physicist 
Hermann von Helmholtz, who developed sets of resonators tuned to a range of 
fundamental resonance frequencies for studying auditory response to tones. They took 
the form of glass spheres containing one large and one small aperture. The larger 
aperture controlled the resonance frequency and the smaller one allowed the resonance 
tone to be heard when placed to the ear. (The reader might like to consider how 
connection to the ear canal alters the resonance frequency.) 

The archetypal Helmholtz resonator, consisting of a neck and cavity, is shown in Fig. 
4.15. At the fundamental resonance frequency, the dimensions of both components are 

i 

| Vo 

Fig. 4.15 Archetypal Helmholtz resonator. 
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much less than an acoustic wavelength and can thus be treated as lumped elements 
coupled at a geometric discontinuity. The coupling condition is that the oscillatory 
volume flow in the neck is equal to that imposed on the fluid in the cavity. A volume of 
fluid in an acoustically small enclosure acts like an elastic spring. The acoustic 
impedance of the cavity of volume V0 is given by Z = -jTPo/(D Vo. According to Eq. 
(4.15), the acoustic impedance of the fluid in the neck is inertial in nature and given by 
Z =j(Dpol/S where 1 and S are the length and cross-sectional area of the neck, 
respectively. Because the fluid in the neck behaves like an incompressible mass, the 
impedances of the neck and cavity add to give the internal reactance Xint presented to 
pressure imposed on the external opening of the neck (mouth). 

The elastic impedance of the fluid in the neck exceeds its inertial impedance by a factor 
(k l ) -2  ( >> 1), and can therefore be neglected. It may seem strange to neglect the larger 
of two quantities. This is because we are seeking a solution for the volume velocity of the 
fluid in the neck when subjected to an externally imposed pressure at the mouth. Because 
kl << 1, the fluid in the neck is so stiff that it moves virtually as an incompressible 
volume, its acceleration being controlled by its inertia. By definition, the volume velocity 
equals the applied pressure divided by the acoustic impedance. Hence, the smaller of the 
two components of neck impedance controls the motional response. The fluid in the 
immediate vicinity of the discontinuity at the junction of the neck with the cavity acts as 
an additional inertial lumped element of impedance Z = j(Dpol'/S, where l' is a virtual 
'extension' of the neck length, giving effective acoustic length of the neck as l + l'. The 
total reactance is zero at the resonance frequency (Dr Of an undamped resonator. Thus 

or 
j (DrPo( l  -k- l ' ) l S  - j T P o I ( D r V o  = 0 

2 ___ 
(Dr 7PoS/VoPo(l + l') = c 2 S / V o ( l  + 1') (4.18) 

since 7Po = po c2. Somewhat surprisingly, the undamped resonance frequency is seen to 
be proportional to S ~/2. This results from the fact that the equivalent mass of the air in 
the neck is proportional to S, whereas the equivalent mechanical spring stiffness of the 
air in the cavity is proportional to S 2. 

The fluid in the resonator does not oscillate freely at (D r after a transient disturbance 
because external fluid takes part in the oscillation. In cases of radiation of sound from 
surfaces having dimensions much less than a wavelength, the impedance presented by 
the external fluid is termed the 'acoustic radiation impedance', symbolized by Za,rad. It is 
the ratio of complex amplitude of pressure averaged over the opening to the volume 
velocity through the opening. Suffice to say at this point that it increases the effective 
length of the neck by about 81/2/3. This makes the undamped natural frequency slightly 
less than (Dr. 

When the air slug in the neck oscillates in response to incident sound, the total external 
pressure Pm acting at the mouth of the neck is the sum of that which would be exerted on 
the mouth of the neck by the incident field with the mouth rigidly blocked Pbl and the 
reaction pressure generated in the external fluid by the oscillation of the slug. In 
addition, viscous and thermal effects in the neck and cavity dissipate energy. These 
effects are represented by adding /a,rad, together with a resistive (real) impedance 
c o m p o n e n t  Rint, to the internal reactance X'in t. The impedance network is illustrated in 
Fig. 4.16. The volume velocity Q of the air in the neck of the resonator to excitation by 
an incident sound wave is related to the external pressure on the mouth by 
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Fig. 4.16 Impedance network representation of a Helmholtz resonator. 

t im -= 13bl --  QZa , rad  --- Q Z i n t  (4.19a) 
o r  

Q - f ibl / (Zint  + Za,rad)  ( 4 . 1 9 b )  

If the mouth of the resonator is mounted flush with a large rigid baffle, the blocked 
pressure must be taken as twice the free field incident sound pressure in the plane of the 
baffle. In the absence of a baffle, the numerical factor is very close to unity. The 
diffraction of incident sound by the Helmholtz resonator, and its sound absorption 
performance, are analysed in Chapters 12 and 7, where it is shown that a resonator is 
most effective when co ~ (_D r and Rint -- Re{Za , r ad} .  

One of the most common uses of Helmholtz resonators is for the enhancement of low- 
frequency sound absorption in otherwise excessively reverberant rooms such as sports 
halls. Walls may be constructed from special hollow bricks, which act as resonators, as 
shown in Fig. 4.17. Air in a small bottle with a narrow neck can be made to resonate by 
blowing gently across the opening. If smoke is blown across the opening and illuminated 
by a stroboscopic light, the strong oscillatory movement of air into and out of the neck at 
resonance may be visualized. 

Among other lumped acoustic elements that have been defined, the most widely used 
is that associated with the acoustic field produced by the incidence of sound upon a small 
circular aperture of radius a in an unbounded, thin, rigid screen. A rather complex 
analysis of the associated fluid velocity field shows that the corresponding lumped 
acoustic impedance (Ap/Q) is given by Z = jcopo/2a, which is clearly inertial in nature. In 
fact viscous effects will add a small resistive term at low sound levels. Diffraction of the 
incident field by such a small aperture is also discussed in Chapter 12. The impedance is 
considerably modified by low-speed mean flow through the aperture, but this phenom- 
enon falls outside the scope of this book. 
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Fig. 4.17 (a) Load-bearing resonator block and (b) example of installation (Gymnasium, College 
of William and Mary. Architects: Wright, Jones and Wilkerson, Richmond, VA, USA). 
Reproduced from Junger, M. (1975) Helmholtz resonators in load-bearing walls. Noise Control 
Engineering 4(1): 17-25. 

The application of the concept of lumped acoustic elements to the modelling of sound 
propagation in waveguides such as pipes is explained in Chapter 8. 

4.4.2 Specific acoustic impedance of fluid in a tube at low frequency 

The impedances of lumped systems involve either differences of forces or pressures 
acting on two opposite 'faces' of an element, or differences of particle or volume 
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Fig. 4.18 Tube terminated by arbitrary impedance. 

velocities through the 'faces'. In the more general case of a spatially extended region of 
fluid that cannot be represented by a lumped element, the concepts of 'specific acoustic 

A 

impedance', and 'acoustic impedance', are employed to describe the reaction of the fluid 
to harmonic pressures, particle velocities or volume velocities imposed on a particular 
surface within the fluid. 

The simplest example is that of fluid in an infinitely long or anechoically terminated 
tube of uniform cross-section in the low frequency range, where only plane waves 
propagate. As shown in Section 3.9.4, the specific acoustic impedance at any position in 
the tube is the characteristic specific acoustic impedance given by poc. The value for air at 
a pressure of one bar and a temperature of 20~ is 415 kg m -2 s -  1. For fresh water at 
near sea level pressure it is 1.45 x 106 kg m - 2  s-1. 

If the tube is terminated at one end by any system or device that has an impedance 
different from the characteristic value, plane waves will be reflected from the impedance 
discontinuity. The resulting impedance at all points in the tube will be altered from the 
characteristic value. This effect is demonstrated by analysing the model shown in Fig. 
4.18. A termination of complex specific acoustic impedance zt is inserted at x = 0. Plane 
waves of amplitudes A and/~ travel in the positive and negative x-directions. The specific 
acoustic impedance ratio at x - - L is given by 

z'(-- L) -- [1 + (/~/A) exp (-2jkL)] / [1 -- (/~/A) exp (-- 2jkL)] (4.20) 

and 

2 ' (0)  -- 2 t ' - -  (1 + /~/ /J)  / (1 --  /~/ /J)  

o r  

/ ~ / / J - -  (Z  t '  - -  1) / (zt' + 1) (4.21) 

from which the specific acoustic impedance ratio at x, 'looking' towards the impedance 
discontinuity, is 

z'(-L) = [zt '+ 1 + ( z t ' -  1) exp (-2jkL)]/[zt'+ 1 - ( z t ' -  1)exp (-2jkL)] 
- [Z t' + j tan kL] / [1 + jzt' tan kL] (4.22) 

The amplitude and phase of this function is plotted in Fig. 4.19 for zt' = 2.0 + 1.3j. Note 
that this is the impedance presented to any sound-generating mechanism located at 
position x = - L, and that at the positions of both maximum and minimum impedance 
magnitude, the impedance is purely real. 

Demonstration 
The variation of impedance with position in a tube of finite length can be demonstrated 
as follows. Construct a closed tubular cabinet to accommodate a small loudspeaker in 
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Fig. 4.19 Spatial variation of magnitude and phase of the specific acoustic impedance ratio in a 
tube terminated by z' = 2.0 + 1.3j. 
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Fig. 4.20 Arrangement for demonstrating the variation of impedance with position in an open- 
ended tube. The loudspeaker contains sound-absorbent material. 

one end, so that it slides freely in a 2-m long, open-ended Perspex (Plexiglas) tube of 
slightly large diameter (Fig. 4.20). Attach a small accelerometer to the loudspeaker cone, 
with the lead attached to a draw cord by which the loudspeaker may be pulled along the 
tube. Drive the loudspeaker at any frequency well below the lowest 'cut-off' frequency of 
the tube, given by f =  1.84c/~d, where d is tube diameter (see Chapter 8). Observe the 
cone acceleration amplitude as the loudspeaker is drawn along the tube. 

The ratio of complex wave amplitudes A//~ is determined entirely by the impedance zt 
at the end of the tube. With an open end it is complex, but both the real and imaginary 
parts of zt' are much less than unity, so that it may be considered to be zero. Equation 
(4.21) indicates that /~/A ~ -1 and z'(-L) ~ j tan kL, which is purely reactive and varies 
in magnitude between zero and infinity. Consequently, when the loudspeaker cone is at 
distances given by kL =ng, it experiences virtually zero radiation impedance and 
vibrates strongly. At distances given by kL = ( 2 n -  1)~z/2, the very high radiation 
impedance greatly reduces the cone motion. The effect is most evident at the resonance 
frequency of the loudspeaker (plus accelerometer) at which its mechanical impedance is a 
minimum. Of course, the impedance presented to the loudspeaker is never precisely zero; 
if it were, no sound energy would be radiated. 
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Table 4.1 Forms of acoustic impedance 

4.4.3 Normal specific acoustic impedance 

In a general three-dimensional, harmonic, acoustic interference field the pressure varies 
with position and particles move in elliptical orbits. Consequently, the specific acoustic 
impedance depends upon both position and orientation of the selected associated 
particle velocity component. However, where it is required to characterize the acoustic 
properties of many forms of sound absorbent material, such as mineral wool, for the 
purpose of expressing the interaction between an incident sound wave and the material, 
it is only necessary to specify the 'normal specific acoustic impedance' of the surface, 
which is defined as the ratio of the complex amplitude of surface pressure to that of the 
component of particle velocity normal to, and directed into, the surface. This form of 
impedance, also known as 'boundary impedance', is used extensively in Chapter 7. 
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Table 4.1 (continued) 

k t 
f 

Surface pressure generated by interface wave 

1~ ~ . ~  
Travelling wave on interface 

(f) Specific acoustic wave impedance 5w = p-Zs 
tan 

. . . . . . . .  ~ '  IK 

(x) = 

f~/~(x)~(x) dx #mod 
/mod,rad- Umod -- ~-)mod 

where Fmod = generalized force on fluid 

(g) Modal radiation impedance 

4.4.4 Radiation impedance 

Another version of impedance is employed to relate the vibration velocity of a rigid body 
to the associated fluid reaction force. This is the acoustic equivalent of mechanical 
impedance and is termed the 'mechanical radiation impedance', symbolized by Zm,rad. In 
most cases the surface pressure is not uniformly distributed. We may roughly explain this 
as being due to the freedom of air particles to move parallel to, as well as normal to, the 
direction of surface motion. The mechanical radiation impedance is therefore given by 
the following expression: 

fs /5 dS  ~ (4.23) 
/m,rad -- - - - - - - ~  -- ~ 

where u is the velocity of the rigid body and F is the force applied to the fluid. 
In the case of radiation from a uniformly pulsating sphere, analysed in Section 6.4.2, it 

is not appropriate to define a mechanical radiation impedance because the total force on 
the sphere is zero. Equation (6.16) gives an expression for the 'specific radiation 
impedance', which relates the local surface pressure to the local radial particle velocity. 

In cases where neither the normal particle velocity nor the pressure are uniform over 
some surface, of which the dimensions are not small compared with a wavelength, it is 
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not appropriate to define an 'acoustic radiation impedance' by analogy with that defined 
for lumped elements as 

( l /S) fs/3 dS 
Za,rad- --(/~)/0 

fs t2n dS 
(4.24) 

because this quantity varies greatly with the form of distribution of On over the surface. 
Consequently, either surface wave or modal impedances are used (see below). 

4.4.5 Acoustic impedance 

As previously mentioned, in the immediate vicinity of local transitions of duct area, such 
as junctions, obstructions or apertures, the local sound field cannot take the form of pure 
plane waves, and spatially complicated localized distributions of pressure and particle 
velocity exist. The acoustic impedance Z, defined by Eq. (4.17), is useful because it allows 
plane waves in the uniform branches to be 'joined', and hence to interact, via these 
localized regions, represented by lumped elements, without requiring detailed knowledge 
of the sound fields internal to these regions. This is achieved through the application of 
conditions of continuity of pressure and mass flux,which hold across any interface within 
the fluid, as illustrated in Fig. 4.21. A detailed account of the use of Z and its inverse for 
the analysis of the acoustic behaviour of networks is presented in Chapter 8. 

4.4.6 Line and surface wave impedance 

In most cases of practical interest, distributed structural and fluid systems are coupled 
over spatially extensive regions, such as the welded line connections between ship hull 
plates and frames, and the surfaces of satellite launch vehicles exposed to rocket noise at 
blast-off. We therefore need to extend the impedance concept to embrace spatially 
extended wave coupling. 'Wave impedance' expresses the reaction of a distributed 
system to harmonic excitation by a harmonic spatial distribution of force, or velocity, 
which possesses a single wavenumber. We shall consider the wave impedance presented 
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Fig. 4.21 Continuity of force and mass flux at an area discontinuity in a tube. 
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Fig. 4.22 Travelling wave on a plane interface. 

by a fluid to a travelling wave disturbance of a plane boundary. This lays the ground- 
work for further analysis of vibroacoustic coupling between structures and fluids in 
Chapters 10 and 11. 

A major proportion of sound sources take the form of vibrating structural surfaces, of 
which an archetypal model is an infinitely extended plane boundary carrying a transverse 
wave, as illustrated in Fig. 4.22. The impedance presented by the fluid in reaction to 
disturbance by this wave determines both the fluid pressure on the boundary and the 
effectiveness with which the wave radiates sound energy. The normal velocity of a plane, 
harmonic, transverse wave may be expressed in the complex exponential form 

Un(X,t) -- A exp [j (cot -- tcx)] (4.25) 

in which tc is an arbitrary wavenumber. The associated phase speed r  of the wave is 
given by co/~c. The fluid pressure field must satisfy the two-dimensional form of the 
Helmholtz equation (Eq. (3.20)), which has a general solution 

/Y(z, x) = /~  exp (- jkxx)  exp (-jkzz) (4.26) 

where 

+ = k 2 = (4.27) 

The x-directed component of the acoustic wavenumber must be tc, since the normal fluid 
motion at z = 0 must match that of the boundary. Hence kx = tc and 

k 2 = k 2 - /s  (4.28) 

The amplitude of the radiated pressure field is obtained by applying the z-directed fluid 
momentum equation (3.34c) at the surface to give 

(SlY(X, z)/~Z)z=O = - j k ,  B exp (-jtcx) = - flopo fin = - flopo A exp (-flex) (4.29) 

The solution for the pressure field is therefore 

fi(X, Z) = ( c o p 0 A ) ( k  2 -  tr - 1/2 exp ( - jkx)  exp [-j(k 2 -  to2) 1/2 z] (4.30) 

and the specific acoustic wave impedance presented to the boundary wave is 

Z(K)  = fi(X, 0 ) / f i n ( X ,  0 )  = c o p 0 ( k  2 - K2) - 1/2 __ p0c[1 - ( t c / k ) 2 ]  - 1/2 (4.31) 

Equation (4.31) is of great practical importance because it represents the specific 
radiation impedance of the surface, which can be used to determine the effectiveness of 
sound radiation of any f o r m  of vibrational field on a plane boundary. This is achieved by 
means of the application of spatial Fourier analysis, which expresses arbitrary spatial 
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distributions of a variable in terms of a wavenumber spectrum, just as temporal Fourier 
analysis does for arbitrary time signals (Appendix 3). For further explanation and 
application the reader is directed to Sound and Structural Vibration (Fahy, 1987), listed 
in the Bibliography. The equation is also central to the modern technique of imaging 
vibrating planar sound sources known as nearfield acoustic holography (NAH), which is 
widely used by the automotive industry to locate and quantify vehicle noise sources. 

The physical interpretation of Eq. (4.31) is as follows. If the boundary wavenumber tc 
is less than the acoustic wavenumber k (i.e., Cph > c), then the impedance presented to 
the boundary by the fluid is real (resistive) and the radiated sound field takes the form of 
a plane travelling wave having a wavenumber vector directed at angle 4) - s in-  ](K/k) to 
the normal to the boundary, as shown in Fig. 4.23(a). Note that z, = poc sec 4). 

If ~c > k (i.e., Cph < c), the impedance is purely reactive, positive, and proportional to 
frequency, indicating that the fluid presents an inertial reaction. In addition, Eq. (4.30) 
indicates that the pressure field decays exponentially with distance from the surface: 
there is no zero radiation of sound energy (Fig. 4.23(b)). Note: in this case we must 
select kz = (k  2 -  /s ___  j(K2 k2)1/2 in order that the radiated field does not 
grow exponentially in the z-direction (Eq. (4.30)). This form of field is termed a 
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Fig. 4.23 Sound pressure distributions in waves generated in a fluid by (a) supersonic (acoustically 
fast) and (b) subsonic (acoustically slow) harmonic plane waves of transverse displacement of a 
contiguous solid surface. 
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Fig. 4.24 Transmission of harmonic plane waves at a plane interface between different fluids. 

'hydrodynamic near field'. When K = k, the impedance is infinite. The implication is that 
no physical plane structure of finite impedance can support a structural plane wave 
component that propagates at exactly the speed of sound in the fluid. This is confirmed 
by advanced analysis. 

Where the boundary wave takes the form of a bending wave in a flat plate, the effect of 
the inertial fluid reaction is to increase the effective mass of the plate and to reduce its 
propagation speed. Resistive reaction drains energy from the plate and increases its 
effective damping. In most cases of radiation by engineering structures into air, the 
reaction of the fluid has little effect on the structural wave phase speed, and hence on 
natural vibration frequencies; but it has a profound effect on structures in contact with 
liquids, such as ships. The resulting free structural wave speed can be determined by 
applying the condition that the sum of the imaginary parts of the plate and fluid wave 
impedances is zero at the interface. 

The impedance expression of Eq. (4.31) is also useful in analysing the transmission 
and reflection of plane waves travelling in an ideal fluid (medium 1) upon encounter with 
a plane interface with a different fluid (medium 2), as illustrated in Fig. 4.24. The 
component of the incident wavenumber vector that is tangential to the interface (the 
'trace wavenumber') is kl sin ~bl. This corresponds to K in the above analysis. The specific 
acoustic wave impedance presented by medium 2 to the incident wave is obtained by 
making this substitution in Eq. (4.31). Clearly, no wave energy is transmitted if 
sin ~bl > cl/c2. (Calculate the limiting angle for the case where medium 1 is air and 
medium 2 is water.) The transmission problem is fully analysed in Chapter 11. 

4.4.7 Modal radiation impedance 

In cases where a structure vibrates in distinct modes, a 'modal radiation impedance' is 
defined as the ratio of the generalized modal force applied to the fluid to modal velocity: 

fs ?(x)O(x)dx  

Zmoa,raa -- Umod (4.32) 
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where dx is an element of surface S, ff is the mode shape and Umod is the modal velocity 
amplitude. 

4.5 An application of radiation impedance of a uniformly 
pu Isating sphere 

In Chapter 6, the specific impedance ratio presented to the surface of a pulsating sphere 
of radius a is given by Eq. (6.16) as 

z' = jka/(1 + jka) = [(ka) 2 + jka] / [1 + (ka) 2] (4.33) 

The resistive component of the impedance relates to the radiation of sound energy and 
the reactive part relates to inertial fluid loading of the sphere surface. Equation (4.33) 
shows that the impedance is predominantly reactive when ka << 1 (sphere circumfer- 
ence << acoustic wavelength) and predominantly resistive when ka >> 1, approaching 
the plane wave impedance for very large ka. 

An example of the application of this impedance to the determination of natural 
frequencies of coupled vibroacoustic systems is provided by a gas bubble in a liquid, 
which scatters incident sound in the liquid, especially at its resonance frequency. The 
babbling sound of a stream is caused by the ringing of numerous bubbles of many 
different sizes and natural frequencies as they respond to fluctuating pressures in the 
unsteady flow. A bubble exhibits elastic reaction to change of diameter by means of a 
combination of gas elasticity and surface tension (the latter has negligible influence on 
gas bubbles having diameters greater than about 10 -s  m). According to Eq. (4.33), 
oscillation of bubble size produces inertial and resistive reaction forces in the surround- 
ing fluid. According to our previous analysis of oscillations, the natural frequency of 
(undamped) bubble size oscillation corresponds to zero combined reactive impedance at 
the interface. Consideration of the effect of a small increase of radius on volumetric 
strain shows that the effective stiffness per unit surface area of a bubble of radius a is 
given by 37gPg/a, where Pg is the equilibrium pressure of the gas and 7g is the ratio of its 
specific heats. Hence its elastic impedance per unit surface area, zs = -j37Pg/oOa. Zero 
interface reactance occurs at a frequency o~0 at which jpooooa = 3j7Pg/ogra or og0a-- 
(37Pg/Po) 1/2. (Readers may check that the undamped natural frequency of an air bubble 
lying close to the surface of a river is given approximately by the formula fa ~ 3 Hz m.) 
The radiation damping represented by the resistive component of the radiation 
impedance is rather small compared with the reactive component. Hence the actual 
resonance frequency is close to the undamped natural frequency. 

4.6 Radiation efficiency 

A large proportion of sources of sound take the form of vibrating structures. Within the 
audio-frequency range, many of these structures have a very large number of structural 
modes and associated natural frequencies that are not generally amenable to determi- 
nistic calculation or individual measurement because their bandwidths overlap. Conse- 
quently their individual radiation impedances are not known. An alternative, 
statistically based, measure of the modal average radiation resistance is commonly used 
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to relate calculations or measurements of mean square normal velocity, averaged over 
the radiating surface, and the radiated sound power. It is called the 'radiation efficiency', 
or 'radiation ratio', and is defined as follows" 

mrad 
a - (4.34) 

pocS(u2(x, t)) 

where the radiated sound power mra d is normalized on the product of the radiating area 
S, the characteristic specific impedance of the fluid, and the space-average mean square 
vibration velocity. By analogy with a lumped element system, the equivalent specific 
radiation resistance is poca. 

An introduction to the analysis and characteristics of sound radiation by vibrating 
structures is presented in Chapter 10, Section 10.14. 

Questions 

4.1 Derive an expression for frequency at which (jcoZm) -2 is maximum for a viscously 
damped mass-spring oscillator that is earthed at the free end of the spring. What  
does this represent in terms of response to a harmonic force? 

4.2 Determine the natural frequencies of the system shown in Fig. 4.9 with M1 = 0.1 kg, 
M2 = 0.2 kg, K1 = 10 6 N m -  1 and K2 = 105 N m -  1. 

4.3 A mass is mounted on a harmonically vibrating base via a spring and a viscous 
dashpot in parallel. Derive a general expression for the mechanical impedance 
presented to the base by the system at the undamped natural frequency of the 
mounted system on an immobile base. Place a physical interpretation on the result in 
terms of the influence on the impedance of the three components. 

4.4 A loudspeaker cone that has a diameter of 150 mm and a mass of 20 • 10-3 kg is 
mounted on a very weak spring in one face of a cabinet that has a volume of 16 litres. 
Estimate the undamped natural frequency of the system. 

4.5 Evaluate the internal acoustic impedance at 100 Hz of a Helmholtz resonator that 
consists of a 75 mm long tubular neck of 20 mm diameter connected to a 150 mm 
diameter sphere with a cloth of resistance of 20 kg m -2 s-1 stretched across the 
mouth. 

4.6 What  is the effective mass associated with an acoustic radiation impedance 
Za,ra d = (poc/~za 2) [(ka)2/2 + j (8/3~)ka]? 

4.7 Demonstrate that the pressure reflection coefficient for reflection of a normally 
incident plane wave from a plane surface of boundary impedance ratio 
z' = 2.02 + 1.3j is R exp (jO) =/~/A = 0.44 + 0.24j. [Hint: Eq. (4.21).] 
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Energy and Intensity 

5.1 The practical importance of sound energy 

In Chapter 2 we considered the process of propagation of a pulse of sound in qualitative 
terms. Disturbances of fluid density and pressure, accompanied by disturbances of fluid 
element position, were seen to be passed on from element to element, leaving the fluid in 
its former quiescent state once the disturbance had passed. Time-dependent disturbance 
of position implies velocity; therefore, sound waves possess and transport both kinetic 
energy and momentum associated with the bulk motion of the element. The molecules 
acquire mean motion, which is superimposed upon their random motion. It is also 
evident that energy and momentum can be transferred to objects upon which sound is 
incident, such as windows shattered by an explosion. 

It is perhaps less obvious that sound also possesses and transports potential energy. As 
we know, increases of fluid density are accompanied by increases of pressure. If one were 
to confine an element of fluid and 'squeeze' it so as to reduce its volume, the pressure 
would resist the action, the relation between the two quantities being determined in gases 
by the speed of compression and the thermal conductivity of the container. The fluid will 
therefore do negative work on the agent of compression, and, by definition, will gain 
potential energy. Compare with the action of raising a weight. 

Sound energy is a second-order quantity because kinetic energy is proportional to the 
square of the magnitude of particle velocity and potential energy density is proportional 
to the square of sound pressure. It is of great importance in theoretical and experimental 
studies, and for measurement methodology, because it is a conserved quantity, unlike 
the first-order quantities pressure and particle velocity. As a sound wave propagates, the 
sum of its total kinetic and potential energies must be conserved in the absence of 
dissipative processes. The rate of generation of sound energy, termed 'sound power', is 
the primary measure of the strength, or output, of a source of sound. 

At this point, it is apposite to impress upon the reader that the human audio system 
does not respond to intensity, but to sound pressure, and that intensity calculation or 
measurement is essentially a means to an end in terms of noise control. It must also be 
understood that, contrary to the impression given by many acoustics textbooks, there is 
generally no simple relation between sound intensity and sound pressure in practical 
situations. 

When sound energy is generated by a source in free field it flows radially outwards 
(except very close to complex sources) and therefore spreads over an increasing area as it 
travels. The measure of the rate of flow of sound energy per unit of area oriented normal 
to a wavefront is termed 'sound intensity' [5.1]. It is more precisely expressed as 'sound 
power flux density'. 

74 
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Sound intensity will be subsequently shown to equal the product of sound pressure (a 
scalar) and particle velocity (a vector). Hence it is a vector quantity, possessing both 
magnitude and direction. In a linear sound field, particle velocity is derivable from sound 
pressure (alternatively, as shown in textbooks on fluid dynamics, both are derivable from 
velocity potential). Therefore knowledge of the sound intensity vector does not, in 
principle, offer any more information than is contained in the pressure field. However, 
the conservative nature of energy offers approaches to the theoretical modelling, analysis 
and computation of sound fields as alternatives to the 'classical' approach involving 
direct solution of the wave equation. These alternative approaches are often simpler and 
more explicit than the latter, as we shall find in Chapter 9 on sound in enclosures. 

Measurement of sound intensity, rather than sound pressure, allows the sound power 
of individual sources, or parts thereof, to be determined even in the presence of other 
active sources, which is virtually impossible otherwise. This is very valuable in industrial 
situations. The application has been internationally standardized [5.2]. Sound intensity 
measurement also forms the basis of one of the internationally standardized means of 
evaluating the airborne sound insulation of partitions [5.3]. It is especially useful for this 
purpose because it obviates the need for one of the two reverberation rooms used in the 
conventional laboratory method; it excludes sound radiated by room surfaces in 
buildings other than the dividing wall; and it indicates areas of poor insulation. Sound 
intensity measurement offers one of many means of locating the most powerfully 
radiating regions of a complex source. In principle, it may be used to evaluate the 
sound absorption presented by any surface, or body, to a sound field. In practice, it is not 
widely used for this purpose on the grounds of inadequate precision. 

The analytical part of this chapter opens with an analysis of the relations between 
sound energy, sound pressure and particle velocity. Consideration of the work done by 
internal fluid forces at any surface within a fluid leads to a definition of, and expressions 
for, the rate of flow of energy, expressed as sound intensity. Application of the principle 
of conservation of energy to a fluid element yields a conservation equation for sound 
intensity. The distribution of sound intensity in progressive and standing plane waves 
leads to the concept of 'active' and 'reactive' intensity. The relation between sound 
intensity and spatial gradient of pressure phase, which forms the basis of intensity 
measurement by two pressure microphones, is then presented. 

Harmonic and narrow-band intensity fields usually exhibit very complex spatial 
distributions of intensity, which offered a considerable surprise to the pioneers of the 
1950s when they first observed the phenomenon. Today it does not challenge us in 
comprehension, but confuses the source 'hunter' and places stringent demands upon 
measurement precision and spatial sampling procedures. The reason for the complexity 
is explained and a simple example is presented. The intensity distributions in a number of 
ideal fields are then analysed. 

The chapter closes with an explanation of the principle of two-microphone intensity 
measurement, together with some examples of practical application. 

5.2 Sound energy 

In the inviscid gas model assumed in elementary acoustic theory the only internal force is 
the pressure which arises from volumetric strain. Pressure is a manifestation of the rate 
of change of momentum of the gas molecules produced by their mutual interactions 
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during random motion. Gas temperature is a manifestation of the kinetic energy of 
translational molecular motion. The relationship between changes of pressure and 
density during volumetric strain depends upon the degree of heat flow between fluid 
regions of different temperature, or into, or out of, other media with which the gas is in 
contact. During small audio-frequency disturbance of real gases, heat flow is negligible 
in the body of the gas remote from solid boundaries, and the influence of irreversible 
changes due to fluid viscosity and molecular vibration phenomena can, to a first 
approximation, be neglected. The corresponding adiabatic bulk modulus represents a 
conservative elastic process. 

The kinetic energy of a fluid per unit volume, symbolized by T, is, to second order, 
lpou2 , where u is the speed of the fluid particle motion. The potential energy associated 
with volumetric strain of an elemental fluid volume is equal to the negative work done by 
the internal fluid pressure acting on the surface of the elemental volume during strain. 
Since the total volume change is given by the integral over the surface of the normal 
displacement of the surface, the incremental potential energy per unit equilibrium 
volume is given by 

6 U  = - P ( f V / V o )  (5.1) 

The total pressure P is the sum of the equilibrium pressure P0 and the acoustic pressure 
p. Lighthill [5.4] shows that the action of P0 is associated with the convection of acoustic 
energy by the fluid velocity, a contribution to energy transport that is very small and 
which is balanced out by another small term, and may therefore be neglected. Hence, Eq. 
(5.1) may be reduced to 

and 

6 U = - p (6  I7/Vo) (5.2a) 

~ U / ~  V = - p / V o  (5.2b) 

Using Eq. (3.5) 

~ U / ~ p  = ( ~ U / ~ V ) / ( ~ p / ~ V )  = ( -  p / V o )  / ( -  7Po/Vo)  = P/7 Po = P/Po c2 (5.3) 

Integration with respect to p gives the potential energy per unit volume as 

U = p2/2poc2 = p2/27Po (5.4) 

since U is zero when p is zero. 
The total mechanical energy per unit volume associated with an acoustic disturbance, 

known as the 'sound energy density', is 

e = T + U = lpou2 + l p Z / p o c 2  (5.5) 

This expression is totally general and applies to any sound field in which the small 
disturbance criteria, and the zero mean flow condition, are satisfied. 

5.3 Transport of sound energy: sound intensity 

A simple physical argument was advanced in Chapter 2 for the phenomenon of transport 
of sound energy. The vibrational potential and kinetic energies of fluid elements in the 
path of a transient sound wave are zero before the wave reaches them, and zero again 
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after the wave has passed. Provided that no local transformation of energy into non- 
acoustic form has occurred, the energy that they temporarily possess while involved in 
the disturbance has clearly travelled onwards with the wave. We proceed to derive an 
expression for the energy balance of a small region of fluid in a general sound field, 
making the assumption that small dissipative forces may, to a first approximation, be 
neglected. We must be careful to exclude any elements that are acted upon by external 
forces that may do work on them; for example, elements in contact with vibrating 
surfaces. We also assume that no sources or sinks o f  heat or work are present, and that 
heat conduction is negligible. These latter assumptions imply that changes of internal 
energy of a fluid element, and the associated temperature changes, are produced solely 
by work done on the element by the surrounding fluid during volumetric strain. Since the 
internal forces are then conservative, the rate of change of the mechanical energy of a 
region of fluid must equal the difference between the rate of flow of mechanical energy in 
and out of the region. 

On the basis of the definition of mechanical work, the rate at which work is done on 
fluid on one side of any imaginary surface embedded in the fluid by the fluid on the other 
side, is given by the scalar product of the force vector acting on that surface with the 
particle velocity vector through the surface. The rate of work is therefore expressed 
mathematically as 

d W/dt = F.u = p ~S.u (5.6) 

where 6S is the elemental vector area which can be written as 6Sn, where n is the unit 
vector normal to the surface, directed into the fluid receiving the work (Fig. 5.1). The 
work rate per unit area may be written 

(d W/dt) /6S = pUn (5.7) 

where u, = u.n is the component of particle velocity normal to the surface. 
We define the vector quantity pu to be the instantaneous sound intensity, symbolized by 

l(t), of which the component normal to any chosen surface having unit normal vector n is 
In(t) = l(t).n. Note that, in general, both the magnitude and direction ofl(t)  at any point 
in space vary with time. 

We may now express the energy balance of a region of fluid volume in terms of the 
flow of sound energy into and out of it. For simplicity, consider first a region in a two- 
dimensional sound field, shown in Fig. 5.2, in which the particle velocity vector has 
components u and v in the x- and y-directions, respectively. 

/ 

,'1 = p u  

l I n = p u  cos 0 n 

Fig. 5.1 Illustration of the components of sound intensity. 
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Fig. 5.2 Conservation of energy of a two-dimensional fluid element. 

The rate of inflow of energy per unit depth is (pu)Sy + (pv)Sx. The rate of outflow is 

[p + (ap/ax) fx]  [u + (au /ax ) f x ] f y  + [p + (ap/ay)fy] [v + (av /ay ) f y ] f x  

Whereas it was appropriate to retain only first-order terms in the derivation of the wave 
equation, such a procedure is not appropriate to energy equations because all the terms 
would then disappear; hence we retain second-order terms, but neglect terms of higher 
order. The remaining expression for the net rate of outflow of energy per unit depth is 
a/ax(pu) + a/ay(pv). 

The rate of change of energy density of the fluid region is, from Eq. (5.5), and using 
Eqs (3.33) and (3.34), 

~e/~t = - [~(pu)/~x + ~(pv)/~y] (5.8) 

The expected energy balance is therefore confirmed. A simple extension to a three- 
dimensional rectangular region of fluid gives the general relationship 

V.I(t) = - ~e/Ot (5.9) 

If a sound field is time-stationary, the time integral of Eq. (5.9) will converge to zero as 
the integration time extends beyond the period of lowest frequency component present. 
If work is being done on the fluid region by some external agent at a rate of W' per unit 
volume, then Eq. (5.9) becomes 

V.l(t) = - ~e/~t + W' (5.10) 

5.4 Sound intensity in plane wave fields 

The relationship between instantaneous pressure and instantaneous particle velocity in 
an interference field formed by two oppositely directed plane waves is given by Eqs 
(3.29a) and (3.29b) as 

--[- --[- _ 

u = p  /poC and u = - p  /poC 

where the superscripts refer to the components propagating in the positive and negative 
x-directions. The instantaneous sound intensity is given by Eq. (5.7) as 

I(x,  t) = [(p +)2 _ (p-)Z]/po c (5.11) 

in which the x- and t-dependence of the pressures is implicit. The time-averaged, or mean 
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value, of I in a time-stationary field is given by Eq. (5.11) with the squares of 
instantaneous pressures replaced by mean square pressures. This expression holds for 
any space or time dependence of a time-stationary plane wavefield. 

Even in this most elementary of sound fields it is clearly not possible to measure sound 
intensity with a pressure microphone at one fixed position, because it cannot distinguish 
between the pressures associated with the two wave components travelling in opposite 
directions. It is clear from Eq. (5.11) that, if the mean intensity is zero anywhere, it is zero 
at all positions, because both mean square pressures are independent of position. 
However, even if the mean is zero, the instantaneous intensity at any point fluctuates 
about this mean, indicating that energy is flowing to and fro in each local region. At 
certain times and places, the component wave pressures will be of the same sign and 
rather similar in magnitude, and the particle velocity will be correspondingly small; 
alternatively, the pressures can be similar in magnitude, but opposite in sign, and the 
total pressure will be small, while the particle velocity will be large. The conclusion must 
be that in any local region there is a continuous interchange between potential and 
kinetic energy, on which there may be superimposed a mean flow of energy through the 
region. This phenomenon may be understood more clearly by consideration of the 
simple harmonic plane wave interference field. 

Consider first the pure progressive harmonic plane wave represented by p(x ,  t ) =  
A cos (cot - k x  + d?). Equation (5.5) shows that the kinetic and potential energy densities 
are equal to each other at all times and positions: 

ek(X, t) = ep(X, t) = (A2/2po c2) cos2(cot- k x  + ~) = el2 

The instantaneous intensity is given by Eq. (5.11) as 

I(x ,  t) = (A2/po c) cos2(co/- k x  + qb) = ce (5.12) 

Hence, I /e = c  for all x and t. The mean intensity i = l[A2/poc ] = ce. The spatial 
distributions of instantaneous energy and intensity are illustrated in Fig. 5.3. It is seen 
that the energy is concentrated in 'clumps', spaced periodically at half-wavelength 
intervals. As indicated by Eq. (5.12), the intensity at any point varies with time, but at no 
time takes a negative value. 

Now consider a pure harmonic standing wave in which the pressure takes the form 

Fig. 5.3 Spatial distribution of pressure, particle velocity, energy density and intensity in a 
harmonic, progressive plane wave. Reproduced with permission from reference [5.1]. 
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Fig. 5.4 Instantaneous spatial distributions of reactive intensity at various times in half a cycle of a 
harmonic, progressive plane wave. Reproduced with permission from reference [5.1]. 

p(x, t) = 2A cos(cot + q51) cos (kx + (/)2). The spatial distribution of the energy density is 
shown at time increments of 1/8 of a period in Fig. 5.4. 

The distribution of instantaneous total energy density is given by 

e(x, t) = (A2/po c2) [1 + cos(2cot + 2~bl)COS (2kx + 24)2)] (5.13) 

and the instantaneous intensity distribution is given by 

I(x, t) = (A2/po c) [sin (2cot + 24)1) sin (2kx + 24~2)] (5.14) 

In this case I/e #= c and i = 0, as indicated by Fig. 5.4. The instantaneous intensity 
expressed by Eq. (5.14) represents a purely oscillatory flow of sound energy between 
alternating concentrations of kinetic and potential energy. 

In all physical sound fields there takes place some dissipation of mechanical energy 
into heat. There must therefore exist a net flow of energy into those regions in which the 
dissipative mechanisms act, which, in steady sound fields, must be balanced by a 
corresponding net flow of energy out of those source regions in which it is generated. 
Consequently, purely reactive fields such as pure standing waves cannot exist. 

A general means of identifying the active and reactive components in a single 
frequency sound field may be derived by considering the pressure and particle velocity 
in an arbitrary, plane interference field. Let us represent the pressure by p(x, t )=  
p(x) exp [j(cot + ~bp(X))], in which p(x) is the (real) space-dependent amplitude and C~p(X) 
is the space-dependent phase. Hereinafter the explicit indication of the dependence ofp 
and 4~ on x will be dropped for typographical clarity. The pressure gradient is 

~p/ax = [dp/dx + j(dc~p/dx)p]exp [j(mt + ~bp)] 

The momentum equation gives the particle velocity as 
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U = (j/COPo) 8p/8x = (1/COPo) [-- p(ddpp/dx) + j(dp/dx)] exp [j(cot + qSp)] 

The component of particle velocity in phase with the pressure is associated with the 
active component of intensity, which is given by their product as 

Ia(x, t) = - (1/coPo) [p2(ddpp/dx)] cos2( co/ + (/)p) (5.15) 

of which the mean value is 

Ia(X) = -- (1/2 coP0)[PZ(dc/)p/dx)] (5.16) 

The component of particle velocity in quadrature with pressure is associated with the 
reactive component of intensity, which is given by their product as 

/re(X, t) = - (1/4 COP0) [d(PZ)/dx] sin 2(cot + ~bp) (5.17) 

of which the mean value is zero. 
We see that the mean intensity is proportional to the spatial gradient o f  phase, and the 

amplitude of reactive component is proportional to the spatial gradient of mean square 
pressure. Wavefronts, which are surfaces of uniform phase, lie perpendicular to the 
direction of the active intensity vector. 

We may gain further insight into the nature of one-dimensional intensity fields by 
considering sound intensity in a 'standing wave' or 'impedance' tube below the lowest 
cut-off frequency of the tube when only plane waves can propagate (see Section 8.7.1). 
Suppose that the sample has a complex pressure reflection coefficient represented by 
R exp (iO). The pressure field is represented in complex exponential form by 

p(x, t) = A {exp [j(cot - kx)] + R exp (jO) exp [j(cot + kx)]} 

which may be expressed in the general form introduced above as 

where 

and 

p(x, t) = p exp (J4ap) exp ( jo t )  

4~p = tan-1 [(R sin (kx + O) - sin kx) / (R cos (kx + O) + cos kx)] 

p 2 =  1~ 211 + R 2 + 2R cos (2kx + 0)] 

The spatial gradients of these quantities are 

ddpp/dx = k[R 2 -  1]/[1 + R 2 -+- 2R cos (2kx + 0)] = k(R 2 -  1)IA 2/p2 
and 

d(p2)/dx = - 41AJ 2 kRsin (2kx + O) 

(5.18) 

(5.19) 

(5.20) 

(5.22) Ia (X  , l) -- ( A 2//90c ) (1 -- R 2) cos2(co/-n t- (/)p) 

Observations in impedance tubes confirm that the spatial gradient of phase is greatest at 
pressure minima, and smallest at pressure maxima, as Eq. (5.20) indicates, and can 
exceed that in a plane progressive wave. 

Substitution of the above expressions into Eqs (5.15) and (5.17) yields the following 
expressions for time-dependent active intensity Ia(t), mean active intensity ~ and 
reactive intensity/re(t), respectively: 

(5.21) 
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Ia = (AIZ/2poc) (1 - R 2) (5.23) 

and 

/re(X, t) = (JA 2/poc) R sin (2kx + O) sin 2(cot + q~p) (5.24) 

It is clear that the mean active intensity is independent of x and uniform along the 
length of the tube, as it must be in the absence of dissipation in the fluid, and the mean 
value of the reactive intensity is zero. The ratio of the magnitudes of reactive to active 
intensity varies with position; it has a maximum value of R/(1 - R 2) at the positions of 
maximum and minimum mean square particle velocity, and a minimum value of zero at 
maxima and minima of mean square pressure, respectively. 

Examples of the relation of instantaneous sound pressure and particle velocity are 
shown in Figs 5.5 and 5.6. In the near field of the loudspeaker the amplitude of the 
reactive oscillation of energy exceeds the mean flow of energy away to the far field. At 
30 cm from the loudspeaker, virtually no reactive intensity is evident (as in Fig. 5.3). 

5.5 Intensity and mean square pressure 

Analysis of the general three-dimensional sound field shows that the ratio of the r- 
directed component of the mean intensity to the local mean square pressure is given by 

Ir/p 2 = -- (Odpp/~r)/coOo ( 5 . 2 5 )  

which is the general form of Eq. (5.16). This relationship forms the basis of the 
derivation of the primary index of quality required of an intensity measurement system 
in relation to the nature of the field being measured: it is known as the 'pressure-intensity 
index', symbolized by (Spi. 

(~pI -- Lp -- Lxr = - -  10 l O g l o  [Ir/(p2ef/pOc)] + 10 1og~---2/p2ef] dB (5.26) 

Hence 

( ~ p I - - -  101ogl0[ O~r/~rl/k] dB (5.27) 

5.6 Examples of ideal sound intensity fields 

The following examples are presented in order to illustrate the intensity characteristics of 
various harmonic fields. 

5.6.1 The point monopole 

Expressions for the pressure and radial particle velocity fields, presented earlier in 
Chapter 3, are repeated here for the convenience of the reader. 

p(r, t) = (A/r )exp  [ j ( co t -  kr)] =/q(r) exp (jcot) 

Ur(r, t) - (A/copor) (k - j/r) exp [j(cot - kr)] = O(r) exp (jcot) 

from which 

Ia(r, t) = ( A 2/2r2po c) [1 + cos 2(cot - kr)] (5.28) 
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Fig. 5.5 Measurements  in the near field of  a loudspeaker: (a) sound pressure - -  ; normalized 
particle velocity . . . . . .  ; (b) instantaneous intensity; (c) complex instantaneous intensity, R e - - ,  
Im One-third octave band centred on 250 Hz. Reproduced with permission from Jacobsen, F. 
(1991) 'A note on instantaneous and time-averaged active and reactive intensity', Journal 
of Sound and Vibration 147: 489-496.  

a n d  

Ire(r, t) = ( .d 2/2r3poco ) sin 2(cot --  kr ) (5.29) 
T h e  rat io  o f  the  m a g n i t u d e s  Ia[/ /re}--kr ,  w h i c h  s h o w s  that  the  react ive  in tens i ty  
d o m i n a t e s  in the near  field, and  the act ive  c o m p o n e n t  d o m i n a t e s  in the far field. T h e  
r e l a t i o n s h i p  b e t w e e n  7 a n d  p2 is the  s a m e  as in a p lane  p r o g r e s s i v e  w a v e .  
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Fig. 5.6 Measurements in the near field of a loudspeaker: (a) sound pressure ~ "  normalized 
particle velocity . . . . . .  ; (b) instantaneous intensity; (c) complex instantaneous intensity, R e ~  
Im . . . . . .  One-third octave band centred on 1 kHz. Reproduced with permission from Jacobsen, 1 ~. 
(1991) 'A note on instantaneous and time-averaged active and reactive intensity', Journal 
of Sound and Vibration 147: 489-496. 

5.6.2 The compact dipole 

The ideal dipole source comprises two point monopoles  of equal strength and opposite 
polarity separated by a distance d that is very small compared with a wavelength 
(kd << 1) (see Section 6.4.4). The pressure field of a compact harmonic dipole is given by 
Eq. (6.30b) as 

p(r,  O, t) = [(jcopodQo cos O/4rcr)] [ jk  + 1/r] exp [j(cot - kr)] =fi(r, 0) exp (riot) (5.30) 

The radial component of particle velocity Ur(r, O) is given by 

(j/copo) ~p/Or = (k2dQ0 cos O/4~zr) [(2/kr) 2 - 1 + 2j/kr] exp (j(cot - kr)] = 0r(r, 0) exp (riot) 
(5.31) 
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Fig. 5.7 Distribution of (a) mean intensity and (b) reactive intensity in the field of a compact dipole 
(kd - 0.2; vector scales ~ 1 TM, j1/4; (a) scale 16 times (b) scale). Reproduced with permission from 
reference [5.1]. 

The mean far field radial intensity is given as IRe ~(r ,  0)gr(r, 0)} as 

Ir(r, O)= [poc Qo 2k4d2/32rczr2] COS20 = /? 2/2p0c (5.32) 

The tangential component of particle velocity in the far field (kd > 1) is given by 

uo(r, O, t) - - [jkQodsin O/4rcr 2] [1 - j / k r ] e x p  [ j (ogt -  kr)] -- go(r, O)exp (j~0t) (5.33) 

The mean far field tangential intensity is given by 1Re {lY(r, O)~(r, 0)}, which equals zero, 
as revealed by the intensity distribution shown in Fig. 5.7(a). 

5.6.3 Interfering monopoles 

Consider two monopoles, each of arbitrary strength and time dependence, located at 
arbitrary positions in an arbitrary environment. The pressure and particle velocity at any 
observation point in the fluid are respectively equal to the sum of the pressure and 
particle velocity generated by each source in isolation. Thus, the intensity at the 
observation point is given by 

I(O - (p~ (t) + pz(O)(u ~ (t) + u:(O) 
= [pl(t) ul(t) + p2(t) u2(t)] + [pl(t) Uz(t) + p2(t) ul(t)] (5.34) 

The first square bracket contains the sum of the intensities generated by each source in 
isolation. The second square bracket contains the interference terms. Consequently, 
time-dependent intensities generated by different sources may not be added (linear 
superposition does not apply) unless the terms in the second bracket are zero. In the case 
of time-stationary sources, the mean intensity is given by 

I - [pl (t)Ul (t) + pz(t)uz(t)] + [pl (t)Uz(t) + pz(t)ul (t)] (5.35) 

where the overbar denotes the time average. The terms in the second square bracket are 
correlations that are zero if the monopole strengths are statistically unrelated. In the 
frequency domain, interference terms are zero if the sources are incoherent, meaning that 
they do not enjoy a stable phase relation (see Appendix 4). 

Intensity field interference produced by the superposition of harmonic wave fields is 
illustrated by the case of two harmonic point monopoles of variable relative amplitude 
and phase. Figure 5.8(a) illustrates the mean intensity field of monopoles of equal 
strength and phase at a non-dimensional separation distance of kd = 0.2 (the plotted 
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Fig. 5.8 Distribution of mean intensity in the fields of (a) two in-phase monopoles, (b) two in- 
phase monopoles of different strengths, and (c) anti-phase monopoles of different strengths. 
Reproduced with permission from reference [5.1]. 

vector magnitudes are proportional to  i1/4). The effect of doubling the strength of one of 
the sources is illustrated in Fig. 5.8(b), and Fig. 5.8(c) shows what happens when the 
phase of one of the pair is reversed (scale ~6 relative to Fig. 5.8(a)). The result clearly 
demonstrates the fact that the power radiated by an elementary volume source is affected 
by the pressure field imposed upon it by other coherent (phase-related) sources in its 
proximity (see Section 6.7). The magnitude of the mutual influence depends upon the 
separation distance because of the inverse square law. In the last case the weaker 
monopole constitutes an active sink. (The phenomenon can easily be demonstrated with 
two small loudspeakers and an intensity meter.) 

These results demonstrate an interdependence between coherent source regions that, 
in principle, makes it impossible, and even illogical, to identify any one region as the 

source of sound power, because the total power is a consequence of the simultaneous 
action of all the regions. An implication of considerable import for the practice of noise 
control is that the suppression of any portion of a total source array does not necessarily 
reduce the radiated power; indeed, it may increase it. A related consequence is that 
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measurements of intensity in regions close to an extended coherent source may not be 
well suited to the task of estimating the total radiated power because they are 
'contaminated' by components of active energy flow that do not leave the vicinity of 
the source. 

It should be pointed out that traverses of intensity probes over the surfaces of real 
sources often produce useful information. Among the reasons for this apparent contra- 
diction of the above strictures are the following: (1) interdependence ('mutual radiation 
impedance') exists only between coherently fluctuating source regions, i.e. those having 
time-stable, unique phase relationships; (2) in cases of broadband sources, a multi- 
frequency 'smearing effect', illustrated in Section 8.9 and explained in Appendix 4, 
operates so as to reduce the degree and extent of near-field recirculation of energy that is 
characteristic of narrow frequency bands. 

5.6.4 Intensity distributions in orthogonally directed harmonic plane wave 
fields 

Sound fields in rectangular enclosures such as rooms and ducts of rectangular cross- 
section may be represented as sets of plane waves travelling in different directions. The 
intensity interference effect can produce very complicated distributions of mean 
intensity, as now shown. Consider first, two orthogonally directed plane waves of the 
same frequency represented by 

pl(x ,  y, t) - A  exp [j(~ot - kx)] and pz(x,  y, t) = /~exp [j(o~t - ky)] 

The mean intensity components are 

-- (1/2p0c)[IA 2 + ~ ]~ exp [ jk(x  - y)]] (5.36a) 

and 

-- (1/2 poc) [/~ 2 + ~zj B exp [jk(y - x)]] (5.36b) 

The total mean intensity vector is shown in Fig. 5.9 in which/~ = A/(2) 1/2. 
Interference results in spatial 'modulation' of the sum of the mean intensities of the 

individual fields. Integration of Ix over an integer number of intervals of y of 2~z/k yields 
the sound power flux of wave 1 alone; similarly, integration of ~ over x yields the power 
flux of wave 2 alone. The local angle between I and the x-axis is equal to tan- l ( ISIx) ,  
which, in the special case of A = / ~ ,  is ~z/4 at all points. 

A more complicated intensity field arises when a plane progressive wave intersects a 
pure standing wave field. Consider, for example, the case with 

pz(x,  y, t) -- 2B cos (ky) exp (j~ot) (5.37a) 

Then 

= (1/2 poc) [2 A B sin (kx) sin (ky) + j(2 A I/~ cos (kx) sin (ky) + 21/~ 2 sin (2ky))] 
(5.37b) 

The distributions of mean and reactive components of intensity, together with those of 
the potential and kinetic energy densities, are shown in Figs 5.10(a-d). A dramatic 
difference is observed between Figs 5.9 and 5.10, characterized by the appearance of 
regions of apparently circulatory energy flow, surrounding points of zero pressure. The 
reactive intensity vector distribution exhibits regions of divergence, centred on regions of 
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Fig. 5.9 Mean intensity in the interference field of orthogonally directed plane progressive waves. 
Reproduced from Pascal, J.-C. (1985) 'Structure and patterns of acoustic intensity fields'. In: 
Proceedings of the Second International Congress on Acoustic Intensity (M. Bockhoff, ed.), pp. 97- 
104. Centre Technique des Industries M6caniques, Senlis, France. 

maximum acoustic pressure, and convergence centred on regions of zero pressure" unlike 
/, the reactive intensity shows no tendency to trace out serpentine paths. Spatial 
integration of Ix over a wavelength interval of y yields the mean power in the travelling 
wave. The corresponding integration over x produces zero. 

Further examples of intensity distributions are presented in Chapters 8 and 10. 

5.7 Sound intensity m e a s u r e m e n t  

Sound intensity measurement requires signals proportional to instantaneous sound 
pressure and the associated instantaneous particle velocity vector. The most widely used 
transducer system comprises a pair of phase-matched pressure microphones placed a 
small distance d apart and separated by a solid spacer, as shown in Fig. 5.12. The 
combination is called an intensity probe. 

The arithmetic average of the two signals gives a close approximation to the pressure 
at the mid-point provided that (kd) 2 << 1. The difference between the two signals, 
divided by the separation distance, gives a close approximation to the component of the 
pressure gradient along the line joining the two transducers (probe axis); it is propor- 
tional to the axial component of fluid particle acceleration. Temporal integration of the 
pressure difference gives a signal proportional to the axial component of particle 
velocity. With reference to Fig. 5.12, 

p(t) ~ (pl(t) + p2(t))/2 (5.38) 



5. Sound Energy and In tens i ty  89 

- t I I , , - - - - , ' , ,  \ x -  t I I , - - - -  

--.\\ x - t I l l - - - . \ \  ~ . 

- t / I , , , ' - - , - - , ' , , ,  \ x -  t / I , , - - - , ,  
- - , - I  I t - x \ ' . . - , - - , -  / I t - 

�9 ~ ~ ~ ~ ~ ~ ~ ~ �9 ~ ~ ~ ~ �9 

t t t , , , , , ~ t f t - , ,  
t t / / , , , x \ ~  t t / z , ,  
�9 ~ ~ ~ ~ , ~ ~ ~ ~ . ~ ~ ~ ~ . 

~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ . 

t t t , . , . , ~ t t t , , ,  
t t l l , , , \ \ ~  t t l / , ,  
�9 ~ ~ ~ ~ . ~ ~ ~ ~ . ~ ~ ~ ~ . 

(a) (b) 

, o o 0 0 0 0 0 o o , o o 0 0 0  
- o o 0 0 0 o o .  * o o 0 0  

�9 * 0 0 0 0 0  * �9 �9 0 0 0  

0 0 0  * �9 * o 0 0 0 o  o �9 

O O O o ,  , o O 0 0 O O o o  
000oo-oo00000oo- 
000o, . o 0 0 0 0 0 o ,  
0 0 0  * �9 * 0 0 0 0 0  * �9 

�9 * 0 0 0 0 o  * �9 * o 0 0  

o o 0 0 0 0 0 o ,  " o O O O  
" . o 0 0 0 0 0 0 0 o * o 0 0 0 0  
,o00000o, 0o000 

�9 �9 * o 0 0 0 o *  �9 * o 0 0  

0 0 0 �9 �9 �9 o 0 0 0 0 0 * �9 

O 0 o o -  - o o 0 0 0 o o -  
000oo oooOOCK30oo o 

(c) (d) 

0 6 a 0 0 0 0 �9 0 0 0 0 0 a D D 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0000000000000000 
0000000000000000 
000 O0 0 0 0 0 0 0  0 0 0 0 0  
a o 0 m o Q o a a D m o o a o o 

0 0 0 0 0  0000 O0 0 0 0 0 0  

0000000000000000 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -  
0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0  
o o a o Q o o o o o a o @ o o o 

0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0  

O000OO0000000000 
0000000000000000 
0 0 0 0 0  0 0 0 0 0 0  0 0 0 0 0  
o Q 0 ~ o o o Q o o o o Q o ~ o 

Fig. 5.10 Distributions of (a) mean intensity, (b) reactive intensity, (c) potential energy density, 
and (d) kinetic energy density in the interference field of a plane progressive wave and an 
orthogonally directed standing wave. Reproduced from Pascal, J.-C. (1985) 'Structure and 
patterns of acoustic intensity fields'. In: Proceedings of the Second International Congress on 
Acoustic Intensity (M. Bockhoff, ed.), pp. 97-104. Centre Technique des Industries M6caniques, 
Senlis, France. 

and 

f u~(t) ,.~ - (1/po d) (P] (T) - P2(T)) dT 
O O  

where n denotes the direction of the probe axis. 
The axial component of instantaneous intensity is given by 

In ( t ) '~ ( - -1 /2  P0d)(p] ( t )+p2( t ) ) [ f foo(p l ( r ) -p2( r ) )  d'c] 

(5.39) 

(5.40) 
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Fig. 5.11 Brfiel & Kj;er Type 3695 two-microphone intensity probe (courtesy of Brfiel & Kj;er, 
Denmark). 

Fig. 5.12 Theoretical model of a two-microphone intensity probe. 

In a steady (time-stationary) field the mean axial intensity component is given by 

] ~ -(1/po d) l im(1 / T) Pl (t) P2(~:) d~: dt (5.41) 

In a harmonic field in which p l ( t )=  Re{p'l exp[j(~ot + ~bl)]} and p2(t)= Re{/~2exp 
[j(~ot + ~2)]}, Eq. (5.39) becomes 

In ~ fill /Y2 sin(q~l-  qb2)/2pod (5.42a) 
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If 4)1 - ~b2 << l, which is necessarily the case for the approximations made in Eqs (5.38) 
and (5.39) to be valid, 

~ -(-~/poco)Odpp/On (5.42b) 

which agrees with Eqs (5.16) and (5.25). In a steady broadband sound field 

In ~ - -  (1//90 god) Im {GplP2( (_o)}  (5.43) 

where G is the cross-spectral density of the two pressures. Sound intensity measurements 
are subject to many sources of error; these are discussed in detail by Fahy [5.1]. 

5.8 Determinat ion of source sound power  using sound 
intensity measurement  

The energy conservation equation (5.10) provide the basis for the use of sound intensity 
measurement for the determination of the sound power of a source. Gauss's integral 
theorem shows that the integral of the divergence of a vector over a volume enclosed by a 
surface S reduces to the integral over that surface of the component of the vector 
directed normal to the surface. In the case of steady (time-stationary) sources the term 
~e/Ot in Eq. (5.10) is zero, and the volume integral yields 

fs  ~ dS - W (5.44) 

I 
in which W is the mean sound power of the whole system enclosed by the surface, as 
illustrated by Fig. 5.13. Provided that all the sources, both within and outside the 
enclosed volume, are time-stationary, W accounts only for the enclosed source(s). 

In practice, continuous surface integration is impossible. Consequently the standar- 
dized methods based upon Eq. (5.44) employ either fixed point sampling [ISO 9 6 1 4 -  
Part 1] or continuous, scanned (swept) sampling [ISO 9614-  Part 2]. An in-situ scanned 
intensity measurement on an off-shore gas rig is shown in progress in Fig. 5.14. 
Naturally, sampled estimates are subject to error and the exclusion of the influence of 
extraneous sources outside is not perfect. The standards specify sampling parameters 
which reduce the error to a degree acceptable in terms of the stated precision of the 
method. 

�9 wl 

'" '" '" ' , , i , ,  

S 

Fig. 5.13 Illustration of the principle of determination of the sound power of a source by surface 
integration of the normal intensity component. W;, extraneous sources. Reproduced with 
permission from reference [5.1]. 
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Fig. 5.14 An engineer performing a sound intensity scan over a plant component on an off-shore 
gas rig. Reproduced courtesy of SINTEF, Norwegian Technical University, Trondheim, Norway. 

5.9 Other applications of sound intensity measurement 

Sound intensity measurement has many other applications. It may be used to determine 
the sound power transmitted by partitions, the sound power absorbed by surfaces and 
objects, and may also be used to locate and quantify individual sources of sound 
radiation. These are all described and illustrated by Fahy [5.1]. Four examples are shown 
in Figs 5.15-5.18, to whet the reader's appetite. 

Fig. 5.15 Sound intensity measurement in an engine test cell. Reproduced courtesy of Brfiel & 
Kjaer, Naerum, Denmark. 



5. Sound Energy and Intensity 93 

Fig. 5.16 Distribution of mean intensity around a compressor unit in the 200 Hz 1/3 octave band. 
Reproduced courtesy of Le CETIM, Senlis, France. 
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Fig. 5.17 Mean intensity vectors in the sound field of a loom in the 1 kHz 1/3 octave band. 
Reproduced from Pepin, H. (1985) 'Localisation des sources de bruit sur une machine industrielle'. 
In: Proceedings of the Second International Congress on Acoustic Intensity (M. Bockhoff, ed.), pp. 
413-420. Centre Technique des Industries M6caniques, Senlis, France. 

Questions 

5.1 A plane sound wave of Lp --- 74 dB is normally incident upon a large plane surface of 
normal specific impedance ratio z~, = 2 -  3j. Determine the pressure reflection 
coefficient R exp (jO), the net intensity and sound intensity level in the field formed 
by the interference between incident and reflected waves. How is the net intensity 
related to the incident intensity and the sound power absorption coefficient? 

5.2 Derive expressions for the spatial distributions of time-average kinetic energy and 
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Fig. 5.18 Mean intensity distributions in a bus on a chassis dynamometer at a simulated speed of 
60 km h-1 in the 250 Hz 1/3 octave band. Reproduced from Oshino, Y. and Arai, T. (1987) 'Sound 
intensity in the near field of sources'. In: Proceedings of the Symposium on Acoustic Intensity, 
Tokyo, pp. 46-56. (M. Bockhoff, ed.), pp. 97-104. Centre Technique des Industries M~caniques, 
Senlis, France. 

potential densities, and of their sum, in an interference field formed by two 
oppositely directed plane waves of the same frequency. Therefrom, evaluate the 
time-average energy density in the field specified in Question 5.1. 

5.3 How could one use an ordinary sound level meter to estimate the magnitude of the 
reactive intensity in a harmonic sound field? 

5.4 Evaluate the pressure-intensity index 6pi in a plane travelling wave field with the 
intensity probe axis at 30 ~ 60 ~ and 90 ~ to the direction of propagation. 

5.5 A box-like surface is constructed around a noise source in order to determine its 
sound power by means of intensity scans over each surface. The areas and respective 
space-average sound intensity levels on the surfaces are as follows: A1 -- 1.0 m2; 
Lz = 70 dB: A2 = 0.7 m2; LI = ( - ) 7 1  dB (directed inwards): A3 - 0.7 m2; LI -- 75 
dB: A4 -- 1.0 m2; LI -- 68 dB: A5 = 0.7 m2; L~ - 76 dB. Calculate the sound power 
and sound power level. 

5.6 The two microphones in an intensity probe are known to have a response phase 
difference of 1.0 ~ at 250 Hz. Estimate the true value of LI if it is measured to be 71.5 
dB in a 250 Hz progressive plane wave. The distance between the acoustic centres of 
the microphones is 13 mm. 

5.7 Using the intensity probe described in the previous question, measurements are 
made in an interference field formed by two oppositely travelling 250 Hz plane 
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waves of amplitudes 1.0 and 0.5 Pa. Estimate the fractional errors of the estimates of 
intensity, together with the corresponding dB error, at the positions of maximum 
and minimum mean square pressure. 

5.8 An ideal, two-microphone intensity probe and instrument, having zero phase 
mismatch between channels, is used to measure the radial component of intensity 
at a distance of 150 mm from a loudspeaker cone which may be considered as a 
pulsating spherical source of 75 mm diameter. The microphone separation is 13 mm. 
Calculate the fractional errors of the intensity estimates, and corresponding dB 
errors, at 100 Hz. [Hint: Consider the effect of the errors in the approximations in 
Eqs. (5.38) and (5.39) on the estimated intensity. Use Eq. (6.15b). Also recognize 
that 13/150 << 1 .] 

5.9 Identical harmonic point monopoles of volume velocity amplitude Q and frequency 
o~ are located in free field at two vertices of an equilateral triangle of side length d. 
Derive an expression for the intensity at the position of the third vertex. Also derive 
an expression for this intensity when the sign of one of the monopoles is reversed. 



6 
Sources of Sound 

6.1 Introduction 

Engineers who practise in the field of acoustics, particularly those concerned with noise 
control, need to possess a comprehensive understanding of the physical mechanisms by 
which sound is generated. They must also be familiar with current knowledge of the 
dependence of sound generation on the physical and operating parameters of engineer- 
ing products, processes and activities. Such knowledge and understanding places them in 
a position to assist designers of machinery and equipment in the development of 
inherently quiet products, to identify the causes of problems of excessive noise 
generation by existing systems, and to assess whether or not cost-effective noise control 
can be implemented 'at source'. The reader should be warned that the modelling and 
analysis of the complex sources encountered in engineering practice is one of the most 
challenging areas of engineering acoustics. It presents considerable difficulties not only 
to students who are 'learning the ropes', but also to experienced engineers. The principal 
function of a textbook on 'foundations' in this respect is to elucidate the physics, 
mathematical representation and analysis of basic source mechanisms, rather than to 
present a compilation of data relating to a wide range of machinery and plant that is 
largely empirical in nature and not suitable for wholesale incorporation into an already 
bulging textbook. Suggestions for sources of practical information on this topic are 
presented in Section 6.10. 

The chapter opens by presenting a scheme for qualitatively categorizing sources 
according to their mechanisms of sound generation. Most sources encountered in 
engineering practice are extended in space and generate sound by a variety of source 
mechanisms. For the purposes of mathematical representation and analysis of the 
process of generation of sound by physical sources, and to assist in the understanding 
of their radiation characteristics, it is helpful to model them as arrays of ideal, compact, 
elementary sources that individually exhibit geometrically simple sound radiation 
characteristics. This chapter introduces these ideal models, analyses their characteristics, 
and explains how they can be employed to represent spatially extended sources by means 
of a general equation that is implemented in commercial software. The phenomenon of 
directivity and the importance of correlation between different source regions are then 
explored. The chapter continues with a description of the principal features of the 
various regions of sound fields radiated by extended sources, and concludes with brief 
surveys of the methods of quantifying sound power and characterizing sources 
encountered in engineering practice. Detailed treatment of sound radiation by vibrating 
structures is delayed until the end of Chapter 10 because knowledge of the characteristics 
of bending waves is a prerequisite. 

96 
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6.2 Qualitative categorization of sources 

Sources of sound are immensely diverse in physical form and in their sound-generation 
mechanisms, radiated sound powers, mechano-acoustic efficiencies, operating cycles, 
characteristic frequency spectra and free field directivities. Table 6.1 gives an indication 
of the vast range of sound powers of sources of practical concern. Most mechanical noise 
sources comprise a mix of various types of source. Consequently it is very difficult to 
place them in distinct categories and to develop general formulae to relate their acoustic 
outputs to their physical and operating parameters. In spite of this diversity, mechanical 
source mechanisms may be broadly placed in one of three general categories on a 
phenomenological basis, as illustrated by Fig. 6.1. Such categorization is important in 
the context of noise control because it forms one basis for the experimental identification 
of individual sources operating as components of complex systems. It also provides 
guidance for predicting the effects of variation of design and operating parameters. 

Fluctuating volume/mass displacement/injection 
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Fig. 6.1 Examples of source categories. Reproduced with permission from Fahy, F. J. (1998) 
Chapter 5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 
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Table 6.1 Orders of magnitude of typical sound powers 

Source Sound power (W) 

Large rocket launcher 
Large jet airliner at take-off 
100-piece symphony orchestra at fortissimo 
Football crowd of 100 000 when goal scored 
Car cruising at 70 km h-1 on smooth road 
Human shout 
Human whisper 

107 
105 

1-10 
1-10 
10 -2 
10 -5 
10-10 

6.2.1 Category I sources 

Sources that actively displace fluid in an unsteady manner, such as direct-radiator 
loudspeakers, sirens, exhaust pipe effluxes, pneumatic drill exhausts and vane-type air 
compressors, are generally the most efficient forms of source in terms of the ratio of 
sound power radiated to the total mechanical, electrical or chemical powers generated or 
absorbed by the system. As we observed in Chapter 2, with reference to the generation of 
sound by a handclap, it is the rate of change of the rate of fluid volume displacement (i.e. 
the volume acceleration) that determines the strength of the sound generated by 
Category 1 sources. If you blow fairly hard and steadily through rounded lips you will 
hear some noise; this is generated not by the mean flow but by the unsteady turbulence 
striking your teeth and lips. If you now close your lips firmly and increase the internal 
pressure until they burst open, a fairly strong impulsive 'puh' sound will be heard: it is 
appropriately called a 'plosive' by speech specialists. If you now compare the rates of 
flow in these two cases by placing your hand about 20 cm in front of your face, you will 
conclude that it is the rate of change of flow rate, not the flow rate itself, that generates 
the plosive sound. Alternatively, you could pass air through your larynx while keeping 
your vocal cords open, as in fairly vigorous breathing, and then engage your vocal cords 
to make an 'uhhh' sound. The vibration of the vocal cords modulates the air flow so that 
it is unsteady, thereby generating sound. Again, compare the flow rates by the use of the 
hand. It is instructive to monitor the various sounds that you have produced by using a 
microphone, oscilloscope and spectral analyser: but keep the microphone out of the 
flow. 

Category 1 sources exhibit a variety of mechanisms. 'New' fluid may be injected into 
an otherwise quiescent fluid, such as that produced by the combustion of liquid fuel 
which enters the atmosphere through an exhaust pipe outlet, or that generated by a 
chemical explosion. Fluid may be subject to rapid local heat introduction, as in 
combustion processes and contact breaker arcs; or fluid may be displaced by an 
unsteadily moving solid surface. In the following analysis we shall exclude cases of 
generation of heat by chemical, electrical or mechanical means, although in practice they 
constitute significant sources of sound. Consequently, the remaining origins of unsteady 
fluid displacement can usually be traced to the motion of some solid surface (but not in 
the case of the 'plosive' example given earlier). 

A major proportion of sources of engineering interest radiate sound by means of the 
vibration of impermeable surfaces. It requires only a very small amount of mechanical 
power (of the order of milliwatts) to sustain perceptible vibration in most structures; but 
if that vibrational energy is distributed over substantial areas in contact with the air, the 
resulting sound levels can be unacceptable, and even damaging, to human beings. Since 
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vibrating surfaces displace fluid volume in an unsteady manner, they would appear 
naturally to fall into Category 1. However, as we shall see later, this is not invariably the 
case. Vibrating surfaces also exert fluctuating forces on a contiguous fluid and, in 
mathematical terms, these may also be considered to be sources. However, they are by- 
products of the fluid displacement activity, and account for reflection and diffraction of 
the sound so produced. 

The efficiency with which vibrating surfaces convert vibrational energy into sound 
depends not only upon the level of vibration, but also upon the frequency of vibration, 
the shape of the vibrating body, the spatial distribution of the surface motion and the 
acoustic properties of the fluid. It is also influenced by the presence of other nearby 
objects or surfaces. Consider two small adjacent regions of a surface that undergo equal 
and opposite normal displacements and then halt. It is 'easier' for the molecules in the 
compressed region of contiguous fluid to move into the rarefied region than into the, as 
yet, unaffected fluid a little way from the surface. This mass movement tends to equalize 
the pressures and densities local to the surface, producing a much weaker disturbance in 
the surrounding fluid than if the two regions had moved in unison. This phenomenon is 
commonly known as radiation 'cancellation'. The more rapid the completion of the 
displacement, the less effective will be the cancellation. 

If the displacements are now reversed, the molecules will move to re-establish 
equilibrium. The more rapidly the reversal takes place, the less chance there is for the 
molecules to effect the cancellation process, and the more effectively sound will be 
radiated. On the basis of the argument that the average speed of molecular motion 
determines the speed of sound, the critical time is given by the distance between the 
centres of the oppositely displaced regions divided by the speed of sound. Hence, such a 
process taking place at a high frequency will radiate more effectively than that taking 
place at a lower frequency. In terms of harmonic vibration and spatially sinusoidal wave 
motion of a surface, the critical time is given by half the surface wavelength divided by 
the speed of sound in the fluid. If the vibrational wave speed is less than that of sound in 
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Fig. 6.2 Radiation cancellation illustrated by instantaneous intensity vectors close to a harmoni- 
cally vibrating surface. Reproduced with permission from reference [5.1]. 
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the fluid, radiation cancellation operates. Figure 6.2 illustrates the phenomenon in terms 
of intensity vectors close to a weakly radiating vibrating panel. 

A familiar example of the cancellation phenomenon is presented by two stereo 
loudspeaker units that are connected with incorrect polarity. When the units are placed 
side by side, the bass sound almost disappears, leaving the treble almost unaffected. The 
inability of an unbaffled bass loudspeaker to generate bass sound is also explained by 
cancellation, in this case between front and back faces. 

A uniform rate of intrusion of a solid body into a fluid is accommodated by 
displacement of the fluid local to the body, with negligible associated change of density, 
unless this rate approaches or exceeds the maximum speed at which the 'message to 
move' is transmitted through the fluid: that is, the speed of sound. Supersonically 
moving bodies, such as Concorde and bullets, produce shock waves because the fluid 
molecules move too slowly to 'inform' the air ahead that the bodies are approaching. In 
linear, audio-frequency acoustics, the speeds of surface intrusion are usually many 
orders of magnitude smaller than the speed of sound. It is thus the rate of change of the 
rate of intrusion - an acceleration-like quantity - that controls the magnitude of the 
resulting disturbance of density and pressure. 

6.2.2 Category 2 sources 

Category 2 sources involve the application of time-varying forces to a fluid without net 
volume displacement. Examples include 'whistling' car aerials, turbulence acting on rigid 
surfaces such as pipe flow-control valves and moving vehicles, the rustling of leaves and 
the movement of small industrial products by the impingement of high-speed air jets. 
The practical significance of noise generation by unsteady forces is exemplified by the 
fact that the maximum acceptable speeds of current high-speed trains are limited largely 
by the noise made by the turbulence generated by, and acting on, the pantograph. The 
engine noise of modern aircraft has been reduced so effectively that the noise of 
turbulence acting on the landing gear and flow control surfaces will soon be dominant 
and will determine where and when any type of aircraft is allowed to land. Very large 
amounts of research funding are currently being devoted to reducing this source of noise 
without compromising the aerodynamic efficiency of the aircraft. Much of the perceived 
noise of mechanical ventilation systems in buildings arises from the impingement of 
turbulence on flow control valves and on the terminal devices that distribute the air as it 
enters a room. 

The mechanism of sound generation by Category 2 sources is not so easily explained 
or understood as that of Category 1 sources. Why should a time-varying force acting on 
an effectively rigid surface generate sound? There is no doubt that it does, as blowing 
closely on your finger tip or on the edge of a computer floppy disk will demonstrate. The 
theoretical answer, which appears later in this chapter, is that any unsteady force applied 
to a fluid by an external agent must be accounted for in the linearized fluid momentum 
equation, which is one of the three relations that form the 'ingredients' of the wave 
equation. Physical explanations are more hard to come by, particularly since non- 
moving surfaces cannot radiate by doing work on an inviscid fluid. However, the 
presence of a rigid surface constrains the local fluid motion, and internal fluid forces 
convert a small proportion of flow energy into sound energy. A rough analogy may be 
made with the generation of sound by a rubber ball hitting a heavy wall. The distortion 
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caused by the impact force causes a small proportion of the kinetic energy of the ball to 
be converted into sound. 

The complex nature of the fluid dynamic process that converts a proportion of the 
kinetic energy of unsteady flow into sound energy is such that it does not admit to the 
type of simple qualitative explanation that I have tried to make a feature of this book. 
The student is asked to trust that understanding will develop as more advanced 
analytical skills and physical insight are acquired over time. More advanced readers 
may wish to consult Waves in Fluids (Lighthill, 1978) and Sound and Sources of Sound 
(Ffowcs-Williams and Dowling, 1983), listed in the Bibliography. 

Some forms of surface vibration, such as that giving rise to radiation cancellation, 
create fluid motion that involves negligible net volume displacement. Although this 
behaviour generates little sound pressure in the far field, substantial oscillatory 
momentum transfer occurs parallel to the surface in the nearfield because the particle 
velocity vectors reverse every half a period of oscillation. In an inviscid fluid, these can 
arise only from spatial pressure gradients. Similar momentum fluctuations are produced 
by the oscillation about an equilibrium position of 'small' rigid bodies in a fluid. As fluid 
is displaced by the advancing region of the surface, it moves towards the receding region. 
The pressure gradients associated with this motion produce a fluctuating force on the 
body. The criterion of 'smallness' can be inferred from the earlier discussion of fluid 
behaviour in response to the imposition of oppositely directed displacements of adjacent 
surface regions. If the length of the minimum periphery of the body measured in any 
plane containing the axis of oscillation is considerably less than the corresponding 
acoustic wavelength, the fluid molecules can effect the transfer of momentum without 
producing substantial radiation of sound energy. This explains why a violin needs a 
body: the vibrating strings themselves generate negligible sound. As the oscillation 
frequency of a solid body increases, cancellation becomes weaker, and sound is radiated 
increasingly effectively, predominantly in directions close to the axis of vibration. We 
will see later in this chapter that the acceleration of a rigid body within a fluid constitutes 
a source of sound equivalent to a force acting on the fluid, equal to the product of the 
mass of fluid displaced by the body and its acceleration, plus the force exerted by the 
body on the fluid. 

When a fluid passes over a solid body, a boundary layer is formed at the surface of the 
body; this separates from the surface, preventing the flow 'closing' behind the body and 
producing a wake of slow-moving fluid. In the case of slender cylindrical bodies such as 
pipes and cables subjected to crossflow, the fluid shear layer (see Chapter 7) that 
separates the wake from the outer, faster-moving, fluid is unstable and rolls up into 
discrete vortices that separate alternately and periodically from the two sides of the body 
(Fig. 6.3). This process induces a periodic force on the body and creates a tonal sound, 
even if the body is constrained from vibrating in response to this force. This 
phenomenon is the source of 'singing' by telegraph wires and electricity cables in a 
wind, and by car aerials. If the body is not slender, the separated flow is generally 
turbulent and the resulting sound is broadband and random. The noise created by 
blowing on a body is predominantly generated by the impingement of the turbulent flow, 
which produces fluctuating surface pressures. It is shown later in the chapter that any 
external fluctuating force acting on a fluid can be represented mathematically by an 
analogous ideal source formed by a combination of two elementary Category 1 sources 
that operate in opposition, forming an acoustic 'dipole'. 

So far we have considered forces on a fluid that vary with time. It is also possible for a 
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Fig. 6.3 Vortex shedding by a cylinder in cross flow. Reproduced with permission from Japan 
Society of Mechanical Engineers (1988) Visualized Flow. Pergamon Press, Oxford. 

constant force to generate sound if the location of action accelerates through a fluid. The 
most common examples of this phenomenon are provided by the rotating blades of air- 
moving devices such as fans, propellers and rotors, which generate sound at frequencies 
that are the harmonics of the blade-passing frequency: that is to say the inverse of the 
time interval between the successive passage of blades past a fixed point in space. The 
aerodynamic force on a blade has a lift component that acts parallel to the axis of 
rotation and a drag component that acts in the plane of rotation. In addition to these 
steady components, time-dependent components are produced by turbulence in the 
blade boundary layers and also by any spatial non-uniformity in the flow approaching 
the blades. The former generates broadband random noise. The latter comprises two 
components: one due to non-uniformity of the mean approach speed, which produces 
blade-passing-frequency harmonics, and one due to oncoming turbulence, which 
generates random noise. A dramatic illustration of the phenomenon is presented by a 
helicopter in slow forward speed; the passage of blades through tip vortices thrown off 
by preceding blades causes the characteristic 'blade slap' sound. Twin rotor helicopters 
are particularly good at making noise in this way. 

A variable-speed desk fan, together with a microphone and frequency analyser, may 
be employed to demonstrate these various source components. As the speed of the fan 
is increased, the steady components of blade force vary approximately as the square of 
the speed. The variation of tonal sound pressure level with speed can then be studied. 
Note that the tonal sound is loudest at observer points close to the plane of rotation 
and weakest on the axis of rotation. The effect of spatial non-uniformity of mean inlet 
flow can be clearly observed by placing the palm of one hand on the protective cage 
on the side upstream of the blade disc of a fan set on 'fast'; as a blade passes through 
the wake produced by the presence of the hand, the lift and drag forces suddenly rise 
and fall, increasing the tonal sound level. The effects of both forms of approach flow 
non-uniformity may be demonstrated by placing the nozzle of a vacuum cleaner set on 
'blow' close to the fan. Interestingly, a weak component of sound at the rotation 
frequency of the fan can be produced if one is prepared to sacrifice the fan by 
chopping pieces out of one or more blades (it is best to try to minimize the resulting 
out-of-balance forces by means of judicious sculpting). The effects are more clearly 
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demonstrated if the fan cage is r e m o v e d -  but care is necessary to avoid digital 
discomfort! 

6.2.3 Category 3 sources 

Category 3 sources produce both zero net volume displacement and zero net force on a 
fluid. A familiar mechanical example is the 'clack' made by colliding billiards (or pool) 
balls. It is not the vibration of the balls that we hear because the fundamental resonance 
frequency is too high. The balls suffer equal and opposite accelerations, and the fluid in 
immediate contact with the balls is forced to move with them; consequently, time varying 
pressures act on the fluid, and on the balls. The resulting sound fields almost cancel each 
other due to destructive interference. You may produce the same effect by striking two 
large round pebbles together. Note how the sound changes as you rotate the direction of 
impact about a vertical axis at about 300 mm in front of your head. Note also how the 
subjective quality of the sound varies rapidly with distance - a sure sign of a highly 
inefficient source. Since both the net volume acceleration of the fluid surrounding the 
two-ball system and the net external force on the fluid, and the balls, are zero, such sour- 
ces fall into Category 3. 

The most commonly observed example of this category of source is the noise created 
by the turbulent mixing of high-speed fluid jets emerging into otherwise quiescent fluids, 
as generated by aircraft jet engine exhausts. A mini-jet can be generated by making a 
small hole in an inflated bicycle tyre inner tube. Notice how both the level and frequency 
of the sound increase with applied pressure. Check the directivity. This form of sound 
generation, which involves no interaction of fluids with solid surfaces, cannot be 
explained in terms of the linearized equations of inviscid fluid dynamics which led to 
the linearized wave equation. It has its origins in the fluctuating shear stresses associated 
with the turbulent mixing of fluid elements having different time-dependent velocities. It 
was not until halfway through the twentieth century that a theoretical model of turbulent 
mixing noise in the form of an acoustic analogy was developed by M. J. Lighthill. The 
subject of theoretical aeroacoustics is exceedingly complex and therefore unsuitable for 
inclusion in this book. Intrepid readers are therefore directed to the classic paper 'On 
sound generated aerodynamically' by M. J. Lighthill [6.1] and Sound and Sources of  
Sound (Ffowcs-Williams and Dowling, 1983 - see Bibliography). The practical impor- 
tance of this type of source is such that a brief description of its characteristics is 
presented at the end of the chapter. 

6.3 The  i n h o m o g e n e o u s  w a v e  equat ion  

Having surveyed the various forms of sound source in a qualitative manner, we now turn 
to mathematical representations of the physics of sound generation by linear mechan- 
isms. The linearized wave equation was developed in Chapter 3 on the basis that the fluid 
element considered was not subject to any external force, did not receive or lose heat or 
fluid mass, and suffered no intrusion through the action of external agents. The solutions 
of the equation therefore represent forms of sound waves that can exist, but tells us 
nothing about possible causes of their existence. We now remove these assumptions and 
modify the linearized equation of mass conservation (3.33) to allow for injection (or 
removal) of mass, or the displacement of fluid volume, by an external agent, thus: 
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Op' 1 Op Om 
0---7 § P~ - ~-O-t + P~ - - ~ -  (6.1) 

in which m represents introduced mass per unit volume. The linearized equation of 
conservation of momentum (3.34) is modified to allow for external force distribution, 
thus: 

Og 
7p + P0 -~ - f (6.2) 

in which f represents external force per unit volume. 
In the derivation of the homogeneous, linearized, wave equation in Chapter 3, the 

linearized equation of conservation of mass was differentiated with respect to time and 
the linearized equations of conservation of momentum were differentiated with respect 
to the relevant space coordinate. Application of the same procedure to Eqs. (6.1) and 
(6.2) gives 

102p+-poV. O(__~)_ 02m (6.3) 
c 20t 2 Ot 2 

and 

72p+p0  7. -~ - 7.f  (6.4) 

which yields the linearized, inhomogeneous wave equation in terms of pressure 

1 O2p O2m 
V2p c2 Ot 2 - -  Ot 2 + V.f (6.5) 

The terms on the right-hand side of Eq. (6.5) can be considered as source terms. The term 
02m/Ot 2 is written as po(Oq/Ot) in cases where fluid is displaced rather than injected (or 
removed). The quantity q is the volume velocity per unit volume, sometimes known as 
'volume source strength density', and po(Oq/Ot) is known as the 'monopole source 
strength density' for reasons that will become clear later. The above form of the 
linearized inhomogeneous wave equation cannot represent the generation of sound by 
free turbulent flow (in the absence of a solid surface), since this is associated with 
products of small particle velocity terms and with departures of the acoustic pressure 
from the previously assumed linear relation with density fluctuation (see Section 3.6). 
However, by means of Lighthill's 'acoustic analogy' the non-linear mechanisms of 
turbulent flow generation can be incorporated with the right-hand side of the wave 
equation as source terms. Fluctuating pressures induced by turbulent flow on a rigid 
surface may be represented by the external force distribution f in Eq. (6.2). 

6.3.1 Sound radiation by foreign bodies 

The presence of objects in a uniform fluid that have different acoustic properties from 
those of the fluid can influence the sound field in the fluid. They may be purely passive, in 
which case they reflect, scatter and diffract sound waves incident upon them; they may 
also dissipate a proportion of the incident sound energy. Non-rigid objects will vibrate in 
response to the incident sound, as in the case of windows excited by music from an audio 
system. Alternatively, the objects may act as active sources of sound when they move 
under the action of forces other than those applied by the fluid - as with loudspeaker 
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Source 
Vibrating ~_-~ -~_~ -~ 

Rigid ~ -~ -~ 

Impedanc -~e -~ -~ -~ 
Fig. 6.4 Boundary conditions replaced by an equivalent distribution of sources in free field. 

cones. Solution of Eq. (6.5) with such objects present can proceed in various ways. In one 
formulation, the motions and forces at the interfaces with the fluid can be taken into 
account by imposing boundary conditions that represent the influence of both the passive 
and active boundaries of the fluid on the sound field. In this case, only the active sources 
within the volume of fluid are represented by the right-hand side of Eq. (6.5). In the 
alternative formulation, the influences of both the boundaries and of the sources within 
the fluid volume are represented by the 'source' terms on the right-hand side of Eq. (6.5), 
and the fluid is considered to be unbounded. It is vital that the reader appreciates the 
differences between these forms of model, which are illustrated by Fig. 6.4. A third 
formulation is effectively a hybrid of the first two since boundary source terms are 
employed, but the solutions for the fields that they produce satisfy certain prescribed 
boundary conditions. Later in this chapter we shall develop a general equation that 
expresses the second of these two representations. The first and hybrid representations 
will be used elsewhere in the book in the analysis of the behaviour of sound in enclosures; 
and the first is also employed where sound is assumed to be incident upon partitions, 
absorbers and scatterers. The choice of formulation is a matter of analytical convenience. 

6.3.2 Boundary "sources" can reflect or absorb energy 

The interpretation of the terms on the right-hand side of the inhomogeneous wave 
equation as 'sources' is not as straightforward, or as obvious, as the equation would 
suggest. One intuitively thinks of sources as active mechanisms that generate sound 
energy; but inclusion of a term in the right-hand side of Eq. (6.5) should not necessarily 
be assumed to bear this connotation. For example, when incident sound falls upon the 
'rigid' concrete floor of a room, the floor constrains the normal particle velocity to be 
zero at its surface and consequently also exerts reaction forces on the air. If we adopt the 
second of the two models described above, these actions must appear on the right-hand 
side of Eq. (6.5). Do they therefore constitute sources of sound? Strangely, it can be so 
considered from an analytical point of view, although they act only to modify the sound 
field; they generate no sound energy, but they may dissipate sound energy if they have a 
finite resistive impedance. The freely propagating, unconstrained sound wave would 
produce normal particle motion 'through' the plane where it actually encounters the 
floor surface. This motion may be 'cancelled' by imagining the wall to vibrate with an 
equal and opposite normal velocity. If the actions of the floor in constraining the normal 
velocity of the sound field to zero, and in exerting reaction forces on the air, are to be 
represented by 'sources' acting on this plane in free space, instead of by a boundary 
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condition on a bounded space, they must appear on the right-hand side of Eq. (6.5). But, 
of course, the rigid floor actually generates no sound energy because it does not move. 
However, it does alter the sound field from the form it would have in the absence of the 
floor. This alteration may be attributed to the presence of virtual source terms in Eq. 
(6.5). Similarly, the response to incident sound of a non-rigid structure, such as a thin 
panel or a flexible material, is represented by a combination of the 'source' terms in Eq. 
(6.5) in which the surface pressure and velocity are related through the impedance of the 
surfaces. 

6.4 Ideal e l e m e n t a r y  source models  

Physical sources are extended in space. In the mathematical analysis of sound generation 
by linear mechanisms it is useful to construct a model of a spatially distributed source in 
the form of a distribution of elementary (or 'simple') sources. The total field can then be 
constructed by superposition of the fields radiated by each elementary source. 

The simplest conceivable source of sound takes the form of a highly concentrated 
region of unsteady mass introduction or volume displacement. The sound field generated 
in free space (free field) by such a source must be spherically symmetric around the 
source, since there is no information in Eq. (6.5) to distinguish any one field point at a 
given distance from the source from all other points lying at the same distance. Such a 
source, which is of vanishingly small spatial dimension, is known in theory as a 'point'  
source (or a 'simple' source), a concept also common to fluid dynamics and electro- 
statics. For mathematical reasons to do with the fact that their sound fields are singular 
(or 'blow up') at their point of location, these are also known as point 'monopoles'. In 
the next section we shall find that certain types of physical source of finite dimension can 
be considered, subject to certain conditions, to constitute point monopoles. You will also 
be introduced to a special combination of two point monopoles, termed a 'dipole', which 
may be used theoretically to represent the action of the external forces which appear in 
Eq. (6.5). 

6.4.1 The Dirac delta function 

In theoretical studies of the generation of fields it is often desirable to find the solution to 
the governing equation when the input is represented as being spatially or temporally 
concentrated: for example, in cases of temporally impulsive acoustic excitation or 
spatially concentrated mechanical forces. The appropriate mathematical representation 
in such cases is known as the Dirac delta function, named after the mathematical 
physicist Paul Dirac, and often referred to simply as the delta function. This is written as 
6(x), where x represents space coordinates or time, and is represented as a generalized 
function by Fig. 6.5 (see Fourier Analysis and Generalised Functions (Lighthill, 1964), 
listed in the Bibliography). It has the following properties: 

F (i) ~5(x - x0) dx - 1 (6.6) 
(2O 

where the delta function is centred at x = x0. The integral is taken over infinite length, 
area or volume, depending upon the dimensions of the system considered, and dx 
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Fig. 6.5 Evolution of the Dirac delta function (reproduced from Lighthill, 1964). 

represents an infinitesimal increment of the corresponding coordinates. For example, 
dx -- dxdydz in three-dimensional rectangular Cartesian coordinates. 

F (ii) ~(x) 6 ( x -  x0) dx - 4~(x0) (6.7) 
o o  

in which 4~(x) is an arbitrary function of x, and x may be a one-, two-, or three- 
dimensional variable. Equation (6.7) indicates that the delta function representation 
'picks out' the value of a function of some continuous variable that corresponds to a 
particular value of that variable. Note that the delta function has dimensions that are the 
inverse of the dimensions of the continuous variable, e.g. L -3  when x represents three- 
dimensional space. 
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6.4.2 The point monopole and the pulsating sphere 

The rate of change of rate of mass introduction per unit volume produced by a point 
monopole source at x = x0 may be represented as 

02m(x, t)/Ot 2 = _h~ 6(x -- x0) (6.8) 

in which M (-oZm/ot  2) is the total source strength, as expressed by the integral 

(02m(x, O/Off) dx - 37/6(x - x0) dx - ~;/ (6.9) 
o o  o ~  

The inhomogeneous wave equation for the pressure is, from Eq. (6.5), 

10Zp = -a);/~5(x - Xo) (6.1 O) 
V2P C2 at 2 

Note carefully that, except at the source point, the right-hand side is everywhere zero, 
and the equation represents free wave motion. If mass is introduced impulsively at time 
to, 3~r may be written as S6(t - to), where S = f_~ 37/dt. 

Equation (6.10) can be solved only if the boundary conditions satisfied by the fluid are 
specified. In an unbounded fluid, the solution of Eq. (6.10) with _~r = S 6 ( t -  to) and 
S = 1 is called the 'time-dependent free-space Green's function'* after the largely self- 
taught miller's son George Green, who developed solutions of various classes of second- 
order partial differential equations. Since many readers are unlikely to be familiar with 
the mathematical procedures leading to the direct solution of Eq. (6.10), an alternative, 
physically more appealing, approach is now pursued. We shall meet the delta function 
again in connection with force sources. 

As explained above, the presence of a point source of mass introduction or volume 
displacement is expressed purely by its magnitude and location. Consequently it radiates 
equally in all directions, the sound field being spherically symmetric. Hence we may 
approach the development of an expression for the free-space Green's function by 
proposing that a point monopole source may be represented by a very small, pulsating, 
impermeable sphere. We begin by analysing the sound field generated by a pulsating 
sphere of arbitrary radius, and then consider the limit as the radius tends to zero. It is 
convenient first to analyse the field produced by harmonic pulsation of a sphere because 
the radiation impedance is frequency dependent. We denote the radius of the sphere by 
a. The radial displacement of the surface is expressed as ~ = ~0 exp (joot), as illustrated by 
Fig. 6.6, where {0 is the complex amplitude of radial displacement. 

The amplitude of radial displacement is assumed to be much less than the mean radius 
so that acoustic linearity is maintained. The radial velocity of the fluid particles in a 
spherically symmetric sound field, which is related to the sound pressure by Eq. (3.44), 
must equal that of the surface of the sphere. Hence, 

~~176 ~ r=a 

The complex amplitude of pressure at radius r is given by Eq. (3.43) as 

l~r) = (A/r) exp ( - j k r )  

(6.11) 

(6.12) 

* The dimensions of the time-dependent free-space Green's function are L- 1 T- 1 
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i 

Fig. 6.6 Harmonically pulsating sphere. 

Hence 

or  
~0 -- -- (A/o)2po a2) (1 + jka) exp ( - j ka )  

A - -~o l + j ka exp(jka) 

The complex amplitude of the pressure at radius r is 

L 1 + j  ka .] exp [-jk(r - a)] 

or  

FJ  0o~ [, +ljka]eXp 
~ ( r ) -  L 4~zr J [ - j k ( r -  a)] 

(6.13) 

(6.14) 

(6.15a) 

(6.16) 

When ka << 1, z(a) ~ poc [jka + (ka)2]. The reactive part, being positive and propor- 
tional to frequency, indicates a predominantly mass-like fluid reaction, corresponding to 
a mass per unit area of poa. The total equivalent mass is equal to 4~za 3p0 = 3 Vpo, which 
tends to zero as the volume V of the sphere tends to zero. The resistive part is of second 
order in the small quantity ka. When ka >> 1, z(a) ~ poc(1 + j/ka), the real part of 
which, being positive, indicates a predominantly resistance-like fluid reaction, the value 
corresponding to the characteristic specific acoustic impedance of the fluid. 

The time-average sound power radiated by the sphere is given by 

1 [/~(a)(y.co~o), [21 (ka) 2 ] W -  (47~a2)~ Re } - 2p~176 1 -t- (ka) 2 (6.17) 

It is convenient to express Eq. (6.17) in terms of the volume velocity of the source rather 
than the surface displacement: 

W = tO0 2 (pock2/8:rc)/(1 + (ka)2)  (6.18) 

z(a)-p(a) /Jc~176176 1 +jka] 

where the source volume velocity Q = Qo exp (jcnt) and Qo = (je~o)(4~za2). The specific 
acoustic impedance presented to the sphere (the specific radiation impedance) is 

(6.15b) 
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As ka tends to zero, the radiated power per unit volume velocity becomes proportional 
to the square of frequency and independent of the radius of the sphere: 

W m ~ (poco2/8~C)IQ0[ 2, ka << 1 (6.19) 

If both ka and air << 1, Eq. (6.15b) gives 

/~(r) ~ _ ~ 4~zr J exp ( - jkr)  (6.20) 

wherejcop0Q0 is the harmonic monopole source strength. Note that this expression is not 
valid in the region where r is not very much greater than a. 

The asymptotic forms of expression for the pressure and radiated power as ka tends to 
zero justify the identification of a 'point source' of mass introduction or volume 
displacement simply in terms of source strength. Such a source is known as a 'point 
monopole'. The expression for the pressure per unit source strength of a harmonic point 
monopole is known as the 'harmonic free-space Green's function',* which we shall 
symbolize by g: 

e-jkr 
g = 4~zr (6.21) 

It represents the solution to Eq. (6.10) for harmonic time dependence of a unit strength 
monopole source. 

A more general expression of the free-space Green's function for a harmonic point 
monopole located at x0 is 

e-jkR 
g(x lx0 ) -  4xR (6.22) 

where the observation point is at x and R = Ix -- xol. (Note: some books define the free- 
space Green's function as 4~ times this function.) Clearly, g(xlx0)= g(xolx), which 
represents the most elementary example of the principle of acoustic reciprocity, because 
the pressure at a receiver point is unchanged by interchange of source and receiver point 
locations. 

If the strength of a point monopole has a periodic, but non-harmonic, time 
dependence, the sound field corresponding to each harmonic is obtained from Eq. 
(6.20) with Q0 replaced by Qn and k replaced by kn = tonic, where con is the frequency of 
the nth harmonic. The total sound field is obtained by linear superposition. If the source 
strength is transient, Q(t) can be decomposed into its complex Fourier spectrum Q(co) by 
the use of the Fourier integral transform (see Appendix 2) and the corresponding 
spectral components of pressure #(co) can be obtained from Eq. (6.20). The time 
dependence of the sound field can then be obtained by inverse Fourier transform of the 
pressure spectrum. The result for a point monopole source is 

d 
p(r, t) - ( p o / 4 ~ r ) ~ [ Q ( t -  r/c)] (6.23) 

where the time-derivative of Q is evaluated at a time r/c earlier than the time at which the 
pressure is eva lua ted-  so-called 'retarded time'. This accounts for the time elapsed 

tThe dimensions of the harmonic flee-space Green's function are L- 
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between emission and reception. This form is consistent with the form of the Green's 
function for a harmonic source sincejcoQ corresponds to dQ/dt and a phase shift o f - k r  
corresponds to a time shift of - kr/co or - r/c. Equation (6.23) is not valid for a pulsating 
sphere of radius a if Q(t) contains significant components at frequencies in excess of 
c/2~za. For time-stationary, aperiodic (random) sources, Eq. (6.20) represents a transfer 
function which relates the spectra of source strength and field pressure. 

Returning to the general expression for the sound field generated by a harmonically 
pulsating sphere of arbitrary radius, we now investigate the radial specific acoustic 
impedance and intensity as a function of radial distance. The complex amplitude of the 
radial particle velocity Ur(r) is given by Eq. (3.45) as 

f i r (r)-  (j/copo)(Op/Or) - (~(r)] [1 +jkr  1 kpo----~/ jkr J (6.24) 

and the radial specific acoustic impedance is 

zr(r) - p(r)/g*r(r) - p~ l Jkr+ jkrJ1 (6.25) 

At distances such that kr >> 1 (or, equivalently, 2 << 2rcr), the radial specific acoustic 
impedance asymptotes to poc, which is the characteristic specific acoustic impedance of 
the fluid. At distances such that kr << 1, the specific radial acoustic impedance is 

Zr(r) = poc[jkr + (kr) 2] (6.26) 

The general variation of radial impedance with radial distance is illustrated in Fig. 3.17. 
As kr tends to zero, Eq. (6.24) indicates that the particle velocity becomes asymptotically 
in quadrature with the pressure, and that its magnitude is much greater than tlS(r)l/poc. 
This feature is characteristic of the sound fields near to inefficiently radiating sources: it 
is termed the 'hydrodynamic near field' (see Section 6.8 on field zones). 

The time-average radial sound intensity is given by 

Ir(r) = VzRe~(r)~r(r)*} = ~zll~(r)l 2 Re{1/Zr(r)} = 1/zlfi(r)]Z/poc (6.27) 

which is independent of r and is the same expression as that for progressive plane waves. 
Since it is independent of frequency, the radial intensity in all outgoing, spherically 
symmetric, sound fields is given by this expression, irrespective of time dependence. In 
fact, Eq. (6.27) holds in the far fields of all sources in free field. 

6.4.3 Acoustic reciprocity 

Equation (6.22) shows that the free-space Green's function is invariant with respect to 
exchange of point monopole and observation points in free field. Fourier transformation 
into the time domain proves that this is true also of the time-dependent Green's function, 
or impulse response. It is a remarkable property of all linear acoustic systems, including 
those that incorporate both uniform, static fluids and solid structures, that this 
invariance holds good irrespective of their geometry, topological complexity or material 
properties. Even more remarkable is that a reciprocal relation holds between the sound 
pressure generated at any observation point in a fluid by unit harmonic force applied to a 
linear elastic structure and the vibrational velocity produced at the force input point by a 
point monopole of unit volumetric source strength placed at the observation point in the 
fluid. The general proofs are beyond the scope of this textbook, but awareness of the 
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vibroacoustic reciprocity principle is important to engineering acousticians because it is 
widely exploited in both theoretical analysis and experimental practice. It confers 
substantial technical and economic benefits in the experimental determination of 
vibroacoustic transmission paths in complex systems such as vehicles and machinery, 
and is increasingly exploited by industrial engineers concerned with creating quieter 
products. A wide range of practical applications is presented in reference [6.2]. 

6.4.4 External forces on a fluid and the compact dipole 

Fluctuating external mechanical forces are generally applied to fluids by boundaries 
that present impedance discontinuities. We shall not consider external body forces 
applied by gravitational, electrostatic or electromagnetic fields. Boundary forces may 
arise from the incidence of sound generated elsewhere in the fluid; from the presence of 
unsteady fluid flow adjacent to boundaries; or from oscillatory motion of the 
boundaries. Here we shall confine our attention to ideal inviscid fluids, in which case 
the forces act in a direction purely normal to the local boundary surface. (In Chapter 7, 
we shall consider the effects of forces that arise from the action of fluid viscosity which 
have components directed parallel to the local surface.) In some cases, the boundaries 
may be considered to be fixed in space and rigid, in which case the forces they apply to 
the fluid can do no work on the fluid, as in the cases of sound incident upon a rigid body 
or turbulent flow over a rigid surface. However, the presence of such boundaries 
influences the sound field and this influence may be expressed mathematically in terms 
of the boundary forces. In other cases, the forces are associated with boundary motions 
that displace fluid volume, as produced by vibrating panels. In these cases, work is 
usually done on the fluid. 

Where a vibrating object has one or more cross-sectional dimensions transverse to the 
direction of vibration that are very small compared with an acoustic wavelength, the net 
displacement of fluid volume is negligible, as with a vibrating violin string. Conse- 
quently, such sources do not fall into Category 1. However, the vibration causes 
momentum and pressure fluctuations in the local fluid and the associated net force can 
do work in moving with the body. They therefore constitute Category 2 sources. 

The inhomogeneous wave equation (6.5) shows that the action of an external force 
distribution applied to a fluid is represented by the divergence of the force per unit 
volume. In principle, a concentration of this divergence in a small region of fluid could be 
represented mathematically by a delta function, as with concentrated sources of mass 
introduction or volume displacement. However, this representation is not useful in terms 
of relating the mathematical model to physical action. The divergence theorem requires 
that the integral of the divergence of the force per unit volume over a volume that 
includes the region of action of the force is zero: the total monopole source strength is 
thus zero [6.3]. The divergence cannot therefore be represented by a single function for 
which the integral is, by definition, unity (Eq. (6.6)). An alternative representation is 
required. 

We can take advantage of the fact that boundary forces on an inviscid fluid act purely 
in the direction normal to the local surface. Consider an elemental 'slice' of fluid of 
planar area 6S and thickness w over which an externally applied force acts purely in the 
direction normal to the plane of the slice. The force f per unit area per unit thickness 
(which corresponds to the force per unit volume in the wave equation) is assumed to be 
uniform over the thickness of the slice, as shown in Fig. 6.7(a). The total force on the 
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Fig. 6.7 (a) Slice of fluid of uniform width subjected to uniform normal external force per unit 
volume. (b) Distribution of the force per unit volume. (c) Heaviside (step) functions and their 
derivatives. (d) Graphical representation of the divergence of the force per unit volume. 

element equals wf 5S.  This form of distribution may be represented mathematically by 
two step functions (formally 'Heaviside' functions) as shown in Fig. 6.7(b). We denote 
the space coordinate normal to the plane of the slice by s. The derivative of the Heaviside 
function is a one-dimensional delta function, as illustrated by Fig. 6.7(c). Hence the 
derivative of f with respect to s, which is the only non-zero term to appear in the 
divergence because f acts only in the s direction, takes the form of two one-dimensional 
delta functions of opposite sign, separated by distance w, as shown in Fig. 6.7(d). The 
integral with respect to s over the left-hand delta function equals f, and that over the 
right-hand delta function equals - f  (see Eq. (6.7)). Hence the divergence of f may be 
written as 

V.f = f a(s  - s l) -- f S(s  - -  $2) (6.28) 

Substitution for V.f in Eq. (6.5) suggests that the two terms may act as virtual point 
sources of equal magnitude and opposite sign. 

So far we have considered an element of fluid of finite thickness subject to a uniform 
external force per unit volume in free space. But we need to represent an arbitrary force 
distribution concentrated on a boundary of arbitrary geometry. We shall return to this 
general problem in due course. As an intermediate step, motivated by the form of Eq. 
(6.28), we shall analyse the sound field generated by a pair of harmonic point monopoles 
of opposite sign separated by a finite distance. Figure 6.8 shows the source and field 
coordinates. The complex amplitude of sound pressure at a field point is given by the 
superposition of the individual point monopole fields (Eq. (6.20)) as 
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Fig. 6.8 Dipole source geometry. 

~(r) --J~176176 [exp (-jkr2)_r2 exp Qzjkr,)lrl 3 (6.29) 

This expression cannot be simplified except under the condition that the monopole 
separation distance is much less than the mean distance to the field point considered. 
This condition implies that Ar~ ~ Ar2 ~ I cos 0, in which case the binomial theorem may 
be employed to give 

t~r, O) ~ (j~oPoOo exp (-jkr)/4z~r) 
• [(1 + I cos O/r) exp (jkl cos 0) - (1 - l cos O/r) exp ( -  jkl cos 0)] (6.30a) 

If, in addition, the monopoles are much less than a sixth of a wavelength apart  (2kl << 1), 
the combination is termed an 'acoustically compact  dipole', for which 

/7(r, 0) ~ jcoPoQod (jk + 1/r) g cos 0 - 1)(jk + 1/r) g cos 0 (6.30b) 

with d - 2l a n d / )  = j~opoQod. 
The sound pressure is seen to depend on the product of the individual monopole source 

strength j~opoQo and the separation distance d. The product jo~poQd-/ )  is defined as 
the harmonic dipole strength or, alternatively, as the dipole moment (as with a force 
couple). For  dipoles having arbitrary time dependence, the strength is defined as 
D(t) = pod (dQ/dt) and the pressure is 

0 [D(,- + diD(,-r/o)l/d,] 
p(r, O, t )  

4~zr r c L ..i 

The compact dipole field is distinguished from that of a point monopole (Eq. (6.20)) by 
the presence of two distance dependent terms and the directivity factor cos 0. 

Since each of the two monopoles generates a field given by Eq. (6.20) in terms of g, 
we would expect that Eq. (6.30b) could be derived by applying a Taylor series 
expansion to g. (Reminder: f ( x  + h) = f(x)  + hf'(x) + (h2/2)f" (x) + . . . .  ), where the 
prime indicates differentiation with respect to x.) In terms of the specific functions with 
which we are concerned, g(r + Ar) = g(r) + Ar.g'(r) is a good approximation provided 
that (g"/g')2d << 1, which is true under the conditions of compactness specified above 
(students should check this). Using this approximation we obtain 

/Y(r, 0) ~ j~opoQo [(1 - l cos 0) - (1 + l cos 0)] (Og/Or) = - D (Og/Or) cos 0 (6.31) 
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Fig. 6.9 Distribution of pressure amplitude in a dipole field. Reproduced with permission from 
Kinsler, L. E., Frey, A. R., Coppens, A. B. and Sanders, J. V. (1982) Fundamentals of Acoustics, 
3rd edn. John Wiley & Sons, New York. 

Since Og/Or = - ( jk + 1/r)g, this is consistent with Eq. (6.30b). This form of expression 
for the dipole pressure field has been introduced because it will feature in the expression 
for the effects of boundary forces to be developed later. The dependence of the pressure 
amplitude on cos 0, shown in Fig. 6.9, is characteristic of the compact dipole. 

The particle velocity in a dipole field is not purely radially directed as in a monopole 
field. Tangential velocities also exist, but they are in quadrature with the associated 
pressures and therefore they support no mean energy flow. However, the reactive 
component of the field with which these velocities are associated stores kinetic and 
potential energy that is 'trapped'. The complex amplitude of radially directed particle 
velocity is given by Eq. (3.42) as 

Z2r(r, O) = (j/copo) Off/Or = kZQodg cos 0 [2/(kr) 2 -  1 + 2j/kr] (6.32) 

The associated radial impedance is 

Zr(r, 0) = fi(r)/ffr(r, 0) = poc[ .(kr)4 +j(2kr + (kr)3)] (6.33) 
4 + (kr) 4 

Note that it is independent of 0 and that it approaches the (real) characteristic impedance 
of the fluid poc in the far field where kr >> 1. In the near field, as defined by kr << 1, the 
imaginary component dominates and Zr(r) tends to poc[(kr)4/4 + jkr/2]. These expres- 
sions are not accurate at radial distances of the same order as the monopole separation 
distance, in the so-called 'proximal' field, where the full expression of Eq. (6.29) must be 
used. 

The mean radial intensity is 

, _ r oo, oi=  4 l 
I r  - -  ~ Re {fi(r, 0)tAr(r, 0)*} k 3~7r2 ] c~ 0 (6.34) 

= (o}/32poc3rc2r2]lDI 2 cos 2 0 

In the far field Ir/(lY(r) 2/2poc) tends to unity. In the near field this ratio equals (kr) 2. 
Differences of this order are commonly encountered during practical measurements of 
sound intensity very close to real sources, where a large difference between the values of 
Lp and LI (see Appendix 6) often indicates that the intensity probe is within the 
hydrodynamic near field (see Section 6.8) where special care has to be taken in the 
measurement procedure. 
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The total dipole sound power, obtained by integrating the intensity over a spherical 
surface surrounding the dipole, is 

fo 7~ Wd = 2rrr 2 Ir(r) sin 0 dO = pock41Qo 2d2/24rc (6.35a) 

or, in terms of the dipole strength as 

Wd = Oj211)[2/247rpOC 3 (6.35b) 

An expression for dipole sound power may also be derived by considering the sound 
pressure induced on each of the monopoles by the other (see Section 6.7.1 and Question 
6.2). 

For the same monopole source strengths 00, the ratio of sound powers of compact 
dipoles and point monopoles is given by Eqs (6.35a) and (6.19) as 

W d / W  m = �89 2 ( 6 . 3 6 )  

which, because kd << 1, is very much less than unity. It should also be noted that the 
frequency dependence of the powers of the two sources is quite different: Wm ~ 09 2 and 
Wd oc co 4. This can sometimes be used to distinguish monopole-like and dipole-like 
sources acting in real systems (see Section 6.10). 

6.4.5 The oscillating sphere 

We have seen that a sphere, pulsating harmonically at any frequency at which its 
circumference is very much less than an acoustic wavelength, generates a sound field 
close to that of an ideal point monopole, except in the near field. The same sphere, when 
rigid, but undergoing transverse harmonic oscillation, generates a sound field close to 
that of the ideal point dipole. In fact, any rigid body having at least one cross-sectional 
dimensional transverse to the axis of oscillation very much less than an acoustic 
wavelength generates a dipole-like field. The reason is that, like the dipole, such sources 
produce no net volume displacement (zero total monopole strength), but create fluid 
momentum fluctuations associated with the alternate positive and negative volume 
displacements produced by the intrusion of the two hemispheres of the body. The 
associated pressures are in opposite phase and produce a net reaction force on the body 
(Fig. 6.10). The alternating volume displacements separated by a small distance clearly 
bear a close resemblance to the dipole source. 

Fig. 6.10 Distribution of fluid reaction force on a transversely oscillating sphere at low ka. 
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Analysis of the sound field radiated by a sphere that oscillates harmonically along the 
z-axis can be pursued by noting that the field has azimuthal symmetry about the axis of 
oscillation, and hence the field is independent of 4~ (Fig. 3.16). The radial particle velocity 
of the sphere's surface, which must equal that of the fluid, is given by d0 exp (riot) cos 0, 
where d0 is the complex amplitude of oscillation velocity. Equation (6.32) shows that the 
radial particle velocity of a dipole field has the same angular dependence. Therefore, 
provided that the radius of the sphere satisfies the compact dipole condition ka << 1, we 
may equate the two expressions for normal velocity to give the complex amplitude of the 
equivalent dipole strength as 

19 = j2na 3 copodo (6.37) 

There is no problem in making d/a << 1, as required by a compact dipole, because we 
can compensate by selecting a sufficiently large value of Q to maintain a given dipole 
moment. We can now obtain an expression for the pressure field from Eq. (6.30b), and 
by integrating the axial component of the resulting force distribution over the surface of 
the sphere, we find an expression for the complex amplitude of the fluid reaction force on 
the sphere which is, to first order in ka, 

F r  --- j2na3 poe)do = 2na3 podo = (Md/Z)do (6.38) 

where do is the complex amplitude of acceleration of the sphere and Md is the mass of 
fluid displaced by the static sphere. 

If the solid sphere is replaced by a spherical fluid volume, driven by a dipole at its 
centre with a strength given by Eq. (6.37), the axial force P exerted by the dipole on the 
fluid volume equals the sum of the reaction force Fr exerted by the fluid external to this 
volume (given by Eq. (6.38)) and that necessary to oscillate the mass of fluid within the 
sphere, which is equal to (4/3) na 3po6o. This sum is 2ha 3podo, which is equal to the dipole 
strength given by Eq. (6.37). 

The general equality of force acting on a fluid and dipole strength is confirmed by 
Lighthill [6.4] by means of an explicit analysis of the momentum carried by the 
fluctuating flow of fluid between the two component monopoles of a dipole. This shows 
that the rate of change of momentum directed parallel to the dipole axis exactly equals 
the dipole strength. Thus, according to Lighthill, 'A dipole field of strength D(t) requires 
a force D(t) acting on the fluid to set it up, the direction of the force being from the 
negative (monopole) source to the positive one. Conversely, . . .  an external force acting 
on a fluid generates a dipole field of strength equal to that force.' This fundamental 
relation clearly has implications for the representative of boundary forces, a matter to 
which we shall return presently. 

Given the equivalence of force and dipole strength, Eq. (6.31) may be rewritten as 

l~(r) = - P (Og/ Or) cos 0 (6.39a) 

Substitution of a harmonic force of magnitude F for the dipole strength of magnitude 
1/)[ in Eq. (6.35b) gives the equivalent expression for radiated sound power as 

W d  - -  09 2 z ~" 2/24npoc 3 (6.39b) 

The case of the oscillating sphere also exemplifies the general relation between the 
equivalent dipole strength of any rigid body having principal dimensions much less than 
a wavelength and the force F exerted by the body on the surrounding fluid. This is 
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D = F + poVac (6.40) 

where V is the volume of the body and ac is the acceleration of its centroid [6.5]. This 
expression is important in the calculation of the sound fields generated by many sources 
involving complicated flow fields, including propellers, telephone wires and buzzing 
insects. 

A practical example of a dipole source is provided by an unbaffled cone loudspeaker 
operating at frequencies well below its normal range (ka << 1), which may be modelled 
as a very thin, rigid, circular disc oscillating harmonically along its axis. Theoretical 
analysis shows that the complex amplitude of the force applied to the air is given, to first 
order in ka, by P = j(8/3)copoa3do. The volume of the disc is negligible, and therefore its 
dipole strength is equal to this force. The equivalent 'attached mass' induced by the 
motion of the fluid in the near field is equal to (8/3)poa 3, or (8/3n)poa per unit area of the 
disc. 

Expressions for the sound powers radiated by an oscillating sphere and an oscillating 
disc may be obtained by substituting the expressions for the equivalent dipole strengths 
into Eq. (6.35b) to give, respectively 

Wos = lpocrcaZ(ka)4ldol2 (6.41) 

and 

Wod = (8/27n2)pocnaZ(ka)4(dol 2 (6.42) 

the ratio of which is 9n2/16, or approximately 5.5, for equal diameters. (It should be 
noted carefully that the sound power may not be computed by taking the time average of 
the product of the dipole strengths cited above and the velocities of the centres of the 
oscillating bodies. This is because the cited expressions for reaction force are quoted only 
to first order in ka and represent the dominating inertial component of fluid reaction, 
which is in quadrature with the velocity of the body. The higher-order component of 
fluid reaction in phase with the velocity must be computed for this purpose.) 

6.4.6 Boundary sources 

We are now in a position to return to the matter of replacing fluid boundaries by 
equivalent sources operating in unbounded space. As mentioned before, rigid boundaries 
may apply external forces to a fluid; moving boundaries will, in addition, displace fluid. 
We consider first the displacement of fluid by boundary movement. We must note that 
not only moving rigid boundaries displace fluid. The boundary of a porous material, 
such as mineral wool, allows fluid to move in and out through it; the external fluid 
doesn't 'know' the difference between a porous and an impermeable boundary. It is 
intuitively obvious that displacement by boundary motion may be represented by an 
array of discrete monopoles, each of which represents the motion of a small surface 
element. This is also consistent with Huygens principle. On the basis of the principle of 
linear superposition, the array may be replaced by a continuous monopole distribution 
of which each elemental surface area 6S has a volume velocity 

Qo = dn 3S (6.43) 

According to Eqs (6.20) and (6.21), each element of this monopole distribution generates 
a sound pressure field of the form 
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P m ( r )  = j~OpOgan 6 S  = --  (O~/On)sg 6 S  (6.44) 

in free field. 
But, the sound field actually produced by the volumetric velocity of each small element 

of a vibrating surface is different from that which would be produced in free field by a 
monopole of the same strength because the presence of the rest of the surface scatters, 
diffracts, and may partially absorb the radiated field. The actions of these processes are 
represented by the inclusion of an expression for the distribution of forces applied to the 
fluid by the surface. The combination of volume velocity sources and surface forces 
properly expresses the kinematic and dynamic boundary conditions of the fluid. 

Returning to Eq. (6.28) we see, by analogy with the dipole strength of a pair of point 
monopoles, that the dipole source strength representing the divergence of the external 
force per unit volume f acting on an element of fluid of area 6S and thickness w is equal 
to the product fw6S, which is the total force on the slice. This element may be made 
vanishingly thin (w --, 0) andfmay  simply be increased in inverse proportion to maintain 
a constant product. This vanishingly thin slice may then be allowed to approach the 
surface, so thatfw corresponds to the force per unit area (i.e. the pressure) applied by the 
surface to the fluid. According to Eq. (6.31a), the sound pressure in a body of fluid 
associated with the force P exerted by the boundary on an area 8S of the contiguous fluid 
is given by 

p ( r )  = - P c o s  0 (Og/Or) = - (~s  6S) (Og/ar) c o s  0 

- ~ s  6s) (OglOn) (On~Or) cos 0 = (/Ys 6S)(OglOn) (6.45) 

in which/~s is the complex amplitudes of surface pressure, Og/On is the derivative of the 
Green's function with respect to the outward normal to the surface and Or~On = - c o s  0 
(see Fig. 6.11 (a)). Note that this derivative has a maximum value for elements of surface 
of which the normal passes through the selected field point and is zero for surface 
elements tangential to the joining line. This is of considerable practical significance, 
especially in controlling the directivity of Category 2 sources. 

Hence, the total sound pressure field given by the sum of the two surface contributions 
expressed in Eqs (6.44) and (6.45), when integrated over the surface, is 

] ) ( X ) - - / ~ d  ( X ) - + - / ~ m ( X ) -  fs I])(Xs)Og(XIXs_________~)__ g(XIXs)(O~(X)~ ]dS ( 6 . 4 6 )  

in which g(XlXs) and Og(XlXs)/On vary with the positions of both the observation point x 
and each surface element at xs. The first (dipole) term of the integrand represents the 
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Fig. 6.11 (a) Geometry relating to the normal surface derivative. (b) Boundary conditions replaced 
by distributions of monopoles (m) and dipoles (d). 
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influence of the presence of the body in obstructing the free passage of sound - both 
that generated by its own normal motion represented by second term in the form of a 
surface monopole distribution, and that incident upon it due to any other source(s). 
The second (monopole) term is proportional to the normal acceleration of the surface 
because (Op/On)s = - po(OUn/Ot). 

Equation (6.46) can be derived in a mathematically more rigorous manner by means 
of the application of Gauss's divergence theorem, previously encountered in Section 5.8, 
but a physically-minded approach has been presented here in the hope that the origins of 
the two terms may be more clearly understood. 

Equation (6.46) expression applies to harmonic fields. The equivalent form for 
arbitrary time dependence is 

p(x, t) -- (po/4n) 1)n(Xst- R/c) dS + + cos 0 dS (6.47) 
R R 

in which R = Ix - Xs] and 0 is the angle between the local normal and x - x~. 
The implication of these equations is that the presence of any foreign body in contact 

with a fluid may be represented by the combination of a surface distribution of 
monopoles and of normally directed dipoles of appropriate strengths in otherwise free 
space (Fig. 6.1 l(b)). The material surface must be deleted from the model. However, if 
the surface of the body is closed, the solution for the exterior volume does not apply to 
the interior volume, where it would give zero pressure. Two separate expressions of Eq. 
(5.45) must be used: these are the solutions to the so-called 'exterior' and 'interior' 
problems. 

If a vibrating body takes the form of an infinitely thin, impermeable shell which is 
'open', so that acoustic communication can take place between the two sides, the 
monopole source distributions on opposite sides coincide in space and hence cancel, 
leaving only the dipole contributions to represent the pressure difference sustained by the 
shell. Thus a thin, plane, unbaffied vibrating plate produces no sound in its own plane 
because it lies in the null plane of the dipole directivity. (You might like to verify this by 
tapping a stiff card in a fairly dead room.) 

Solution of Eq. (5.45) is not entirely straightforward because it suffers from a 
'singularity' problem at frequencies which correspond to the natural frequencies of the 
enclosed volume of fluid with a boundary condition of zero pressure. This condition is 
closely approximated by a volume of water contained in a thin plastic bag in 
surrounding air. Computer software for the implementation of the integral incorporates 
a variety of strategies for overcoming this problem, one of which exploits the condition 
that the solution to the exterior problem must be zero inside a closed volume. 

Equation (5.45) only accounts for boundary contributions to a sound field and must 
be supplemented by a term representing the contributions from active sources operating 
within the volume of the fluid. For a volume distribution of monopole source strength 
density q the complete equation is 

/~(x) -- fvjOgpoO(xo)g(x]xo)dV+ fs[/)(Xs)Og(XlXs______))_On g(xlx~)(OP(X)~ 3n JxJ (6.48) 

This is a form of the Kirchhoff-Helmholtz (K-H) equation, which forms the basis of 
computational procedures for dealing with problems of sound radiation, scattering, 
absorption and structure-fluid interaction. Aperiodic time dependence may be handled 
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either by inverse Fourier transformation or by the direct solution of the time-dependent 
equivalent of Eq. (6.48). 

It should be noted carefully that the surface pressure and normal acceleration 
distributions in the integrands of Eq. (6.46) cannot be independent, because the sound 
field radiated by a vibrating body in free space is uniquely determined by the geometry of 
the body surface and the normal acceleration distribution of the surface. Thus, the 
pressure on the surface is a dependent variable, which appears both on the left- and 
right-hand sides of the equation. Computational procedures for solving the K-H 
equation first solve for the surface pressure distribution on the basis of this duplication, 
and then solve for field points not on the surface. 

6.4.7 Free-field and other Green's functions 

The free-space Green's function g satisfies the inhomogeneous wave equation with a 
point monopole of unit strength on the right-hand side of Eq. (6.10), together with the 
Sommerfeld radiation condition, a form of 'boundary condition' which broadly states 
that the wavefronts (surfaces of uniform phase) generated by any finite source region will 
become spherical at infinite distance and that no waves can approach the source region 
from infinity. There is no reason why solutions to Eq. (6.10) with other boundary 
conditions should not be introduced into Eq. (6.46). This may seem like a form of 
technical 'poetic licence', but it simply means that boundaries can be alternatively 
represented explicitly by 'boundary conditions' in terms of pressure, normal particle 
velocity, or their relation in the form of surface impedance; by the equivalent boundary 
source/free space representation described above; or by an appropriate combination of 
both forms of representation.* Here we introduce a particular form of Green's function 
which affords particular benefits in experimental investigation of sound radiation by 
vibrating solid surfaces, such as those of machinery casings, vehicle structures and 
loudspeaker cabinets. 

The surface vibration distributions of vibrating bodies can be estimated by appro- 
priate sampling techniques using various forms of transducer, such as accelerometers or 
laser systems. But the prediction of the resulting sound fields is greatly complicated by 
the complex shapes of the source surfaces and by the presence of other surfaces in the 
vicinity. The problem of predicting vehicle pass-by noise provides an example. The 
engine, gearbox and tyres are all partly enclosed by body shell components of complex 
geometric form, in addition to the close proximity of the road surface. Application of 
Eq. (6.46) would demand that the associated pressure distributions on all exposed 
surfaces should first be estimated. Although this can, in principle be accomplished by the 
use of commercial computer software, the size of the model, and the significant 
frequency range, are such that the CPU time demand is at present unacceptable. As an 
alternative, an omnidirectional (monopole) source, calibrated for source strength, is 
positioned at the noise monitoring point and the (blocked) sound pressures produced at 
an array of positions on the non-operating source of interest are measured. On the basis 
of the reasonable assumption that the vibration levels induced by the incident sound in 
all the surfaces involved are negligible in terms of their effect on the sound field, these 
blocked pressures, normalized on monopole source strength, are, by virtue of the 

*In Chapter 9 we shall meeet Green's functions that satisfy various forms of boundary conditions on prescribed 
surfaces, such as those of a rigid rectangular enclosure. 
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Fig. 6.12 (a) Arrangement of reciprocity experiment on motored engine. (b) Evaluation of the 
relative contributions of different components to the sound level at the observer position. Solid 
line, engine block; dashed line, valve mechanism; dotted line, gearbox. Reproduced with 
permission from Zheng, J., Fahy, F. J., and Anderton, D. (1994) 'Application of a vibro-acoustic 
reciprocity technique to the prediction of sound radiated by a motored I.C. engine'. Applied 
Acoustics 42(4): 333-346. 

principle of acoustic reciprocity, the Green's functions having zero normal pressure 
gradient on the surface of the vibrating body. Hence, the dipole term in Eq. (6.46) 
disappears. The operational surface vibration measurements are converted into equiva- 
lent monopole volume source strengths and the product of these with the associated 
Green's functions are summed over all source points to give an estimate of the sound 
pressure at the monitoring point. Figure 6.12 presents an example of the application of 
this technique to the evaluation of the contributions to sound pressure level at a 
monitoring point of various components of a motored diesel engine. 

6.4.8 The Rayleigh integrals 

An infinitely extended, plane surface constitutes a special case of a closed shell, for 
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Fig. 6.13 (a) Image construction producing the Green's function having zero normal derivative on 
the surface. (b) Image construction producing the Green's function having zero value on the 
surface. 

which the surface sources representing the boundary conditions on one surface of the 
plane are not allowed to affect the sound field in the fluid bounded by the other 
surface. There are a number of approaches to deriving the two forms of the K-H 
equation special to this case that are widely used as approximations to many practical 
radiation problems. The most convenient model exploits the special form of Green's 
function explained in the preceding paragraph, together with the reciprocal property 
of g. The surface is considered to be rigid, and the Green's function having zero 
normal derivative on the surface is obtained using the construction shown in Fig. 
6.13(a). The combination of fields generated by the point monopole and its 'image' in 
the perfectly reflecting plane clearly has zero normal particle velocity on the plane 
since the two components are of opposite sign. (Note: the particle velocity tangential 
to the plane is doubled, but our inviscid fluid model allows this to occur.) Hence the 
surface Green's function, of which Og/On is zero on the surface, equals twice the 
corresponding free-space Green's function, and the dipole contribution to Eq. (6.46) 
disappears, to give, in the harmonic case, 

JfS (O/}(X)'~ j(-OPOfs t]n(Xs)e -jkR 
/5(x) - - 2  g(XlXs) ~, On ,Is dS - 2To R dS (6.49) 

This is known as Rayleigh's second integral (although it appears first in Theory of Sound 
- see Bibliography). It must be clearly recognized that this equation may strictly only be 
applied if the normal particle velocity is known over the whole of the infinite plane. 
However, in some cases of practical interest this condition may be relaxed without 
serious error if the field point(s) of interest are closer to the plane than to the boundaries 
of a finite plane surface. 

Another form of the K-H equation special to infinitely extended plane surfaces may 
be expressed purely in terms of the surface pressure (or dipole) distribution. If the sign of 
the point source image shown in Fig. 6.13(a) is reversed (Fig. 6.13(b)), the sound 
pressure on the plane of symmetry is zero. Hence the surface Green's function is zero, the 
normal gradient of the surface Green's function equals twice that of g, and the surface 
monopole term in the K-H equation disappears. Then 
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On -~n - 2 - ~  -~n - 2 g + j k cos0 (6.50) 

Introducing the explicit form into the K-H equation yields Rayleigh's first integral: 

/3(x) -- ~ /~(xs) + j k  R cos 0 dS (6.51) 

The contributions to the sound pressure field of both the surface monopole and the 
surface dipole distributions associated with the transverse vibrations of a thin, plane, 
finite plate are zero beyond its boundaries in its own plane, because the upper and lower 
surface monopoles cancel and the normally oriented surface dipoles generate no sound 
in the plane of the plate. However, the particle velocity normal to the plane is generally 
non-zero. 

It would appear that there is an analytical difficulty inherent in the K-H integral, and 
in the special cases to which the Rayleigh integrals apply, in that the free-space Green 
function appears to 'blow up' (in mathematical terminology, to be singular) when x ~ x~ 
and R goes to zero. The mathematical resolution of this problem in the general case of 
the K-H equation involves the application of a technique known as the calculus of 
residues, which shows that although the integrand is singular, the integral takes a finite 
value (see Section 4.6 of Theoretical Acaustics (Morse and Ingard, 1968), listed in the 
Bibliography). This is consistent with physical reasoning that the sound pressure on an 
extended vibrating surface cannot become infinite. The mathematical analysis shows 
that the integrals of Eqs (6.46) and (6.47) yield one half of the surface pressure (when x 
lies on the surface). 

Since many readers will not be familiar with this mathematical technique, a less 
rigorous, but physically more appealing, argument is presented. Consider the contribu- 
tion to the pressure at a point on a vibrating plane surface from a circular region of 
radius a centred on the point of interest. We may safely state that an assumption of 
uniform normal velocity Un over the disc surface will produce the maximum effect. The 
pressure at the centre is given by Eq. (6.49) as 

jogoPo{t n f a  2rcr e -jkr dr ~ 
- -  27~ r = - - P o C U n ( e  - j k a  - -  1 )  (6.52a) 

J u  

PoC~n[(ka)2/2 +jka], ka << 1 (6.52b) 

The magnitude of term in brackets in Eq. (6.52b) equals 2(1 - c o s k a ) ,  which varies 
between 4 and zero. There is therefore no singularity. 

Neither is there a singularity problem with Eq. (6.51) because cos 0 is zero for any pair 
of points on a plane surface; in other words, the surface dipole distribution on a plane 
surface has no influence on the pressure on that surface. Since ka is allowed to tend to 
zero, these arguments can be qualitatively extended to any surface of which the local 
radius of curvature is finite. However, they do correctly suggest that the analysis sound 
fields in the vicinity of sharp edges or corners may provide more difficult analytical 
challenges: these can be overcome, but are beyond the scope of this book. 

6.5 Sound radiation from vibrating plane surfaces 

You will recall that the sound field generated by a harmonic transverse wave travelling 
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along an infinite plane surface in contact with a fluid was analysed in Chapter 4 in order 
to derive an expression for the associated radiation impedance. It was shown that waves 
travelling subsonically with wavenumbers greater than the acoustic wavenumber at the 
frequency considered, do not radiate sound power, but simply disturb the fluid close to 
the surface to a degree that decays exponentially with distance from the surface. Waves 
travelling supersonically that have wavenumbers less than the acoustic wavenumber 
generate plane travelling waves in the fluid that transport energy to infinite distance. 

This form of analysis, which provides an alternative to the application of Rayleigh's 
second integral, can be extended to arbitrary distributions of plane surface vibration by 
means of spatial Fourier decomposition of the vibration field into wavenumber spectra, 
each component of which represents a plane, harmonic, travelling wave (see Appendix 
3). The sound fields generated by each wavenumber component are then appropriately 
summed to give the total radiated field. This form of analysis has computational and 
interpretational advantages over the use of the Rayleigh integral. It forms the basis of 
planar nearfield acoustic holography (NAH), which is used to image noise sources 
together with their radiated sound fields, as illustrated by Fig. 6.14. It is also relevant to 
the understanding of the recently introduced 'flat loudspeaker', which radiates via 
vibration in many flexural modes and exhibits a directional radiation characteristic that 
is superior to that of the conventional cone loudspeaker discussed in the following 
section. 

Spatial Fourier analysis is briefly explained in Appendix 3. There is insufficient space 

Fig. 6.14 Application of nearfield acoustical holography (NAH) to a car. Courtesy of Brfiel & 
Kjaer, Naerum, Denmark. 
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Fig. 6.15 Rigid piston in a baffle as idealization of loudspeaker cone in a cabinet. 

in this book to explain its acoustical applications in detail, for which readers are referred 
to Sound and Structural Vibration (Fahy, 1987) and Sound, Structures and their 
Interaction (Junger and Feit, 1986), listed in the Bibliography. Further analysis of 
sound radiation by vibrating structures is presented in Chapter 10, and Chapter 11 deals 
with the process of vibroacoustic coupling that controls the transmission of airborne 
sound through plane partitions. 

6.6 The vibrat ing circular piston and the cone loudspeaker 

The system consisting of a rigid circular disc (or piston) vibrating in a coplanar rigid 
baffle is of interest as a simple low-frequency model of a cone loudspeaker mounted in a 
cabinet (Fig. 6.15). At low frequencies, where its circumference is much smaller than an 
acoustic wavelength (ka << 1), it radiates in combination with its image in the baffle as a 
monopole having a total source strength equal to 2jo~po~za2Un, where Un is its normal 
velocity. Equation (6.19) gives the sound power radiated into a fluid on one side of the 
baffle as Y4poc~za2(ka) 2 t2nl 2. The dependence of the power on the square of the product 
of the frequency and the volume velocity, that is to the square of the volume 
acceleration, is vital to the low-frequency performance of a loudspeaker. Above the 
fundamental mechanical resonance frequency, determined by the mass of the moving 
parts and the volume of the cabinet, which controls the stiffness of the contained air, the 
cone acceleration per unit electrodynamic force is independent of frequency; therefore, 
so is the radiated sound power. 

At higher frequencies, the monopole model is no longer appropriate because the phase 
of the sound pressure generated at any field point by a small surface element of the cone 
varies considerably with the location of the element. This gives rise to the directional 
radiation characteristics of loudspeakers, which you can readily observe by disconnect- 
ing one of your stereo speakers, mistuning your radio tuner to produce an approxima- 
tion to white noise, and walking around the live speaker. 

Rayleigh's second integral (Eq. (6.49)) may be employed to derive a general expression 
for the sound pressure generated by the baffled piston. Before presenting the results of 
mathematical analysis, it is instructive to consider the far field radiation from a 
reciprocal point of view. Consider a field point and a surface point. The Green's function 
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Fig. 6.16 Qualitative illustration of the variation of the blocked pressure distribution (rigid surface 
Green's function) on a piston due to insonification by a point monopole source: (a) low ka, far 
field, on-axis; (b) high ka, far field, on-axis; (c) high ka, geometric near field, on-axis; (d) high ka, 
far field, off-axis. 
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Fig. 6.17 Radial sound intensity distribution in the far field of a circular piston in a rigid baffle at 
(a) ka -- ~z/4; (b) ka - ~; (c) ka = 4~z. Reproduced with permission from Kinsler, L. E., Frey, 
A. R., Coppens, A. B. and Sanders, J. V. (1982) Fundamentals of Acoustics, 3rd edn. John Wiley & 
Sons, New York. 

for this pair of points, which has zero normal derivative on the plane surface, is 2g(XlXs). 
The surface distribution of this function is illustrated in various cases by Figs 6.16 (a-d). 
Equation (6.49) shows the field pressure as being proportional to the surface integral of 
the product of the normal surface acceleration and the surface Green's function. The 
former is spatially uniform, and therefore the pressure at the field point is proportional 
to the integral over the piston of the blocked pressure distribution. These patterns clearly 
reveal why the radiated field is increasingly concentrated near the axis as frequency 
increases. Figure 6.16(c) also suggests that the pressure can be zero at certain positions 
on the piston axis. Graphical construction of this type in the form of Fresnel zones is 
employed in Chapter 12 to provide an explanation of edge diffraction by screens. 

The details of the mathematical solution to Rayleigh's equations for a piston are not 
considered to be of sufficient interest or value to the engineering student to be presented 
here; the mathematically curious may consult Acoustics. An Introduction to Its Physical 
Principles and Applications (Pierce, 1989 - see Bibliography). It yields the following 
general expression for the pressure in the far field where r/a >> 1 and >> ka: 

FJl(ka sin 0)7 e -jkr 
fi(r, O) - j p o  c kaZfin L k---as~n? J r (6.53) 

in which J1 is the first-order Bessel function (see Fig. 8.27). The far field root mean 
square (rms) pressure distribution is plotted for various values of ka in Fig. 6.17, which 
shows the increase in directivity with frequency. When ka sin 0 >> 1, J1 (ka sin 0) has 
zeros at angles given by 
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Fig. 6.18 Mean intensity fields generated by a circular piston of radius a, vibrating in a rigid baffle 
at (a) ka = 2; (b) ka = 25. Reproduced with permission from reference [5.1]. 

0 = sin-  1 (o~/ka) where c~ = 3.832, 7.016, 10.173, .. . ,  n + ire 
(integer n >> 1) (6.54) 

The mean intensity vector field is shown in Fig. 6.18 for two values of ka. Zeros on the 
axis occur only in the geometric near field (see Section 6.8) at values of kr which satisfy 
k[(r 2 + a2) 1 / 2 -  r ] -  2mr, for which n = 1 gives the distance of the furthest zero. If 
ka < 2~z this equation has no real solution. 

Integration over the piston surface of the fluid reaction pressure yields the ratio of 
complex amplitude of reaction force to piston velocity, which is the mechanical- 
equivalent radiation impedance Zm, rad. For values of ka much less than unity, the 
radiation impedance is given approximately by 

Zm, ra d ~ po c rca 2 [(ka)2/2 + j(8ka/3rc)], ka << 1 (6.55) 

The inertial component of the impedance varies linearly with ka and greatly outweighs 
the resistive component which varies as the square of frequency. This component of 
impedance is not inconsiderable compared with that of a light loudspeaker cone of mass 
M, the ratio being equal to 8poa3/3M. The exact form of the equivalent specific acoustic 
radiation impedance ratio Zm, rad/pOCTZa 2 is plotted in Fig. 6.19, from which it is seen that 
the resistive component asymptotes to unity and the inertial component tends to zero as 
ka increases to values well above unity. The equivalent plot for an unbattled piston is 
also presented in Fig. 6.19. The sound power radiated on one side of the baffle by a 
piston is given by V2 IZTn] 2 Re {Zrad}. 

6.7 D i rec t iv i ty  and sound p o w e r  of  d is t r ibuted sources 

Most sources of practical interest display the phenomenon of 'directivity' in which the 
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Fig. 6.19 Radiation impedance ratios of baffled and unbaffled pistons. Radiation impedances as 
follows: (1) Xrad/l~aZpo c for an unbaffled piston; (2) Xrad/l~aZpo c for a baffled piston; (3) Rrad/ 
l~a2po c for an unbaffled piston; (4) Rrad/l~a2po c for a baffled piston. Reproduced with permission 
from Rschevkin, S. N. (1963) Lectures on the Theory o f  Sound. Pergamon Press, Oxford. 

far field mean square pressure and intensity vary with angular position with regard to the 
source. This is the result of interference (not interaction) between the sound fields 
radiated from the elemental sources distributed over the surface of the source. Consider 
the sound pressures generated at a point by two point monopoles of arbitrary time 
dependence. The total sound pressure at any time is equal to the sum of the sound 
pressures generated by each source acting alone. Hence there are three contributions to 
the squared pressure: 

p2(t) - p2(t)  4- p22(t) 4- 2 p l ( t ) p 2 ( t )  (6.56) 

It is immediately seen that the squared pressure is not equal to the sum of the squared 
pressures generated by each source acting alone, unless the product term plp2  is zero. If 
not, it acts so as to modify that sum; it may be positive or negative. In cases of 
continuous sources which are steady in a time-average sense (time-stationary sources) 
this interference term is defined to be the zero time delay cross-correlation of the 
pressures generated by the individual sources. 

The individual pressures are given by Eq. (6.23) as 

p(r ,  t) = (po /4~zr )Q( t -  r/c) (6.57) 

in which the time derivative of each volume source strength is evaluated at a so-called 
'retarded time', which accounts for the time taken for the sound to travel from the source 
to the observation point. Equation (6.56) can therefore be rewritten as 

p2(t) -- p21(t) + p2(t)  + (p20/16~z2rl r2)01(t - rl /C)Q2(t  - r2/c)  ( 6 . 5 8 )  

The third term on the right-hand side contains the cross-correlation of the volume 
accelerations of the sources at relative time delay ~ - (rl - r2)/c. This is a measure of the 
time-average relation between the strength of one source and the time-shifted strength of 
the other. The spatial distribution of source strengths over the surface of most practical 
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vibrational sources is such that the time-delayed cross-correlation of surface acceleration 
is non-zero for surface elements lying within some finite range of each other but decays 
to zero at large distances. This acceleration range depends upon both the physical nature 
of the source and its spectral bandwidth, generally decreasing as bandwidth (or number 
of contributing modes) increases. This source characteristic controls the directivity of far 
field mean square pressure. 

In the case of the uniformly vibrating piston treated in the previous section, the 
cross-correlation of normal acceleration at any two points on the piston is a 
cosinusoidal function of the time delay. The time delay relevant to any observation 
point is the difference of pathlengths from the points on the piston to the observation 
point, divided by the speed of sound. Where the pathlength difference is an odd 
number of half wavelengths the correlation is negative and where the pathlength 
difference is an integer number of wavelengths the correlation is positive. Because the 
correlation between different frequency components is zero, the summation over 
frequency of the individual frequency interference effects between all the elemental 
volumetric sources on the piston surface determines the directivity pattern in any 
frequency band. The single-frequency directivity pattern is quite complex at values of 
ka greater than unity, and varies with frequency. If the piston vibration spectrum is 
broadband and fairly flat, the far field distribution of mean square pressure is the sum 
of each single-frequency distribution, and is therefore much smoother than at any one 
frequency: in particular it exhibits no deep minima, unlike the single-frequency pattern. 
This is fortunate for audio loudspeaker systems, which normally radiate rather 
broadband signals. 

6.7.1 Sound power  of  a source in the presence of a second source 

Since far field intensity is proportional to the mean square pressure, and the total 
radiated sound power is equal to the far field surface intensity integrated over a 
spherical surface, it is evident from the above that the sound power radiated by one 
elemental source can be influenced by the presence of another correlated source. The 
physics of this phenomenon becomes clear if we consider the mechanics of sound 
energy production by a small element of a harmonically vibrating surface. The time- 
average rate at which the element does work on a contiguous fluid is given by the time- 
average product of the volume velocity and the component of the fluid reaction force in 
phase with the velocity. The presence of another surface element vibrating at the same 
frequency induces an additional pressure on the original element. Consequently, its 
radiated sound power is altered if this additional pressure has a component in phase 
with the velocity of the element. The power may be increased or decreased, depending 
upon the relative signs of the two components of pressure. The effect is, of course, 
mutual. 

The phenomenon may be illustrated by the mutual effect on the sound power radiated 
by two harmonic point monopoles, each of volume velocity Q0, separated by a distance 
d. The complex amplitude of sound pressure induced by one on the other is given by 
lY(d) = +_ j~opoQo exp ( -  jkd)/4~zd, where the plus and minus signs relate to in-phase and 
anti-phase monopoles, respectively. The sound power generated by each source in 
working against this induced pressure is given by 

Wi : +�89 (Q0P*(d)) : +�89 Qol2(~po/4~d)sinkd (6.59) 
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Fig. 6.20 Influence on the sound power of a point monopole of the presence of another point 
monopole as a function of non-dimensional separation distance: (a) in-phase neighbour; (b) anti- 
phase neighbour. 

The total power radiated by each monopole is the sum of this term and that produced by 
the monopole in isolation, given by Eq. (6.19). The result is 

I sin kd] 
W - -  mm--[- m i -  m m 1-[- kd J 

Wm[(1 _+ [1 - (kd)2/6])], 

(6.60a) 

kd << 1 (6.60b) 

The modifying factors 1 +_ sin kd/kd are plotted against non-dimensional distance (or 
frequency) kd in Fig. 6.20. The distance dependence arises from the decrease of induced 
pressure with distance d. The frequency dependence arises from linear dependence of 
radiated pressure on frequency. The reason for the inefficiency of power generation by 
compact dipoles in relation to single monopoles is evident from these results, which also 
explain the effect on bass frequencies of moving a baffled loudspeaker towards a hard 
reflecting surface: its image constitutes the other source. Listen to the effect at about 
400 Hz. It also explains the low radiation efficiency associated with the higher-order 
vibration modes of a surface at frequencies where the vibrational wavelength is much 
less than the acoustic wavelength, which was described earlier as a cancellation 
phenomenon. 

This mutual power modification phenomenon influences the power radiation of all 
spatially extended vibrational sources of sound. It may be dramatically demonstrated by 
exciting two small loudspeakers with a common 'pink noise' signal. With the same 
polarity of speaker inputs, the effect of bringing the speakers together, face to face, is 
subjectively minimal (+ 3 dB). With opposite polarity, the lower frequencies virtually 
disappear. If independent pink noise signals are fed to each speaker no mutual influence 
is observed. These effects are not convincingly demonstrated with tonal signals because 
of the radical change of directivity as the speakers are brought together, compounded by 
room acoustic interference effects. 

A similar dramatic effect is observed if an unbaffled loudspeaker at low ka is moved 
face-on towards a parallel wall: an approximation to a quadrupole source is created. The 
vibrating prongs of a tuning fork struck by a soft object, which individually constitute 
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dipole sources, also produce a quadrupole-like source. It is so inefficient in the absence of 
a sounding board that it must be brought very close to the ear and rotated about its axis 
for its directional effects to be observed. (Why must the striker be soft to produce a 
convincing effect?) An A4-sized sheet of thick card or thin plywood, vibrating at low 
audio frequencies, radiates principally from edge dipoles because cancellation suppresses 
radiation from the central region, as explained in Chapter 10. Tap the centre of such a 
sheet with a pencil and listen to the change in sound spectrum as it is moved towards a 
parallel hard surface. The edge dipoles form quadrupole sources with their images, 
which are extremely inefficient at low frequencies. 

The above analysis also reveals why the sound power of a tonally excited 
loudspeaker is strongly affected by its position in a reflective room. The additional 
induced pressure is created by multiple reflection from the room surfaces. Because a 

Fig. 6.21 (a) Resonator elements installed in the armature housing of an electric motor. (b) Noise 
spectrum without resonator. (c) Noise spectrum with resonator installed. Courtesy of Turkelek- 
trik, Istanbul. 
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loudspeaker essentially constitutes a generator of volume velocity, the radiated power 
is maximum at pressure maxima in the interference field, and minimum at minima. 
This phenomenon occurs at all frequencies and is not exclusive to room resonance 
frequencies, although it tends to be more evident thereat. If an octave band signal is 
used, the 'colour' of the sound varies with position as different frequency components 
are either enhanced or attenuated. A good example of noise control by the modifica- 
tion of source loading is illustrated by Fig. 6.21, which shows how the tonal noise of a 
compressor motor was greatly reduced by installing acoustic resonators in the 
armature rotor housing. 

6.8 Zones of a sound field radiated by a spatially extended 
source* 

The interference effects described in the previous section produce very complex 
distributions of sound pressure, particle velocity and intensity in the fields radiated 
by sources that are not very small compared with an acoustic wavelength. These are 
specific to each geometry and source strength distribution. However, for the purpose 
of discussing field distributions, particularly in relation to field measurement proce- 
dures and data interpretation, it is useful broadly to divide a radiated field into a 
number of zones. These should not be thought of as precisely defined or sharply 
separated and, except for the near field, they relate to radiation into free field (no 
reflections). The zones are qualitatively illustrated in Fig. 6.22 in relation to a vibrating 
body. 

Very close to a vibrating surface, typically within a distance of less than 50-100 mm, 
the sound pressure is closely related to the local surface normal acceleration, the sound 

* 'Spatially extended' means that the source extends over several wavelengths. 
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pressure is nearly in quadrature with the local particle velocity, and the magnitude of the 
p__article velocity greatly exceeds p/poc. The sound intensity magnitude is much less than 
p2/poc and the individual frequency intensity vector usually exhibits circulatory patterns, 
with sound power leaving some areas and entering others. It is incorrect, and totally 
misleading, to extrapolate local intensity vectors into the far field. This region is termed 
the 'hydrodynamic near field'. The less efficient the source, the stronger and more 
extensive is the near field. Its extent usually decreases with increasing frequency, as a 
source becomes more efficient. 

In the 'geometric far field', where the source subtends a solid angle of much less than a 
steradian at any field point, the differential attenuation of sound emitted from any pair 
of points on the source surface due to inverse distance dependence is negligible: 
interference, and hence, directivity, is controlled predominantly by phase differences 
between sound arriving from different regions of the surface. Here, the wavefronts are 
nearly spherical, the pressure and particle velocity are nearly in phase, the intensity is 
radially directed and equal to pZ/poc , and both intensity and mean square pressure vary 
inversely with the square of the distance to the source centre. 

In the intermediate region known as the 'geometric near field', where the source 
subtends a large solid angle at a field point, both differential spherical spreading and 
phase differences control interference. The mean square pressure does not vary inversely 
with distance to the source centre; the intensity vector may vary considerably in 
magnitude and phase__with variation of observation point; and the radial intensity is not 
necessarily equal to pZ/poc, although the magnitude of the total intensity vector is often 
quite close to this value. The extent of the geometric near field is also a function of 
frequency, but this dependence is rather sensitive to the phase distribution of the source 
and no generally valid guidance can be given in this respect. 

Intensity vector surveys of a radiated field, together with measurements of the 
reduction of mean square pressure with radial distance to the centre of a source, can be 
helpful in broadly establishing the extents of each of these fields. 

6.9 Experimental methods for source sound power 
determination 

It is necessary to determine the sound power of sources for the following reasons [6.6]: 

1. For the comparison of the sound powers of alternative systems and devices to aid 
purchaser/user selection; 

2. For source labelling; 
3. For predicting the sound pressure field in various environments together with 

associated adverse effects; 
4. To check regulatory or legal requirements; 
5. To aid source diagnosis; 
6. To identify the most powerful components of a system for selecting noise control 

measures. 

Sound power determination methods are internationally standardized. They take the 
following forms: 

1. Measurements are made of the mean square sound pressures at points distributed 
over an enclosing measurement surface in free field (anechoic) conditions. These are 
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converted into equivalent normal intensities on the assumption that In = p2/poc 
(LI - Lp) and the 'intensities' are 'integrated' over the surface. 

2. Measurements are made of the normal sound intensity distribution over an enclosing 
measurement surface and 'integrated' over the surface (see Chapter 5). This is the 
only reliable in situ method. 

3. Measurements are made of the space-average mean square sound pressures in a 
reverberation chamber and a balance is made between radiated and absorbed sound 
power (see Chapter 9). 

4. Measurements are made of the space-average mean square sound pressure in a room 
when excited by a source of known power. This is deactivated and the measurement is 
repeated with a source of unknown power. The sound powers are in the ratio of the 
space-average mean square pressures. 

In a non-standard method, measurements are made of the space-average mean square 
surface normal velocity of a vibrating source and this is converted to sound power by an 
assumed radiation factor (see Chapters 4 and 10: Radiation efficiency). This technique is 
employed in cases where the noise of other sources is too strong for sound intensity 
measurement to be reliable. 

6.10 Source character izat ion 

Sources may be generally characterized in the following terms: 

1. Forms of sound pressure and sound power spectra; 
2. Variation of sound power or pressure with time (acoustic signature); 
3. Variation of sound power with operating parameters such as speed and load; 
4. Mechano-acoustical efficiency; 
5. Far-field directivity. 

Studies of these characteristics can provide clues as to the mechanisms of sound 
generation, which aid the selection of appropriate control measures. Comparison of 
sound pressure level spectra with standardized spectra is used to prioritize the spectral 
bands for noise reduction (see Appendix 6). Table 6.1 lists the sound powers of some 
common noise sources. 

We have seen that the sound powers of sources of which the mechanisms have 
predominantly monopole or dipole character vary as the second or fourth power of 
frequency, respectively. Speed and frequency usually go hand in hand. However, 
mechanical forces, fluid pressures and excitation of structural resonances also vary 
with speed, which compounds the problem of characterization. Mechano-acoustical 
efficiencies are generally very small. An indication is given by Fig. 6.23, which 
presents rather dated, but still useful, data. Compilations of empirical formulae for 
the sound powers of machines and plant are presented in the Encyclopedia of  
Acoustics (Crocker, 1997) and Engineering Noise Control (Bies and Hansen, 1996), 
listed in the Bibliography. 

Fluid dynamic sources are the easiest forms of source to characterize because fluid 
flows exhibit the phenomenon of similarity, which means that flow regimes can be 
characterized in terms of a small number of non-dimensional parameters that relate 
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Fig. 6.23 Mechano-acoustic efficiency of a range of sources (1975). Reproduced with permission 
from Shaw, E. A. G. (1975) 'Noise pollution- what can be done?', Physics Today 28(1): 46. 

speed, size and frequency. Relations between unsteady fluid pressures and flow speed are 
also well known and invariant over broad ranges of speed. This is exemplified by sound 
radiation from free subsonic turbulent jets, for which generalized data is shown in Figs 
6.24 and 6.25. The dependence of the sound power generated by subsonic turbulent jets 
on the relative speed of the jet and external fluid to the power eight is the principal reason 
why it has been possible to reduce aircraft noise by about 25 dB(A) (a factor of about 300 
in sound power) in the past 25 years, through the introduction of high bypass ratio 
engines. 
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Questions 

6.1 A point  monopo le  source generates a sound pressure level of  60 dB at a distance of  
1 in at a frequency of  200 Hz. Calculate its volume velocity ampl i tude  and sound  
power.  Also calculate the rms radial particle velocity at that  distance. Check your  
estimate of  sound power  by integrat ing the radial intensity over a spherical surface 
of  1 m radius. 
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6.2 Two harmonic point monopoles of the same frequency, equal volume velocity 
amplitude Q, and opposite sign, are placed a distance d apart in free field. By 
considering the pressures imposed upon each by the other, and by using the 
expression W = (1/2)Re {Q/~*}, where p is the sum of self-induced and imposed 
pressure, derive an expression for the total sound power of the system. Compare 
your expression with kd << 1 with that for a dipole in Eq. (6.35b). [Hint: The sound 
power of an isolated monopole is given by (1/2) Re {Q/~*}, where p is the self- 
induced pressure.] 

6.3 A conventional direct radiator loudspeaker may be modelled at low frequency as a 
rigid piston mounted flexibly in a rigid baffle. Demonstrate that, well above its 
resonance frequency, the sound power radiated per unit electromagnetic force 
applied to the voice coil is almost independent of frequency in the range for which 
Eq. (6.55) is valid. How does it vary with the moving mass of the loudspeaker unit? 

6.4 A loudspeaker unit has a moving mass of 2 x 10 -3 kg, a cone radius of 150 mm 
and a damping ratio ~ of 10-~. The volume of the cabinet is 10 litres. Compare the 
sound powers radiated per unit electromagnetic force in air and water at a 
frequency four times its resonance frequency in air. The loudspeaker is placed in 
a thin plastic bag for immersion. You may assume that the cone is rigid. Why is the 
latter assumption likely to produce a large overestimate of the sound power under 
water? [Hint" Q = F/(1r, a2Za,rad + Zm/ga 2) where Z m is the mechanical impedance 
of the moving elements in series with that of the air in the enclosure. Assume that 
Eq. (6.55) applies.] 

6.5 Check that the condition (g"/g')(d/2)<< 1 is satisfied in the far field of an 
acoustically compact dipole (see paragraph containing Eq. (6.31)). 

6.6 Check Eq. (6.35a). 
6.7 Check Eq. (6.38). 
6.8 Why must a tuning fork be struck with a rather soft object, such as a hand, in order 

convincingly to demonstrate quadrupole radiation? 



7 
Sound Absorption and Sound 

Absorbers 

7.1 Introduction 

The various processes and devices by means of which the organized motion of sound is 
converted into the disorganized motion of heat are of major importance to the 
engineering acoustician. They are exploited in many noise control systems including 
passenger vehicle trim, duct attenuators for industrial plant and building services, 
lightweight double walls in buildings, and in noise control enclosures for machinery 
and plant. They are used to reduce undesirable sound propagation in offices and to 
control reverberant noise, which exacerbates the hearing damage risk in industrial work 
spaces, and is a frequently encountered and unpleasant feature of apartment stairways, 
canteens and swimming pools, among others. Sound absorbers may be used to control 
the response of artistic performance spaces to steady and transient sound sources, 
thereby affecting the character of the aural environment, the intelligibility of unrein- 
forced speech and the quality of unreinforced musical sound. Sound absorption by 
porous ground surfaces provides substantial and welcome attenuation of road and rail 
traffic noise. 

Freely propagating sound energy in fluids is dissipated by a combination of viscous 
and thermal mechanisms. These have been neglected in previous chapters because, in 
most cases of practical interest, they exert only a weak influence on audio-frequency 
sound propagation. The descriptive section of this chapter opens with qualitative 
accounts of the molecular transport processes underlying the property of viscosity and 
the process of heat conduction in gases, which, together with the relaxation phenom- 
enon, attenuate freely propagating waves. Within the passages of porous materials that 
are commonly used to absorb sound energy, oscillatory fluid motion and the transfer of 
heat to the solid skeleton generate viscous and thermal boundary layers on the surface of 
the skeleton by which sound energy is dissipated and gas compressibility is modified 
from its adiabatic value. The molecular bases of these boundary layer phenomena are 
described, and a non-dimensional parameter that indicates the range of influence of the 
boundary layers in relation to the width of a fluid-filled channel is defined. 

The reader is then introduced to various forms of porous material that are used as 
sound absorbers. The gross properties that control the acoustic behaviour of those 
materials of which the skeleton may be assumed to be rigid are then defined. A wave 
equation based upon the momentum and mass conservation equations of the contained 
gas, as modified by the presence of the skeleton, is derived, and solutions for the complex 
wavenumber and characteristic specific acoustic impedance are presented. 

140 
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The definition and assumption of the condition of 'local reaction' of the surface of a 
porous material leads to a definition of a specific boundary impedance. This is then 
employed to derive general equations for sound power absorption coefficients. Analysis 
of sound absorption by thin and thick porous sheets, with and without rigid backing 
planes, follows. The treatment of porous sound absorbers closes with a brief analysis of 
the effects of various forms of cover sheets that are used both to protect the materials 
from mechanical damage and to tailor their absorptive characteristics to practical 
demands. The chapter concludes with sections on non-porous sound absorbers in the 
form of thin panel and Helmholtz resonators. The effects of absorbent linings on sound 
propagation in ducts are treated in Chapter 8. 

Sound absorption by liquids is more complex than in gases, especially because they 
often contain gas bubbles. Sea water also contains dissolved salts, suspensions of solid 
particles and biological organisms, all of which greatly affect sound propagation and 
energy dissipation. These phenomena are not treated for lack of space. 

7.2 The ef fects  of  viscosity, thermal  di f fusion and relaxation 
processes on sound in gases 

7.2.1 The origin of gas viscosity 
As explained in Chapter 3, the translational motion of molecules underlies the 
phenomena of temperature and pressure of gases. The normal stress (pressure) acting 
on an imaginary plane surface in a gas is explained by molecular 'collision'.* In a gas of 
uniform temperature at rest in a continuum sense, in which molecules move randomly 
with equal probability in all directions, molecular collision produces zero average net 
flux of momentum across the surface, i.e., there is static equilibrium. Most of the 
molecules approaching the surface pass through it unscathed, and the momentum fluxes 
in opposite directions cancel. However, imagine what happens if the surface separates 
two regions of gas of equal temperature flowing at different speeds in a direction 
tangential to the surface, as shown in Fig. 7.1. This involves a discontinuity of tangential 
velocity at the interface. The molecules now carry the momentum associated with the 
mean flow plus that of random motion. Pressure equilibrium still exists, but molecules 
passing through the surface from the higher-speed flow, and ultimately 'colliding' with 
molecules of the slower-moving fluid, transfer to them greater flow-directed momentum 
than is passed in the opposite direction. In continuum terms, this effect can be attributed 
to the action of a stress component tangential to the surface: in other words, to a shear 
stress that acts so as to reduce the mean velocity difference. The postulated discontinuity 
of mean flow speeds clearly cannot be maintained. At very low relative speeds, the 
tangential velocity exhibits a continuous (smooth) variation with distance from the 
interface, the gradient of which is known as the 'rate of shear'. However, the shear layer 
so formed is inherently unstable and develops transverse waves. At a sufficiently high 
relative speed, this breaks up into turbulence. This is the origin of the jet noise of aircraft 
turbo-jet engines. 

The existence of shear stresses in fluids is attributed to the property termed 'viscosity'. 
Kinetic theory and experiment show that the viscous stress is linearly proportional to the 

*Strictly speaking, 'collision' does not occur; repulsion is effected by short-range intermolecular forces. 



142 Foundations of Engineering Acoustics 

Mean 
flow 
velocity 

r - =  

, V l  

r - i  
! 

- - !  

p - i  

p - !  

Molecules passing 
between regions of 
different mean velocity 

t- t .... 
Fig. 7.! Illustration of molecular transport across a discontinuity of mean flow speed. 

rate of shear, the factor of proportionality being termed the 'coefficient of dynamic 
viscosity'. Viscous stresses are therefore essentially non-conservative and dissipate fluid 
kinetic energy into heat. It is initially surprising to learn that shear, and hence viscous 
stresses, occur even in purely plane sound waves. Consideration of the diagonals of a 
fluid element under plane strain will show that shear distortion does occur (see Fig. 3.2). 
Not surprisingly, in view of its origin in molecular momentum transport, gas viscosity 
increases with temperature. On the other hand, liquid viscosity is caused largely by 
molecular attraction, which is weakened by temperature increase. 

Another mechanism of conversion of sound energy into heat operates in gases that 
have more than one atom per molecule (diatomic or polyatomic). When a gas has work 
done on it by sudden compression, the kinetic energy of translational motion of the 
molecules increases virtually instantaneously, and the pressure, density and temperature 
rise. Some of this energy is subsequently fed into rotational and vibrational energy of the 
molecules, and the pressure falls: this is termed 'relaxation'. If the compression is 
reversed sufficiently quickly, negligible translational energy is lost and the work of 
compression can be fully recovered during expansion. If the compression-expansion 
cycle is sufficiently slow, thermodynamic equilibrium between the different energy 
'modes' has time to be established, and again, the process is reversible. If the oscillation 
period lies somewhere in between these extremes, some sound energy will be irreversibly 
lost to the internal energy of the gas. Consequently the gas will not behave perfectly 
elastically, but will have a complex bulk modulus, and exhibit a form of hysteretic 
behaviour known as 'viscoelasticity' in which the pressure is a function of both 
volumetric strain and its time derivative. Pressures are then not fully in phase with the 
associated volumetric strains. This behaviour is attributed to the property of 'bulk 
viscosity', which is a rather misleading term since its origin is quite different from the 
momentum transport process that underlies dynamic viscosity. 

7.2.2 The effects of thermal diffusion 

Sound waves contain gradients of temperature between regions of temporarily increased 
pressure, density and temperature and regions of simultaneously decreased pressure, 
density and temperature. Thermodynamic theory informs us that heat energy must flow 
in proportion to the product of the temperature gradient and the thermal conductivity of 
the medium. In gases, the mechanism is one of molecular diffusion. In Chapter 3 it was 



7. Sound Absorption and Sound Absorbers 143 

assumed that, at audio frequencies in air, heat flow is negligible because of a combina- 
tion of half wavelengths that are extremely long compared with the average distance 
travelled by a molecule between collisions (mean free path), and low thermal conductiv- 
ity on account of low density. This assumption is not exactly true, and the weak flow of 
heat that does occur is irreversible, leading to some loss of sound energy. 

The effects of viscosity and thermal diffusion on free wave propagation are similar in 
magnitude; both increase with the square of frequency. However, they are so small in dry 
air that the attenuation of sound pressure level of a plane sound wave is only about 1 dB 
per km at 1 kHz. 

7.2.3 The effect of molecular relaxation 

We have seen that the translational energy of diatomic and polyatomic gas molecules 
can be passed into other forms of molecular energy involving rotation and vibration. 
This effect is negligible in dry air, but the presence of water molecules alters the 
vibrational relaxation time of the nitrogen and oxygen molecules of the air to such an 
extent that the resulting attenuation at audio frequencies is large enough to have a 
significant effect on outdoor sound propagation over large distances. For example, at a 

--1 temperature of 20~ and 50% relative humidity, the atmospheric attenuation in dB m 
is five times that quoted above for dry air. Molecular relaxation absorption even reduces 
the reverberation time of large spaces such as auditoria and reverberation chambers at 
frequencies in the kHz range. This causes a problem in the use of small-scale models of 
auditoria to refine the design. The appropriate frequency range is scaled up by the 
inverse of the length scale, and the unrepresentatively high attenuation has to be avoided 
by the use of dried air or nitrogen. The attenuation of sound in air caused by the 
combined effects described above is quantified in Fig. 7.2. 

7.2.4 Sound energy dissipation at the rigid boundary of a gas 

Shear stresses are exerted on fluids by contiguous solid surfaces with which they are in 
relative tangential motion. The stress arises from the interaction between the atoms of 
the two media. (Few solids have an identifiable molecular structure, so we refer here to 
atoms.) Experiments on gases have shown that a large proportion of the molecules that 
approach a polished solid surface do not bounce off like elastic balls. Because they are 
subject to the attractive forces of the atoms of the solid in the vicinity of the point of 
impact, they are 'captured' and 'dwell' or 'stick' for a brief period before leaving, during 
which time they may exchange energy with the solid [7.1]. Irrespective of angle of the 
approach trajectory, the angles of release trajectories are nearly symmetrically distrib- 
uted about a normal axis fixed in the solid. Consequently their average velocity 
component directed parallel to the surface is forced to equal that of the surface. This is 
known as the 'no-slip' condition; it explains why it is not possible to blow the dust off a 
car, however fast one drives. 

The change of streamwise momentum imposed upon the impacting molecules by the 
surface is the origin of the surface shear stress that generates 'skin friction drag' on solid 
bodies moving through gases and on gases moving past static solid surfaces. Subsequent 
collisions of released molecules with molecules in the gas that have not impacted the 
surface tend to reduce the relative mean velocity of gas and solid. The result is to produce 
a variation of mean flow velocity relative to the surface from between zero at the surface 
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Frequency/pressure (Hz/atm) 
Fig. 7.2 Sound attenuation in atmospheric air. The attenuation coefficient for atmospheric 
absorption is given as a function of frequency and relative humidity. All parameters are scaled by 
atmospheric pressure so the chart may be used for any pressure within linear limits of the perfect 
gas law. Numbers indicate relative humidity/pressure (%/atm at 20~ 1 atm = 1.013 x 105 Pa. 
Reproduced with permission from Bass, H. E., Sutherland, L.C., Zuckerwar, A. J., Blackstock, 
D. T. and Hester, D. M. (1995) 'Atmospheric absorption of sound: further developments'. Journal 
of the Acoustical Society of America 97: 680-683. 
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to a value at such a distance as to be unaffected by the surface interaction, which is 
known as the 'free stream' velocity. The region in which the presence of the surface 
affects the relative velocity is known as a 'boundary layer'. 

Although the streamwise speed of flow in a boundary layer varies with distance from a 
plane surface, the mean pressure varies very little. This does not contravene Bernoulli's 
equation, which is only valid for an inviscid fluid. The pressure gradient normal to a 
plane surface must be negligible because there is a negligible component of mean fluid 
acceleration normal to the surface. As a result of this condition, together with the 
proportionality between the free fluid shear stress and the velocity gradient, the low 
speed velocity profile takes the laminar form shown in Fig. 7.3. When the Reynolds 
number of a flow is sufficiently high, this form of boundary layer becomes unstable and 
turbulence develops in which the transport processes are dominated by bulk mixing on a 
macroscopic scale, rather than by molecular diffusion; the associated 'Reynolds stresses' 
are responsible for sound generation. However, very close to the surface, the high 
viscous stresses suppress turbulence and a viscous sublayer exists. 

Where sound is present in a fluid that is in contact with a solid surface, and which has 
zero mean flow, acoustic particle motion parallel to the solid surface has to satisfy the 
no-slip condition. There must therefore exist an oscillatory boundary layer over the 
thickness of which the particle velocity component parallel to the local surface increases 
from zero to the value close to that which it would have in an inviscid fluid. The particle 
velocities in all but the most intense sound fields in air are so small that boundary layer 
instability does not occur. 

Where a gas is in contact with a solid, a proportion of the molecules impacting the 
surface and 'sticking' will exchange energy with the surface atoms of the solid, and come 
to thermal equilibrium with them, so that their time-average kinetic energies are equal. 
This process is quite different from that involved in changing the momentum of 
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Fig. 7.3 Laminar and turbulent boundary layer profiles. Reproduced with permission of Arnold 
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impacting molecules, because the speed (magnitude of the velocity vector) of the 
molecules is altered by energy exchange, whereas only the direction of the velocity 
vector is altered by momentum exchange. The proportion of impacting molecules that 
come to thermal equilibrium with the solid varies greatly with the type of gas, the type of 
solid and the mean temperature of the gas. Where the thermal capacity and conduction 
coefficient of the solid is much higher than those of the gas, the effect is to constrain the 
gas temperature to equal that of the surface, so that the variations of gas conditions must 
be locally isothermal, rather than adiabatic as in free waves. 

Clearly, a sound wave that satisfies the wave equation developed in Chapter 3 cannot 
satisfy either the isothermal or the zero-slip boundary conditions at the fluid-solid 
interface. Detailed analysis of the thermo-fluid dynamic equations pertinent to condi- 
tions near a solid surface is out of the scope of this book, but may be found in Theoretical 
Acoustics (Morse and Ingard, 1968 - see Bibliography). The solutions to these equations 
reveal that, in addition to the compressional sound field that we have studied so far, two 
other fields are required to meet the two boundary conditions. One is a thermal field and 
the other is a viscous field. When superimposed together upon the sound field, these 
fields allow the boundary conditions to be satisfied. The magnitudes of the disturbances 
of velocity and temperature associated with these fields decay exponentially with 
distance from the surface. Analysis shows that thickness of the region in which both 
boundary layers exert significant influence is of the order of (lU/ogpo) 1/2, where # is 
the coefficient of dynamic viscosity of the gas. For example, in air at 15~ and 105 Pa, 
with p = 1.8 x 10- 5 kg m -  1 s -  1, the thickness is of the order of 0.15 mm at 100 Hz and 
0.015 mm at 10 kHz. The extent of the penetration of the viscous and thermal influences 
of a boundary depends upon frequency because both depend upon molecular diffusion, 
which proceeds at a finite speed. 

The presence of these fields creates two causes of energy loss from the sound wave. 
Viscous stresses oppose fluid motion and are non-conservative by nature. The transition 
from an adiabatic process outside the boundary layer to an isothermal process at the 
boundary produces a complex bulk modulus in the intermediate zone, which leads to a 
rather weak conversion of sound energy into heat, analogous to the process described in 
Section 7.2.1. 

7.2.5 Acoustically induced boundary layers in gas-filled tubes 

Porous materials such as glass fibre, mineral wool, open cell plastic foam and porous 
plaster are commonly used to dissipate sound energy into heat. They contain 
multitudes of small interconnecting channels, pores and interstices. Insonification of 
such materials induces fluctuating gas flow within these passages, creating viscous and 
thermal boundary layers on their surfaces. The dimensions of the channel cross- 
sections relative to the thickness of the boundary layers affects the acoustic behaviour 
of the fluid that they contain. 

The channels in most porous materials are very complicated in form, as illustrated in 
the following section. Indeed, the term 'channel' seems rather inappropriate in cases 
where the gas space is intersected by numerous fibres and filaments of the solid material. 
However, in order to obtain a qualitative appreciation of the influence of frequency on 
the behaviour of sound waves propagating through porous materials, it is useful to 
consider a very simple model of a channel in the form of a uniform tube of circular cross- 
section. 



7. Sound Absorption and Sound Absorbers 147 

Channel wall 
,, ,,, 

(a) (b) 

Fig. 7.4 Particle velocity profiles in tubes: (a) Poiseuille; (b) Helmholtz. 

Detailed analysis of the oscillatory flow in a uniform tube of radius r shows that the 
controlling parameter is r / -  (o~por2/#) 1/2 (see Sound Absorbing Materials (Zwikker and 
Kosten, 1949) listed in the Bibliography). This non-dimensional parameter is analogous 
to Reynolds number in that it indicates the ratio of inertial to viscous forces. When 
r/<< 1, the fluid motion is controlled by viscosity over the whole cross-section of the tube 
and the particle velocity profile takes the parabolic form illustrated in Fig. 7.4(a). This 
has the effect of making the bulk fluid density appear to be 33% greater than its static 
mean density. This profile is also exhibited by low-speed steady flow through narrow 
tubes, when it is known as Poiseuille flow. In contrast, when ~/>> 1, the boundary layer 
is much thinner than the tube radius, and the oscillatory velocity profile is uniform over 
most of the cross-section, as seen in Fig. 7.4(b). In this case of so-called Helmholtz flow, 
the inertia of the fluid becomes predominant. Clearly, the particle velocity profile in a 
channel of given radius will tend to the Poiseuille form at low frequencies and to the 
Helmholtz form at high frequencies. 

The thermal and viscous influences of the solid boundary extend to approximately the 
same distance. The bulk modulus of the gas approaches its (real) isothermal value (P0) at 
low frequencies, when the molecules have time to signal the presence of the boundary 
temperature to the whole volume, and to its (real) adiabatic value (TP0) at high 
frequencies, when they don't. In the intermediate range of frequencies, the bulk modulus 
takes intermediate values that are complex. Its phase angle is small, and little sound 
energy is lost to heat. 

In summary, the presence of the viscous boundary layer effects dissipation through 
velocity-dependent resistance to fluctuating flow. It also produces an increase in effective 
bulk density when q is small, although, as explained in Section 7.4.3, topological features 
often exert a far greater influence in this respect. The presence of the thermal boundary 
layer alters the bulk modulus of the gas. Significant non-linear effects on absorption 
occur at sound pressure levels of the order of 160 dB and above. 

7.3 Forms of porous sound-absorbent  mater ia l  

Figures 7.5(a-d) show examples of the structure of a range of typical commercial porous 
cellular and fibrous sound-absorption materials. Porous plastic foam may either be fully 
reticulated (net-like) any thin membranes separating the cells having been removed 
(Fig. 7.5(a)), or partially reticulated, so that thin membranous flaps span one or more 
facets of the cells (Fig. 7.5(b)). In porous plasters and gypsum boards the larger cavities 
are connected by narrow channels. Three features of these materials make it difficult to 



148 Foundations of Engineering Acoustics 

Fig. 7.5 (a) Fully reticulated plastic foam (x 14). (b) Partially reticulated plastic foam (x 14). 
(c) Glass fibre (bonded mat) ( x 14). (c) Mineral wool of density 96 kg m- 3 ( • 14). Courtesy of Mr 
M. J. B. Shelton. 

see how the uniform tube model is capable of shedding any light on their acoustic 
behaviour. First, the cross-sectional dimensions of the interconnecting passages vary 
irregularly, making any selection of a typical value problematic. Second, in materials 
such as mineral wool and porous plastics, the model of channels seems to be untenable. 
The contained gas resides in the midst of 'forests' of fibres and connective threads, and 
discrete channels do not exist as illustrated by Figs 7.5(c) and (d). Third, the boundary 
layers on the fibres and filaments of such materials form 'around' the thin solid elements, 
rather than 'within' channels, and this geometric disparity would be expected to be 
significant. 

Although a considerable number of idealized geometric models have been devised for 
the modelling of various aspects of the behaviour of sound in porous materials, a 
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comprehensive theoretical solution to this problem has yet to be developed. The 
topological complexity of most real materials forces us to characterize them in terms of 
gross properties that can be determined by measurements made upon samples com- 
prising very large numbers of pores/fibres/cells. However, the tube model does offer a 
basis for the choice of a non-dimensional parameter on which to collapse empirical data 
on to a single curve, together with some degree of physical insight into the form of 
the results, as described in the following section. 

Pressure and velocity fluctuations in a gas contained within a skeleton of solid 
elements impose normal and shear stresses upon the elements, causing them to vibrate. 
This has a profound effect on the acoustic and vibrational behaviour of very lightweight, 
flexible materials, especially at lower frequencies where the inertial impedance of the 
solid material is small. A complete model of wave propagation within a sample requires 
knowledge of the material properties of the solid, together with a representation of the 
dynamic coupling between the fluid and solid phases. Such 'poroelastic' models do exist 
(see Propagation of Sound in Porous Materials (Allard, 1996), listed in the Bibliography, 
and reference [7.2]), but a detailed account lies outside the scope of this book. We shall 
therefore assume the skeleton to be rigid throughout the rest of this chapter. 

7.4 Macroscopic physical properties of porous sound- 
absorbing materials 

As explained above, it is impossible to predict the behaviour of most sound-absorbent 
materials entirely on the basis of theoretical models, principally because of their 
geometric and structural complexities. Commercial software for modelling vibro- 
acoustic fields in poroelastic materials is now available, but it requires substantial 
inputs of empirical data. Many experimental studies of the behaviour of common sound- 
absorbent materials of which the structural skeletons are effectively rigid has shown that 
there are three gross parameters that principally control their sound absorption 
characteristics. The meaning and physical origins of these parameters will now be 
explained and their influences discussed. 

7.4.1 Porosity 

Porosity is defined as the ratio of the volume of voids to the total volume occupied by the 
porous structure: it is symbolized herein by h. It is generally in excess of 0.95 in mineral 
and glass wools and porous plastic foams, when it has a minor influence on fluid 
compressibility, but can be considerably lower in acoustic plasters. As shown by Fig. 7.6, 

Fig. 7.6 Illustration of the difference between u and u'. 
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the cross-sectional-average particle velocity (or volume velocity of the flow per unit 
cross-sectional area) u' in a plane wave is related to the average particle velocity u within 
the channels of the material by 

u = u ' /h  (7.1) 

7.4.2 Flow resistance and resistivity 

In all common forms of porous sound-absorbent material, viscous fluid forces dominate 
over inertial forces at frequencies in the lower part of the range of interest for noise 
control-  typically from 20 to a few hundred Hz. Hence, the viscous resistance exerted by 
a material in response to low-frequency osc i l l a tory  flow approximates closely to that 
produced by the passage of low-speed s t e a d y  flow of equal magnitude. The transition to 
the Helmholtz-type velocity profile in tubes as frequency increases, together with the 
results of current research, suggest that this equivalence does not apply to frequencies 
above a few hundred Hz in some forms of material; however, we shall adopt it here for 
simplicity. Such resistance is readily experienced by blowing steadily through a sheet of 
porous foam. The viscous resistance to a steady passage of air is proportional to air 
speed and to the thickness of the sheet. Consequently, in cases of bulk materials, a more 
appropriate measure is the 'flow resistivity' (or 'specific flow resistance'), which is defined 
as the steady pressure difference Ap across a sheet, normalized upon the product of the 
steady volume velocity per unit area, u' and the sheet thickness t, thus" 

~r = A p / u ' t  = ( ~ p / ~ x ) / u '  (7.2) 

The 'flow resistance' of a sheet of material of thickness t is given by at. In the case of thin 
porous sheets, the pressure difference per unit volume velocity per unit area (flow 
resistance) is the appropriate measure. Try blowing through various forms of cloth sheet. 
(Note: care should be taken when consulting sources of resistance data to ascertain 
whether values of resistance or resistivity are being quoted-  check the units.) 

A standardized method of DC flow resistivity measurement is available [7.3]. Various 
dynamic methods have also been devised [7.4, 7.5]. An alternative simple method of 
measuring dynamic flow resistance, which can be considerably different from the DC 
value, is described in Appendix 7. The flow resistivities of common absorbent materials 
typically lie in the range 2 x 103 to 2 x 105 kg m -3 s-1. For a given material bulk 
density, flow resistivity increases strongly as fibre diameter is decreased. Some examples 
of flow resistivity are presented in Fig. 7.7. 

Textbooks on fluid dynamics show that the pressure gradient along a single uniform 
tube of radius r carrying steady Poiseuille flow at volume flow rate Q is given by 
~ p / ~ x  -- - 81~Q/rcr 4. If there are n parallel tubes per unit cross-sectional area, the relation 
becomes Op/Ox - - 8 # Q ' / h r  2, in which Q' is the volume flow rate through unit area and 
h = nrcr 2 may be defined as the 'porosity' of the system. Measurements of steady 
volumetric flow rate through a sheet of porous material of known porosity which is 
subjected to a known pressure difference, may therefore be interpreted in terms of an 
effective pore radius, which may be used to estimate the order of magnitude of the 
parameter r/(Section 7.2.5). In fact r 2 which appears in r/, may be replaced by 81~/hcr to 
give r / -  (8 copo/ha)  1/2. Since h 1/2 ~ 1 for most useful porous materials, this suggests that 
the non-dimensional frequency parameter ~r/copo might be effective in collapsing various 
measures of their acoustic characteristics, as is confirmed by Fig. 7.8. 
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Fig. 7.7 Examples of flow resistivity of various sound-absorbing materials. (a) 1, ISOVER glass 
fibre 'hyperfine'; 2, cotton; 3, polyurethane foam; 4, KLIMALIT, mineral wool; 5, fibreglass, not 
weavable; 6, fibreglass, textile fibre; 7, aluminium wool. (b) 1, Kaoline wool; 2, glass fibre 
'superfine'; 3, ISOVER glass fibre; 4, ISOVER basalt wool; 5, basalt wool; 6, SILLAN, mineral 
wool; 7, glass fibre, thick. Reproduced with permission of John Wiley & Sons, Inc., from Mechel, 
F. P. and V~r, I. L. (1992) Chapter 8 in Noise and Vibration Control Engineering (L. L. Beranek and 
I. L. V6r, eds). John Wiley & Sons, New York. Copyright �9 1992. 

7.4.3 St ructure  factor  

Viscothermal phenomena alter the effective density and compressibility of a gas under- 
going oscillatory motion within a rigid skeleton from that in a free volume. Clearly, the 
speed of sound within an absorbent material will be influenced by these differences. 
Topological features have even greater influence, as described below. The phase speed is 
always less than the free wave speed. This feature has a vital influence on sound 
absorption by porous sheets mounted on a reflective surface, because they exhibit 
absorption maxima and minima at the acoustic resonance and antiresonance frequen- 
cies, which correspond respectively to odd multiples of one quarter wavelength and 
multiples of one half wavelength of the sound propagating within the porous material. 

The various influences of the geometric form of the skeleton on effective density and 
compressibility are lumped together into the 'structure factor' symbolized by s. It 
represents the ratio of the effective fluid density to its free space value. The various 
principal geometric features that contribute to the structure factor are as follows: 

1. Abrupt changes in cross-section occur in the interconnecting passages in many 
porous materials, particularly at the junctions between cavities and channels. As 
explained in Chapters 4 and 8, the presence of non-axial oscillatory flow in these 
regions produces a local augmentation of apparent fluid density. 

2. Where channels run at an angle 0 to the direction of wave propagation, the pressure 
gradient in the wave propagation direction is greater than that along the channel axis, 
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Fig. 7.8 Illustration of the collapse of normal incidence coefficients of very thick samples on the 
non-dimensional parameter fpo/cr. Reproduced with permission of John Wiley & Sons, Inc., from 
Mechel, F. P. and V6r, I. L. (1992) Chapter 8 in Noise and Vibration Control Engineering (L. L. 
Beranek and I. L. V6r, eds). John Wiley & Sons, New York. Copyright �9 1992. 

as illustrated by Fig. 7.9. Also, the fluid acceleration along the channel axis is greater 
than its component in the wave direction. These two factors contribute a see 2 0 factor 
to the structure factor. The degree of irregularity and variation of channel direction is 
represented by the 'tortuosity' of a material, which can be evaluated by making 
ultrasonic transmission measurements [7.6]. 

3. Some forms of sound absorbent, such as porous plaster and gypsum boards, contain 
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Fig. 7.9 Non-axial pore orientation. 

small discrete cavities linked by narrow channels. The former contain most of the gas 
and make the principal contribution to compressibility. Viscous stresses created by 
oscillatory flow in the latter constitute the principal dissipative agent. Some propor- 
tion of the cavities take the form of 'side pockets' in which the gas is subject to 
volumetric strain but does not take part in the oscillatory flow in the associated pores. 
The pressure generated by a given volumetric strain of the fluid in the pore is hence 
lower than it would be in the unconstrained gas, thereby producing an increase in 
effective compressibility and a reduction in sound speed. (Bubbles of gas in a liquid 
have a similar effect. The gas, which is far more compressible than the liquid 'soaks 
up' the strain. The liquid, which is therefore allowed to behave virtually incompres- 
sibly, contributes almost all the inertia.) 

The combined effect of these factors is to produce a structure factor that tends to lie 
between about 1.2 and 2.3 for fully reticulated porous plastics and fibrous materials, but 
can take considerably higher values for partially reticulated foams, porous plasters and 
gypsum boards. The Celotex acoustic tile, invented in the 1930s, is a dense fibrous board 
perforated by numerous holes of about 6 mm in diameter. The fibrous material plays the 
r61e of side pockets to the principal channels, producing a very high structure factor at 
low frequencies. The correspondingly low sound propagation speed increases the 
effective acoustic thickness of the tile. 

7.5 The modif ied equation for plane w a v e  sound propagation 
in gases contained wi th in  rigid porous materials 

In Chapter 3, the plane wave equation was derived from the linearized equations of 
conservation of mass and momentum, together with the linearized adiabatic relation 
between fluid pressure and density. In the following, the conservation equations are 
modified to account for the effects of porosity, structure factor and flow resistance, 
together with any deviation from adiabatic compressibility. 

7.5.1 Equation of mass conservation 

The one-dimensional mass conservation equation for an unconstrained fluid (Eq. (3.10)) 
must be modified to allow for the influence of the volume occupied by the solid material 
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and for any deviation of the bulk modulus from 7P0. For plane waves, 

(PolK) ap/Ot + (po/h) Ou'/ax = 0 (7.3) 

where • is the effective bulk modulus of the gas. In fibrous materials ~ typically varies 
from P0, at a value of a/ogpo of 100, to 7P0 for values less than 0.1. These two values of 
a/~opo typically correspond to a few tens of Hz, and 10 kHz. 

7.5.2 Momentum equation 

The equation of plane motion of an element of an unconstrained fluid (3.14), must be 
modified to account for the porosity, structure factor and the flow resistivity, thus: 

~p/Ox = -(spo/h) Ou'/Ot - au' (7.4) 

The presence of the porosity h in the first term on the right-hand side is explained by 
the fact that the average particle acceleration within the pores of the material is greater 
by a factor h than the volume acceleration per unit area which is represented by au'/at. 
The second term expresses the viscous resistance force per unit volume. In the case of 
simple harmonic motion 

ap/ax = -(spo/h - ja/~o) Ou'/at (7.5) 

Comparison with Eq. (3.14) allows the term (spo/h-ja/~o) to be interpreted as a 
complex density. This somewhat unsettling interpretation is simply one way of expres- 
sing the fact that harmonic pressure and particle acceleration in a plane travelling wave 
are not in quadrature inside a porous medium as they are in free space. Note that the 
ratio of the real to the imaginary part of the complex density increases with frequency, 
confirming the earlier statement that viscosity controls low-frequency propagation and 
inertia controls high-frequency propagation. 

7.5.3 The modified plane wave equation 

Differentiation of Eq. (7.3) with respect to time and of Eq. (7.4) with respect to x, and 
elimination of the common term O2u'/Ox Ot, produces the following plane wave equation 

a 2 p / a x  2 - (spo/K) a2p /a t  2 - ( a h / x )  @ / a t  = 0 (7.6) 

The effects of parameters h, s and o, together with altered bulk modulus K, are to alter the 
speed of propagation of plane waves from its free wave value and to attenuate the wave 
as it propagates. Note that Eq. (7.6) becomes Eq. (3.17) when a = 0, x = )'P0, s = 1 and 
h = l .  

7.5.4 Harmonic solution of the modified plane wave equation 

The harmonic solution of the modified plane wave equation takes the form 

p(x, t) = A exp ( - j k ' x )  exp (jolt) (7.7) 

The complex wavenumber k' takes the place of k in the free wave equation (3.23). We 
write 

k' =/~ - j~ (7.8) 
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Fig. 7.10 Exponential attenuation of a progressive harmonic wave: instantaneous pressure 
distribution. 

in which a is the 'attenuation constant' and fl is the 'propagation constant'. The spatial 
distribution of instantaneous pressure is illustrated by Fig. 7.10. The real phase speed of 
a plane wave is given by re~ft. Substitution into Eq. (7.6) from Eq. (7.7) yields 

( - k '2 + o92spo/K - jcoah/ t r  p = 0 

o r  

k '2 = o92(spo/K - jah/og~c) (7.9a) 

or, denoting the complex density by p', 

k '2 = (o92h/tc)p ' (7.9b) 

Substitution of this expression into Eq. (7.5) yields an expression for the characteristic 
specific acoustic impedance: 

z~ = p ( x ) / u ' ( x )  = p '~o/k '  - ( p ' K / h )  1/2 = K k ' /coh (7.10) 

which is complex, indicating that the particle velocity is not in phase with the pressure. 
The general solution of Eq. (7.9b) for the attenuation and phase constants is 

algebraically complex (see answer to Question 7.3). The attenuation per wavelength is 
given by 20 (2n~/fl)lOgl0(e) dB = 55 (~/ f l )  dB. In practice this is generally less than 
55 dB, indicating that a/ f l  < 1. By neglecting the contribution of a to the real part of k '2 
in Eq. (7.9a), we may obtain the following approximate expressions for a and fl: 

~ �89  (Ks)  -1/2 (7.11) 

and 

fl ~ (o9/c) ( s / K )  1/2 (7.12) 

where tr has been written as K p o  c2. 

Note the linear dependence of a on a. The influence of structure factor is much 
weaker. Substitution of the expressions of Eqs (7.11) and (7.12) into Eq. (7.10) yields the 
following approximate expression for the characteristic specific acoustic impedance 
ratio: 

Zc' = Zc/poC ,~ (Ks~h2) 1/2 - j ( a / 2 o g p o )  (K/s )  1/2 (7.13) 

The phase angle of the particle velocity relative to that of the pressure is given by 
~b = arctan ( - a h / 2 o g p o s ) .  The dependence on frequency reflects the relative contribu- 
tions of flow resistance and inertia noted in relation to Eq. (7.9) above. Note that the 
reactive part of Zc is a function of the non-dimensional parameter a/copo,  as previously 
signalled. The deviation of zc /poc  from unity is measure of the impedance discontinuity 
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presented by a very thick sample of porous material to an incident plane wave. This is 
responsible for the associated reflection of sound energy from the surface increases as 
frequency decreases. (Note: Eqs (7.11-7.13) are not reliable for frequencies below about 
100 Hz.) 

The result of a compilation of characteristic impedance data for open cell plastic 
foams as a function of the non-dimensional parameter E = Pof/a is presented in Fig. 
7.1 l, taken from reference [7.7]. The earliest empirical expressions for the propagation 
constants of fibrous sound-absorption materials derive from an extensive set of 
measurements made by Delany and Bazley [7.8]. Mechel has presented the following 
more accurate expressions: 

k'/k - (1 + 0.136 E -0"641) - j  0.322 E -~176 

z~ = (1 + 0.081 E-~ 0.191 E -0"556 

(7.14a) 

(7.14b) 

for E ~< 0.025 

k'/k = (1 + 0.103 E -0"716) - j  0.179 E -0"663 

z'c = (1 + 0.0563 E -0"725) - j  0.127 E -0"655 

(7.14c) 

(7.14d) 

for E > 0.025. Improved low-frequency expressions are found in [7.9]. 

7.6 Sound absorption by a plane surface of uniform impedance 

7.6.1 The local reaction model 

'Specific acoustic impedance' is defined as the ratio of complex amplitude of sound 
pressure to that of a specified vector component of the associated particle velocity. In 
cases where it relates to the sound field at the interface between different media, the 
appropriate particle velocity component is that directed normal to the interface. The 
associated specific acoustic impedance is termed the 'normal surface specific acoustic 
impedance', or the 'specific boundary impedance' for short. The specific boundary 
impedance presented to a sound wave in a fluid that falls upon the plane surface of a 
different wave-bearing medium depends upon the form of the incident wave. This is 
because the normal component of the particle velocity at any one point on the interface is 
influenced not only by the local sound pressure, but also by waves arriving from all other 
points of the excited medium. (Consider the equivalent structural case of mechanical 
excitation of a desk top by vibrational excitation forces acting simultaneously at two 
different positions.) Consequently, it is not possible to specify a unique boundary 
impedance, independent of the amplitude and phase distributions of the incident wave 
over the interface. 

Because porous sound-absorbing materials are selected for their capacity to dissipate 
sound energy efficiently, and therefore to attenuate propagating waves, acoustic 
communication within such materials is rather ineffective. Consequently, it is in many 

Fig. 7.11 Compilation of data for porous plastic foams. (a) Normalized real-part of the 
characteristic impedance Re{z'} as a function of non-dimensional variable E = fpo/tr. 
(b) Normalized imaginary-part of the characteristic impedance Im {z'} as a function of E -- 
fpo/tr. Reproduced with permission from reference [7.7]. 
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Fig. 7.12 Illustration of the resistive and reactive components of impedance. 

cases reasonable to assume that the particle velocity generated by incident sound at any 
point on the surface of a material is linearly related only to the local sound pressure, and 
is therefore independent of the form of the incident sound field. The material is said to 
exhibit 'local reaction'. On the basis of this model, a material surface may be 
characterized in terms of a unique specific boundary impedance. As shown in Section 
7.6.3, the boundary impedance of a plane sheet, or layer, of material is a function not 
only of the acoustic properties of the material, but also of its thickness and of the 
impedance at the other face. The condition of zero tangential velocity is not applicable to 
an interface between two fluid media or to that between a fluid medium and a fluid- 
saturated solid. However, this component of particle velocity is not relevant to the 
transfer of sound energy across an interface, which is a function of only the normal 
component. 

7.6.2 Sound power absorption coefficient of a locally reactive surface 

The specific boundary impedance of a porous material is usually complex. It is expressed 
in terms of its real and imaginary parts as 

Z n  - -  rn + jXn (7.15) 

in which rn and xn are termed the 'specific boundary resistance' and 'specific boundary 
reactance', respectively. For the sake of concision, henceforth these will be abbreviated 
to 'resistance' and 'reactance' in this chapter. They are illustrated in Fig. 7.12. The unit is 
the 'rayl', named after Lord Rayleigh. Because the rayl was originally defined as a cgs 
unit, equal to 1 dyn s cm-3, it is simpler to state values in kg m-2  s -  1 when using the SI 
system. In terms of appreciating the physical significance of the values of resistance and 
reactance, it is preferable to divide them by the (real) characteristic specific acoustic 
impedance of the fluid supporting the incident wave, i.e., poC. (The characteristic 
impedance of air at one atmosphere pressure and 20~ is 415 kg m -2 s-1.) These non- 
dimensional forms are known as the 'specific boundary resistance ratio' and 'specific 
boundary reactance ratio'. 

Incidence of a plane acoustic wave on an infinitely extended, plane surface of uniform 
impedance produces a specularly reflected plane wave (angle of reflection equals angle of 
incidence), as illustrated by Fig. 7.13. In practice, all material surfaces are bounded by 
edges; the edges present impedance discontinuities to the incident wave that scatter its 
energy in many directions. However, at frequencies for which the dimensions of the 
plane surface greatly exceed an acoustic wavelength, the proportion of incident sound 
power that is scattered by the edges is small, and the idealized unbounded model 
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Fig. 7.13 Incidence of a plane wave on an infinite plane surface of uniform impedance. 

provides a fairly accurate estimate of the absorption coefficient, except for angles of 
incidence close to grazing (90~ In passing, it is interesting to note that the energy of 
sound waves incident upon a room surface may be scattered into many directions not 
only by geometric irregularities, but also by covering the surface with a mix of patches 
possessing different impedances: for example a mix of acoustic tiles and plastered 
surface. This principle of impedance mixing is also exploited in the design of modern 
omnidirectional wall diffusors, used in auditoria and recording studios, which comprise 
arrays of many cavities of different depths, as described in Chapter 12. 

On the basis of the local reaction model, a general expression may be derived for the 
sound power absorption coefficient in terms of the resistance and reactance ratios and 
the angle of harmonic plane wave incidence on an infinitely extended plane surface of 
uniform impedance. Referring to Fig. 7.13, the pressures in the incident and reflected 
waves are expressed, as explained in Section 3.9.6, as 

pi(x, y, t) = A exp [j ( - k x x  - kyy)] exp (jcot) (7.16) 

and 

pr(X, y, t) = /1 exp [j(kxx - kyy)] exp (jcot) (7.17) 

where kx = k cos 4~ and ky = k sin ~b. (Note that many other texts use 0 instead of 4~.) 
At the surface plane, x = 0" 

ffs - -  (ff i  -t-- ] ) r ) x = 0  - -  ( A  -t-- B ~) exp ( - j kyy )  (7.18) 

and 

Therefore 

bTns - -  (bTni -k- bTnr)x = 0 ---- [(~zJ __ /~) COS ~/po r exp ( - j k yy )  (7.19) 

:B/A= (Zn cos ~b - 1)/(Zn COS q5 + 1) (7.20) 

t where Zn = Zn/poC. 
The sound power incident per unit area of surface is given by the component of 

incident intensity normal to the wall as 

Ii = 1 ~ 2 COS ~/po c ( 7 . 2 1 )  

and the reflected power per unit area of surface is 

Ir = �89 [/~ 2 COS c~/pOC (7.22) 
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The sound power absorption coefficient, which is defined as the ratio of the time-average 
power entering the surface (not reflected) to the sound power carried by the incident 
wave, is given by 

~(~) - (Ii - Ir)/Ii - 1 - I /~ / / l l  2 - 4r n cos ~b (7.23) 
(1 + r t COS (/))2 .~_ (X n COS (/))2 

where rn = rn/poc and Xn = Xn/poC. Both the resistance and reactance ratios influence the 
absorption coefficient. It is also useful to note that the time-average intensity transmitted 
into the sound-absorbent material is given by 

I t  = Ii - -  I r  -- 1/~sl2 Re {1/Zn) = �89 tYnsl 2 Re {Zn) (7.24) 

Equation (7.23) is one of the most important relations in sound absorption technology. 
In cases where the magnitude of the boundary impedance ratio IZn'] > 1, as is almost 

invariably true in air but not under water, an angle of maximum absorption exists. It 
may be found by deriving expressions for the first and second derivatives of ~(4~) with 
respect to 4~. The result gives the angle for maximum absorption coefficient as 

4~max = cos-1 I -~1-  a = cos-1 [(rn)2 + (Xn)2]-1/2 (7.25) 

with a corresponding maximum absorption coefficient given by 

~Xma x ' - -2  rn/()Znl + r'~) (7.26) 

As IZnl increases, the angle for maximum absorption approaches grazing (4~ - 90~ as 
illustrated by Fig. 7.14. It is apparent that the normal incidence absorption coefficient 
c~(0) can equal unity only if Xn equals zero and r'r equals unity, in which case the absorber 
is indistinguishable from a continuation of the fluid that supports the incident wave. It is 
practically impossible to devise any mechanical construction that possesses the very low 

. . . . . . .  

. . ~ ! _  

i 1 . . . . . . . . . . . . . . . . . . . . . .  
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2-3j 
1 - j  .................... 
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Fig. 7.14 Sound-absorption coefficients of surfaces of various impedances as a function of 
incidence angle. 
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impedance of air over a wide frequency range. However, it is possible to do so in water, 
as evidenced by the acoustic tiles that are attached to submarine hulls to minimize 
detection by active sonar. 

Sound fields in large enclosures are commonly modelled as being 'diffuse'. As 
explained in Chapter 9, this is a probabilistic model in which the field at all points may 
be considered to consist of mutually uncorrelated (statistically unrelated) plane waves of 
equal rms pressure that propagate in all directions with equal probability (see Fig. 9.18). 
Because absorbers are commonly used on the boundaries of enclosures, particularly in 
rooms, it is of practical importance to estimate the sound absorption coefficient of a 
locally reacting plane boundary subject to diffuse field incidence. It is assumed that many 
uncorrelated plane sound waves approach any small region of the plane surface from all 
directions within the 'half space' that lies to one side of the plane; this is called a 'hemi- 
diffuse' field (Fig. 7.15). Analysis presented inChapter 9, Section 9.12.1, shows that the 
normal sound intensity is given by In(~)= (PZ/4pOC)sin 2q5 d~b, where p2 is the mean 
square pressure in the diffuse field remote from the plane. The total absorbed power per 
unit area of surface is given by the integral of this quantity over all angles of incidence: 

f rcl2 

Wabs - -  ( p 2 / 4 P 0 C )  c~(4~) sin 24~ d~b 
J 0  

(7.27) 

The total incident power per unit area of surface is given by Eq. (7.27) with c~(q~) set equal 
to unity. Therefore the sound power absorption coefficient for diffuse field incidence is 
given by 

f 0  re/2 ~d - -  c~(4~) sin 2q5 dq5 (7.28) 

This integral can be solved analytically on the basis of Eq. (7.23) to give 

, , , , , 2 , , ed = 8F{1 - F In [rn/F + 2 r n  + l ]  + (Xn/rn)F((rn /Xn)  - 1) x arctan (Xn/(rn + 1) )}  

(7.29) 

where r = rn/(r~ + X'n 2) 
The ratio of the normal to diffuse field incidence absorption coefficients of a surface of 

given impedance depends upon the particular values of the boundary resistance and 
reactance, as exemplified by Fig. 7.16. Values of non-dimensional boundary resistance rn 
of about ~/2, together with Xn << 1, maximize Ca, because the angle for maximum e(~b) 
then corresponds to the angle of maximum normal intensity at a boundary. 

Fig. 7.15 Control surface in a hemi-diffuse field. 
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Fig. 7.16 Acoustic properties of a 100-mm thick layer of open-cell plastic foam: (a) impedance; (b) 
absorption coefficient. 

7 . 6 . 3  W a v e  i m p e d a n c e  

Equations (7.20-7.24) also apply to the plane surface of a non-locally reacting volume 
of fluid or solids, which may be modelled as infinitely extended in the directions parallel 
to the surface and as having spatially uniform properties (planar isotropy) on planes 
parallel to the surface. One may characterize the vibrational (acoustic) response of such 
a system by means of a wave impedance, previously introduced in Section 4.4.5. It is 
assumed that the surface is excited by a harmonic force field that takes the form of a 
travelling wave (Fig. 7.17). The condition of planar isotropy requires that the surface 
response takes the form of a wave having the same surface wavenumber. The 
corresponding wave impedance is the ratio of the complex amplitude of the excitation 
force per unit area to that of the resulting normal velocity component of the surface. 
Under acoustic excitation by a plane wave at angle of incidence q~, the surface 
wavenumber K -  k sin 4); this is called the 'trace wavenumber' of the incident field. 
For any such system, the sound power absorption coefficient may be obtained by 
inserting the appropriate impedance components into Eq. (7.23). Note that, unlike the 
truly locally reactive system, this impedance will vary with angle of incidence. 
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Fig. 7.17 Spatially harmonic travelling force field and associated normal velocity field. 

Application of the wave impedance concept to sound absorption is illustrated in 
Section 7.7.3. 

7.7 Sound absorpt ion by thin porous sheets 

Before embarking upon an exploration of the sound absorption properties of porous 
materials in bulk, we shall investigate the behaviour of sheets of materials that have 
negligible thickness in comparison with a wavelength at audio frequencies. Examples 
include curtain materials, furnishing fabrics, fibre retention sheets in duct attenuators, 
woven cloths of all types and very fine mesh wire screens. In recent years, a new 
generation of microporous sheet absorbers has been developed in which Poiseuille-type 
flow is maintained over a large proportion of the audio-frequency range [7.10]. The 
incidence of a sound wave upon such a material drives fluid in and out of the interstices 
between the solid fibres. This creates a pressure difference across the sheet by means of 
two mechanisms. Fluctuating viscous shear stresses are created in the acoustic boundary 
layers generated on the surfaces of the fibres; and fluid is accelerated into, and 
decelerated out of, the interstices. With woven sheets, the fibres are generally so fine, 
and the interstices so closely packed, that the latter mechanism is generally negligible 
compared with the former. This is not the case with discretely perforated sheets, as we 
shall see in due course. 

7.7.1 The immobile sheet in free field 

The porous sheet is first assumed to be sufficiently large to be assumed to be infinite in 
extent, sufficiently heavy and rigid not to move significantly, and to be in a free field in a 
uniform fluid. As illustrated in Fig 7.18, a harmonic plane wave incident at angle 
produces a specularly reflected wave and a transmitted wave. Because the inertia of the 
fluid in the pores is neglected, the pressure difference equals the viscous force per unit 
area, which is given by Ru', where R is the flow resistance of the sheet and u' is the volume 
velocity of the flow passing through unit area of the sheet. Hence, in terms of complex 
amplitudes of pressures and velocities, 

+ / ~ -  C = R if' (7.30) 
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Fig. 7.18 Rigid porous sheet insonified by a plane wave. 

Continuity of volume velocity gives 

(A-/1) cos ~b = C cos ~b = poc z7' (7.31, 7.32) 

These equations yield the following expressions for the sound power reflection and 
transmission coefficients, respectively: 

/~/~ 2 = [R' cos q5/(2 + R' cos qS)] 2 (7.33) 

I C/A 2 =  [2/(2 + R' cos ~b)] 2 (7.34) 

where R ' =  R/poc. Note that the effective sheet resistance R cos 05 decreases with 
increase of angle of incidence. 

The difference between the incident power and the sum of the reflected and transmitted 
powers is the power that is dissipated into heat by the viscous stresses. The correspond- 
ing sound power dissipation coefficient is given by 

r/(~b) = 1 -  /Y/A 2_ (7/A 2 _ _  4 R' cos 95/(2 + R' cos 05) 2 (7.35) 

The maximum value of r/(~b) = 0.5 is produced by a non-dimensional flow resistance R' 
of 2 sec qS. 

The normal specific acoustic impedance ratio at the surface of the sheet is given by 

Zn(q~) = R' + sec q5 (7.36) 

which is the sum of the sheet impedance and the (qS-dependent) wave impedance of the 
fluid on the transmission side of the sheet. This is in accordance with Section 4.3.1 
because the volume velocity is common to the two elements. Substitution of Eq. (7.36) 
into Eq. (7.23) yields an expression for the apparent sound-absorption coefficient as 
'seen' from the incident side. However, because part of this 'absorbed' power is actually 
transmitted and not dissipated, Eq. (7.35) is of more practical significance. 

7.7.2 The limp sheet in free field 

Most cloth sheets possess very little bending stiffness, so it is reasonable to model them as 
limp sheets possessing only mass and flow resistance: if not under tension they cannot 
support free wave motion, and are thus locally reactive. Fluid flow through a screen 
generates a viscous stress that is proportional to the fluid velocity relative to the screen. 
Neglect of the inertia of the fluid in the pores implies equality of viscous force per unit 
area and pressure difference, as in the case above. A limp sheet vibrates under the 
combined actions of the forces produced by viscous flow and by the pressure difference 
acting on the solid material of the sheet. The system is illustrated by Fig. 7.19, in which u' 
is the fluid volume velocity per unit area relative to the sheet and v is the normal velocity 
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Fig. 7.19 Limp porous sheet insonified by a plane wave. 

of the sheet relative to Earth. A uniform sheet, irrespective of its material properties, 
must respond in the form of a transverse wave of displacement of which the wavenumber 
matches the trace wavenumber of the incident wave. 

The relation between complex amplitudes of pressure difference and volume velocity 
per unit area relative to the sheet is 

d + / Y -  (~ = Rff' (7.37) 

Continuity of volume velocity per unit area is satisfied by 

( A -  B ~) cos ~b = (~ cos q~ = (t2' + Y)p0c (7.38, 7.39) 

and N2LM is expressed by 

jcomY = Rfi' + (A + / Y - ( ~ ) ( 1  - h) (7.40) 

where m is the mass per unit area of the sheet and h is its surface porosity. 
Solution of these equations yields the following expressions for the sound power 

reflection coefficient, the sound power transmission coefficient and the sound power 
dissipation coefficient, respectively: 

~r(~) = / ~ / A  2 __ (R' cos q5)2/[(2 + R' cos qS) z + (2(2 - h) R'poc/com) 2] (7.41) 

r(~b) = I(~/AI 2 = 411 + ((2-h)R'poc/com)2]/[(2 + R' cos qS) 2 + (2(2-h)R'poc/com) 2] 
(7.42) 

r/(qS) = 4 R' cos q5/[(2 + R' cos ~b) 2 + (2(2 - h) R'poc/com) 2] (7.43) 

from which it may be concluded that the effect of sheet motion depends principally upon 
the ratio of two non-dimensional parameters R' and com/poc. The motion of the sheet 
reduces the relative velocity of the fluid and the sheet, thereby reducing the dissipative 
effectiveness of the screen. The mass per unit area of a limp sheet must satisfy the 
following condition in order not significantly to reduce the dissipation effectiveness: 
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m >> 2(2 - h)R'poc/~o. If we assume normal incidence, R' = 2, h = 0.9 and a frequency 
of 100 Hz, the mass per unit area of the sheet must considerably exceed 1 kg m-2 ,  which 
corresponds to thick velour curtain material. The adverse effect of sheet motion on 
sound energy dissipation clearly increases with angle of incidence, because the normal 
particle velocity for a given incident pressure decreases with increasing 05. 

The specific acoustic impedance ratio at the surface of the sheet on the incident side is 
given by 

Zn = sec q5 + [jR'(ogm/poc)]/[R' + j(ogm/poc)] (7.44) 

The second term implies that the inertial impedance of the sheet acts in parallel with its 
resistive impedance because the fluid passing through the sheet and the sheet itself share 
the same pressure difference but have different velocities, in accordance with Section 
4.3.1. The combined impedance acts in series with that of the fluid on the transmission 
side. 

7.7.3 The effect  of a rigid wall  parallel to a thin sheet 

The normal specific acoustic impedance in an interference field formed by the reflection 
of a plane wave from a rigid plane wall may be deduced from analysis of the wave field 
illustrated in Fig. 7.20. The condition of zero normal particle velocity at the wall requires 
that A = / ~ .  The ratio of complex amplitude of sound pressure to that of particle 
velocity normal to the plane surface at x = - l  is 

/Y(- l, y)/tTn(- l, y) = poe sec 4) [exp (jkxl) + exp (-jkxl)]/[exp (jkxl) - exp (-jkxl)] 
(7.45) 

where kx = k cos qS. This reduces to the non-dimensional normal specific acoustic 
impedance 

Zn = --j sec ~b cot (kxl) (7.46) 

Fig. 7.20 Interference field formed by the reflection of a plane wave by a rigid plane boundary. 
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Note that it is independent of position y on any plane parallel to the wall. This 
impedance is zero at values of kxl = (2n - 1) rt/2, and is infinite at values of kxl = mr, 
for which the normal particle velocity is zero. At frequencies for which kxl << 1, that is 
to say that the acoustic wavelength is much greater than 2rcl cos ~b, Eq. (7.46) takes the 
approximate form 

Zn ~ --j  sec 2 dp/kl = - j c  sec 2 dp/col (7.47) 

which, by comparison with Eq. (4.3), may be interpreted physically as corresponding to 
that of an elastic reactance of stiffness per unit area (poc2/l)sec 2 qS. The inverse 
dependence of low-frequency Zn on frequency is of considerable practical significance 
because it implies that the presence of a thin layer of fluid trapped between a porous 
material and a rigid boundary imposes a strong constraint upon the movement of the 
fluid through the material at low frequencies, thereby greatly reducing its absorption 
effectiveness. On the other hand, we shall see in Sections 7.11.1 and 7.11.2 that this 
stiffness can be put to good use in the design of resonant sound absorbers. 

The specific boundary impedance of a limp porous screen backed by a finite-depth 
layer of uniform fluid is given by Eq. (7.44) with the real transmitted wave impedance 
sec q5 replaced by the imaginary fluid layer impedance (Eq. (7.46)). Unlike the free field 
case, we may substitute the real and imaginary components of the modified expression of 
Eq. (7.44) into Eq. (7.23) to obtain the true absorption coefficient because the wall 
reflects all the incident energy and the cavity impedance is purely reactive. The result is 
given by Eq. (7.23) with 

and 

rn = R'(com/poc)2/[(R') 2 + (com/poc) 2] 

Xn = --sec q5 cot (k c/) + (R')Z(com/poc)/[(R') 2 + (com/poc) 2] 

(7.48a) 

(7.48b) 

The backing cavity strongly affects the absorption coefficient through the value of the 
reactive component of the surface impedance Xn. At any individual angle of incidence, 
the absorption coefficient is maximized at the resonance frequencies given by 
co = (2n - 1) (nc/21) sec qS. At frequencies co = (nnc/l) sec ~b, fluid motion through the 
porous material is completely suppressed and no absorption takes place. The stiffness of 
the air in a backing cavity, such as that behind a curtain hanging against a wall, greatly 
reduces the effectiveness of porous sheet absorption at low frequencies. 

7.8 Sound absorpt ion by th ick sheets of  rigid porous mater ial  

7.8.1 The infinitely thick "sheet" 

When sound waves fall upon the surface of a rigid, locally reacting, porous material, 
fluid at the interface is driven in and out of the surface, generating waves that propagate 
within the fluid resident within the material, decaying as they travel. Because the surface 
of absorbent material necessarily presents an impedance discontinuity to the incident 
wave, a reflected wave is also generated. In order to behave as an infinitely thick 'sheet' in 
response to the incidence of sound on one plane surface, it is necessary only that a sheet 
is sufficiently thick for waves reflected from other boundaries to return to the surface 
with negligible amplitude. In such cases, the sound power absorption coefficient is 
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obtained by substituting the real and imaginary components of the characteristic 
acoustic impedance ratio (Eq. (7.13)) into Eq. (7.23). The flow resistivity of many 
widely used absorbent materials is sufficiently high that the maximum value of ~(4~) 
occurs for angles of incidence close to grazing, especially at low frequencies. This is one 
of the reasons for favouring wedge arrays in preference to plane surfaces for lining 
anechoic chambers. 

7.8.2 The sheet of finite thickness 

In many applications, porous sound-absorbent materials are used in the form of large 
plane sheets, especially in architectural applications. If a wave propagating within a 
material encounters another parallel surface of different impedance it is reflected and 
travels back towards the outer surface, where it is partially transmitted out into the fluid 
and partially re-reflected back into the material. It is clear from the previous discussion 
that, for any sheet thickness, there must be an optimum flow resistivity for maximum 
normal incidence sound absorption. If the resistivity is too high, too much energy is 
reflected at the surface. If the resistivity is too low, the waves dissipate insufficient energy 
within the material, and emerge carrying too much energy. A widely used 'rule of thumb' 
is that the product of flow resistivity and sheet thickness should be about 3por 

On the basis of the assumption of local reaction, we need only to model the one- 
dimensional case of plane waves propagating in the direction normal to the plane surface 
in order to obtain an expression for the specific boundary impedance. Figure 7.21 shows 
the wave fields set up by harmonic plane wave incidence upon a layer of porous material 
backed by a rigid plane surface. Interference fields are set up both outside and inside the 
material. The waves within the material have a complex wavenumber k' =/~ - j~, so that 
the complex amplitude of pressure may be expressed as 

p(x) - (7 exp ( - jk 'x)  + D exp (jk'x) (7.49) 

By definition of the characteristic specific acoustic impedance zc of the material, the 
volume velocity per unit area is given by 

~'(x) = (1/Zc)[C exp ( - jk 'x)  - 1) exp (jk'x)] (7.50) 

At x - 0, the volume velocity per unit area is zero, giving 

(7 = / )  (7.51) 

Fig. 7.21 Plane wave fields produced by the incidence of a plane wave upon a thick porous layer 
terminated by a rigid plane surface. 
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Hence, the boundary impedance ratio is given by 

Zn = Zc [exp ( j k ' l )  + exp ( - j k ' l ) ] / [ e x p  ( j k ' l )  - exp ( - j k ' l ) ]  = - j Z c  cot (k ' l )  (7.52) 

which corresponds to the expression for a fluid-filled layer of Eq. (7.46) with e = 0, 
[1 = kx  and 4~ = 0. 

It is difficult to obtain an appreciation of the physics of the problem from Eq. (7.52), 
so a graphical representation of the wave field phasors is presented in Fig. 7.22. Note the 
phase difference between the pressures and volume velocities per unit area in the two 
propagating waves, in accordance with the complex characteristic specific impedance 
(Eqs (7.10) and (7.13)). As a wave propagates, its phase varies with distance at a rate 
equal to the negative of the phase constant/3, and its amplitude decreases exponentially, 
in accordance with Eqs (7.7) and (7.8). The progressive decay of a wave amplitude is 
indicated by a helical phasor locus. At the termination, the pressure phasors in both 
waves are equal and the volume velocity phasors are equal and opposite, in satisfaction 
of the rigid boundary condition. 

Figure 7.22(a) shows how both the complex amplitudes of the particle velocity and 
pressure at the surface are determined by the wave interference field within the material. 
Since variation of frequency produces rotations of the phasors, it is clear that there will 
be frequencies at which the reactive component of the surface impedance is zero. The 
resistive component takes minimum values at resonance frequencies (Fig. 7.22(b)) and 
maximum values at antiresonance frequencies (Fig. 7.22(c)). This behaviour is exempli- 
fied by the normal incidence impedance curve of a 100-mm thick sheet of porous plastic 
foam shown in Fig. 7.16, in which the lowest resonance and antiresonance frequencies 
are approximately 650 Hz and 1300 Hz, respectively, followed by another resonance at 
about 2000 Hz. 

The diffuse field absorption coefficient characteristically varies far less with frequency 
because the variations of rn and Xn are moderated by the cos 4~ factor in Eq. (7.23). The 
strength of the interference phenomenon that controls the surface impedance will clearly 
decrease as the total attenuation of the reflected wave, which is exponentially dependent 
upon the product of the flow resistivity and sample thickness, increases. 

The absorption coefficient curve for a 50-mm thick sample of the same material is 
shown in Fig. 7.23, in which only the lowest acoustic resonance frequency appears. It is 
evident that this sample has a much lower absorption coefficient than the 100-mm thick 
sample at low frequencies. The physical reason is that the reactive part of the impedance 
at frequencies well below the first resonance is principally controlled by the stiffness of 
the air within the foam, the magnitude of the corresponding reactance being inversely 
proportional to frequency times thickness. According to Eq. (7.23) a value of IXn much 
greater than unity necessarily produces a low absorption coefficient, whatever the value 
of rn. This explains why thin sheets of porous material are ineffective sound absorbers 
when mounted directly against walls. 

7.8.3 The effect of a backing cavity on the sound absorption of a sheet of 
porous material 

In order to increase the low-frequency performance of a given thickness of sound- 
absorbent material, it is common practice to introduce an air cavity between the sheet 
and a rigid backing surface, so reducing the stiffness reactance of the combination. A 
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Fig. 7.22 Phasor representations of pressure and particle velocity of an interference field inside a 
layer of absorbent material terminated by a rigid surface: (a) general; (b) resonance; (c) anti- 
resonance. (Origin of x shifted to the material surface.) 

secondary, and adverse, effect is to increase the influence of antiresonances because there 
is no wave attenuation in the air layer (see Fig. 7.24). Sound waves that penetrate to the 
air layer can also propagate transversely, thereby violating the condition of local 
reaction, especially with thin porous sheets overlaying deep cavities, as in the case 
analysed in Section 7.7.3. A common solution is to subdivide the cavity by means of a 
crate-like partition system. 
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Fig. 7.23 Acoustic properties of a 50-mm thick layer of open-cell plastic foam: (a) impedance; (b) 
absorption coefficient. 

7 . 9  S o u n d  a b s o r p t i o n  b y  f l e x i b l e  c e l l u l a r  a n d  f i b r o u s  m a t e r i a l s  

Various forms of rather rigid, closed-cell (non-porous/impermeable) materials, such as 
polystyrene, are employed for their thermal insulation properties. They are generally 
very poor sound absorbers. Other closed-cell materials, such as soft plastic foam, are 
widely incorporated in furnishings. The membranes that separate the neighbouring cells 
in plastic foam materials suppress direct fluid-borne acoustic communication of the form 
predominant in porous materials. However, the solid frameworks, or skeletons, of many 
such materials are sufficiently flexible and elastic to support waves that involve coupled 
motion of the skeleton and the contained fluid. These waves generally, but not 
exclusively, have low phase speeds compared with sound in air. The principal mechan- 
isms of energy dissipation are viscoelasticity of the skeleton and irreversible heat 
conduction. Such materials are most effective at low audio frequencies. 

It should be noted that porous cellular and fibrous materials are also capable of 
supporting waves that involve coupled motion of the fluid and solid phases. The two 
media are coupled by the agencies of normal and viscous stresses. Two forms of 
longitudinal wave occur: the first predominantly involves fluid motion, and closely 
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Fig. 7.24 Acoustic properties of a system comprising a 50-mm thick layer of open-cell plastic foam 
covering an air-filled cavity. 

resembles that which would propagate within the fluid, were the skeleton completely 
rigid; the second resembles that which would propagate within the skeleton in vacuo.  The 
latter appears often to be responsible for resonances in the range 100-200 Hz observed in 
multilayer sound insulation treatments of vehicles. Recent research [7.2] has shown that 
the effectiveness of porous foams in the cavity between thin solid sheets, such as in 
vehicle trims, is very dependent upon the degree of contact between the foam and the 
sheet. This is because vibrational waves in the foam skeleton can transmit 'structure- 
borne' sound rather effectively. In principle, a shear wave can also propagate within the 
skeleton, but it seems to be of little importance in acoustics. Porous plastic foam 
saturated with water may be employed as an effective underwater sound absorber [7.11]. 

7.10 The effect of perforated cover sheets on sound 
absorption by porous materials 

Porous materials installed as sound-absorbing elements are usually protected from 
mechanical damage by impermeable cover sheets that are perforated with holes or 
penetrated by slits. These will influence the boundary impedance and absorption 
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properties of the assembly unless the area of the apertures exceeds about 30% of the 
total area. Incidence of a sound wave upon an aperture that has one or more principal 
dimensions of much less than a wavelength creates converging and diverging particle 
trajectories, and non-axial accelerations in the fluid in the vicinity of the aperture. The 
associated acoustic impedance is predominantly mass-like, but the viscous stresses on 
the walls of the aperture contribute some resistance. The acoustic reactance of an 
aperture depends principally upon its geometry, but is also affected by the close 
proximity of other apertures that modify the oscillatory flow patterns just outside the 
aperture. 

In principle, the specific acoustic impedance at the outer surface of a cover sheet 
equals the sum of that of the cover sheet and the underlying porous material because 
they share the same volume velocity. At frequencies for which the apertures are close 
together in terms of an acoustic wavelength, the acoustic impedances of the individual 
apertures act in parallel because they share the same pressure difference. The effective 
mass of the fluid in a circular aperture of radius a in a thin sheet is equal to pon2a3/2 (see 
Section 4.4.1). Hence the acoustic reactance X = jo~po/2a. If there are n holes per unit 
area, the equivalent specific acoustic impedance of the sheet is X/n, and the equivalent 
mass per unit area me equals po/2na. A simple expression for the acoustic resistance 
caused by viscous flow in the holes is not available because it is rather sensitive to fine 
geometric detail of the aperture. 

In the case of a rigid perforated sheet backed by an air cavity terminated by a rigid 
plane, the impedance of the cavity given by Eq. (7.46) is added to the impedance of the 
perforate. At frequencies for which the acoustic wavelength greatly exceeds the cavity 
depth d (kd << 1), the air behaves as a simple spring (see Eq. 7.47), which cooperates 
with the equivalent mass to produce a simple oscillator. The resulting boundary 
impedance at normal incidence is given by Z n - -jpoc2/cod + jcome + r, where r is the 
resistive component of the perforate impedance and me is the equivalent mass per unit 
area of the perforate. The undamped natural frequency is co0 = (poc2/dme) 1/2, which 
increases with both hole radius and the number of holes per unit area. Impedance 
measurements on a resonator consisting of a 3-mm thick sheet of hardboard perforated 
by 4-mm diameter holes 19 mm apart covering a 14-mm deep air cavity gave a resonance 
frequency of 1300 Hz, from which the equivalent mass per unit area of the perforate was 
estimated to be 0.16 kg m-2,  which exactly equals the theoretical value. The absorption 
and the flow velocity in the holes both reach a maximum at the resonance frequency, 
where the positive inertial reactance cancels the negative elastic reactance, in accordance 
with Eq. (7.23). The naturally low specific acoustic resistance of such a system may be 
supplemented by lining the perforate with a flow-resistive screen in order to optimize its 
performance. 

If the air cavity is replaced by a porous material, the air within the pores behaves as a 
lightly damped spring at low frequencies. The absorption coefficient attains a maximum 
value at resonance. Because the inertial impedance presented by the perforate increases 
linearly with frequency, it dominates the impedance above resonance, producing poor 
high-frequency absorption performance. The inertia of the air in the holes simply acts as 
an acoustic barrier to incident sound waves of much lower impedance. Figure 7.25 shows 
the measured impedance and absorption coefficient of a 50-mm thick layer of open cell 
plastic foam covered by the perforated hardboard described above. The figure also 
compares measured impedance with the result of series addition of the separately 
measured impedances of the foam and the cover sheet. It is seen that the equivalent 
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Fig. 7.25 Acoustic properties of a system comprising a perforated sheet covering a cavity filled 
with porous plastic foam. 

mass per unit area of the perforate decreases at the higher frequencies, possibly because 
the presence of the foam alters the flow pattern at the rear of the holes. 

7.11 N o n - p o r o u s  sound absorbers  

7.11.1 Helmholtz resonators 

The Helmholtz resonator was introduced in Section 4.4.1. The archetypal model is 
shown in Fig. 7.26 in which the mouth is flush with a large plane rigid surface. A fluid- 
filled cavity only exhibits pure spring-like behaviour at frequencies at which the acoustic 
wavelength considerably exceeds the principal cavity dimensions. The cross-sectional 
dimensions of the neck are even smaller. Hence, it may be assumed that the sound 
pressure in an incident field is uniform over the mouth of a resonator and that its 
response to a given excitation pressure is independent of the form of incident field. As 
explained in Chapter 4, the total external pressure acting on the fluid in the neck 
comprises the sum of the sound pressure that would exist at the mouth of the resonator if 
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Fig. 7.26 Helmholtz resonator. 

it were rigidly blocked, plus that generated by the actual motion of the air in the neck, 
which is controlled by the radiation impedance of the mouth. The complex amplitude of 
the inward-going volume velocity response of the air in the neck resonator to pressure Pm 
at the mouth is given by 

or, since/qm = f i n -  Q Z a , r a d ,  

0 --/~m/Zint (7.53a) 

0 = Pbl/(/int-1- /a,rad) (7.53b) 

where /~bl is the complex amplitude of the blocked pressure, l i n  t is the acoustic 
impedance of the resonator presented at the mouth, which comprises the sum of 
the impedances of the air in the neck and in the cavity, and Za,ra d is the acoustic 
radiation impedance of the mouth. For a circular mouth of radius a it is given to a close 
approximation by the radiation impedance of a rigid circular piston with ka << 1. 

/ a , r a d  "- (poc/~a2) [(ka)2/2 + j (8/3rc) ka] (7.54) 

which shows that the reactive (nearfield) component dominates where ka << 1. 
The mean sound power absorbed by the resonator is given by 

mabs -- 1 012 Re {lint} -- [1/Obl 2/Zint  nt_ Za,rad 2] Re {lint} (7.55) 

This attains a maximum value at the resonance frequency when IZint + Za,rad --- 
IRin t -t- Ra,rad[. This maximum may be maximized by equalizing the internal resistance 
and radiation resistance of the resonator, to give 

Wabs = 1 ffbl 2/4Ra,rad -- [rca2/4poc(ka) 2] fibl 2 (7.56) 

Note that this maximum is independent of a. 
The sound_ power incident__upon the mouth from a diffuse field of average mean square 

pressure p2 is equal to 7ca 2 pZ/4poC. The mean square blocked pressure on the wall of an 
enclosure containing a diffuse field is 2p 2. Hence, the ratio of power absorbed to power 
incident on the neck area is 

W a b s / W i n  c = 4/(ka) 2 (7.57) 

which is much greater than unity. The diffuse field 'absorption cross-section', which is 
the effective absorption of the resonator, is (22/2rc)m 2, independent of the actual neck 
area. This is twice the value for normally incident sound. 

This seemingly impossible 'trick' is performed through the agency of 'diffraction' (see 
Chapter 12), so that incident sound energy is 'funnelled' into the mouth from a much 
larger area than rca 2, as illustrated by Fig. 12.5. A resonator not only 'sucks in' sound 
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energy at resonance but also scatters a proportion of the incident energy omnidirection- 
ally by means of radiation from the mouth, in a similar manner to a circular loudspeaker 
at low ka. The scattered power at the resonance frequency is given by 

Ws - 11~  12 Ra,rad -- 1 fibl[2 Ra,rad/(Ra,rad + Rint)2 (7.58) 

of which the maximum value equals the maximum absorbed power when Ra,rad -- Rint. 
The foregoing analysis reveals the sensitivity of the performance of a resonator as a 

narrow-band absorber to the relative magnitudes of the internal acoustic resistance and 
the radiation resistance. Unless they are rather similar, the absorber will not perform 
effectively. This fundamental requirement is not always appreciated by those who 
attempt to install resonators to control resonances or tonal noise. In fact, it is very 
difficult to restrict the internal losses of a practical resonator sufficiently to allow Rint to 
match the very small radiation resistance. Indeed, where a resonator is installed in a 
reverberant enclosure, the radiation resistance varies greatly with both frequency and 
location, making the task even more challenging. 

This fundamental requirement is the reason why Helmholtz resonators are far more 
effective when used in arrays. If resonator mouths are separated by distances that are 
smaller than a half wavelength, they enhance each others' radiation resistance, as 
explained in Section 6.7, and they are then capable of acting effectively as absorbers 
over a considerable range of frequency around resonance. This explains the effectiveness 
of porous materials covered by perforated sheets as broadband absorbers and of the 
integrated wall resonators illustrated in Fig. 4.17. 

7.11.2 Panel absorbers 

We have seen that porous materials are not very effective as sound absorbers at low 
audio frequencies unless used in uneconomic thicknesses. Low-frequency, resonant 
sound absorbers may also be constructed by mounting thin panels of impermeable 
material, such as plywood or aluminium, on frames that separate them from a rigid 
supporting surface, as shown in Fig. 7.27. The fundamental resonance frequency is 
determined by the mass per unit area of the sheet and the depth of the air layer, the 
stiffness of which usually greatly exceeds that of the thin panel. The most widely quoted 
formula for the resonance frequency is based upon a stiffness per unit area given by Eq. 
(7.47) with q5 = 0, and rigid body motion of the panel: 

fo  - (1/2rc)(pocZ/md) 1/2 (7.59) 

in which m is the panel mass per unit area and d is the cavity depth. A calculation based 
upon the equality of time-average kinetic energy of a simply supported square panel in 
its fundamental in vacuo mode and the corresponding potential energy of the contained 
fluid yields a frequency that is 80% of that given by Eq. (7.59). In practice, the effect of 
the high fluid stiffness is to alter the fundamental mode shape to give a frequency 
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Fig. 7.27 Typical panel absorber. 



7. Sound Absorption and Sound Absorbers 177 

intermediate to these two values. The principle of optimization of absorption by 
matching the damping ratio of the panel to its radiation damping ratio applies equally 
to this system as to the Helmholtz resonator. But, because typical panel dimensions are 
much larger than the mouths of resonators, radiation resistances are also much higher, 
and mechanical damping can be restricted to optimal matching values. The greater the 
optimal damping, the wider the useful absorption bandwidth. 

The higher-order vibrational modes of the panel do not provide such effective 
damping as the fundamental mode because their radiation resistances are far lower at 
their resonance frequencies due to volume velocity cancellation (see Chapter 10). 
Consequently, such absorbers exhibit a primary absorption peak. It is extremely difficult 
to predict the performance of panel absorbers because of uncertainty about mechanical 
damping ratios and also because the performance depends very much on the acoustic 
modal properties of enclosures in which they are installed. Ideally, they should be placed 
in regions of maximum sound pressure for greatest effectiveness. 

Panel absorbers are widely used in broadcasting and recording studios to reduce the 
adverse effects of low-order acoustic resonances. The performance of a typical example 
is presented in Fig. 7.28. Absorption by lightweight panels is responsible for unwanted 
low-frequency absorption and lack of bass reverberation in many halls that are used for 
the performance of classical music. If timber panelling is chosen for aesthetic reasons by 
the architect, the panels should be thick and attached firmly to the supporting structure. 
In fact, any large flexible panel absorbs energy at low frequencies because it responds to 
incident sound and dissipates it by friction, principally at the boundaries. This is the 
reason why rooms with large areas of window are not very reverberant at low 
frequencies. Absorbers have been developed for installation in hostile environments, 
such as gas turbine exhaust ducts, which comprise thin steel membranes mounted upon 
various forms of acoustic resonator [7.12]. Transparent, perforated, sound-absorbing 
sheet material has recently been developed for modern buildings incorporating large 
areas of glass. 
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Fig. 7.28 Performance of a BBC panel absorber. Reproduced with permission from Walker, R. 
and Randall, K. E. (1980) An investigation into the mechanisms of sound-energy absorption in a 
low-frequency modular absorber. BBC Research Department Report No. RD 1980/12. 
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7.12 Methods of measurement of boundary impedance and 
absorption coefficient 

7.12.1 The impedance tube 

Small samples of sound-absorbent material may be tested by placing them in a very 
heavy rigid sample holder at one end of a rigid tube and insonifying them at individual 
frequencies by a loudspeaker at the other. A microphone probe is arranged to traverse 
the length of the tube, as illustrated by Fig. 7.29(a). The usable frequency range is limited 
at the lower end by the need to accommodate at least three quarters of a wavelength 
within the tube, and at the upper end by the requirement that only plane waves can 
propagate along the tube. The upper frequency for a tube of diameter d is given by 
flo = 1.84c/~zd (see Section 8.7.4). If the small degree of attenuation of the propagating 
waves is neglected, the sound field in the tube takes the form 

p(x, t) = [.~ exp ( - j k x )  + 1~ exp (jkx)] exp (jcot) (7.60) 

Equation (7.20) gives the relation between/~ and A in terms of the specific acoustic 
impedance ratio of a sample as 

/~/A = ( z ~ -  l)/(z~ + 1)= R exp (jO) (7.61) 

where R and 0 are the magnitude and phase of the pressure reflection coefficient. 
The mean square pressure at x, given by �89 is 

p~(x) = 11.4 2[1 + 2R cos (2kx + O) + R 2] (7.62) 

' / 

Loudspeaker Travellin~l microphone 
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Rigid sample holder 
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Standing wave x = 0 
ratio 

Fig. 7.29 (a) Impedance tube components. (b) Spatial distribution of mean square pressure and 
sound pressure level in an impedance tube. 
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the form of which is illustrated by Fig. 7.29(b). The maximum and minimum values are 

PZax = �89 1~ 2 (1 + R) 2 where (2kx  + 0) = 2nrc (7.63a) 

2 2 Pmin = 1 ~ (1 -- R) 2 where (2kx  + 0) = (2n - 1)~z (7.63b) 

The diffuse incidence sound absorption coefficient may be calculated using Eq. (7.29). 
The accuracy of this technique is improved by allowing for wave attenuation. The details 
may be found in reference [7.13]. 

R is obtained from the ratio 2 2 Pmax/Pmin -- [(1 + R)/(1 -- R)] 2 and 0 is obtained from the 
positions of the 2 Pmin through the relation 0 = ( 2 n -  1)~z- 2kxmin. The specific impe- 
dance ratio of the sample is then obtained from Eq. (7.61) as 

1 + R exp (jO) (7.64) 
, _ , + j x ,  n _ Zn rn 1 - R exp (jO) 

A more recently developed technique, by which the complete spectrum of impedance 
and absorption coefficients may be rapidly obtained by the use of broadband sound in a 
shorter tube that incorporates a number of fixed microphones, is described in reference 
[7.14]. 

Both techniques suffer from the limitations that they cannot accommodate non- 
uniform structures that have large-scale features, and that the peripheral boundary 
constraints imposed by the sample holder are generally unrepresentative of the opera- 
tional conditions of the material, as in the cases of a sample of carpet mounted on an 
underlay or a sample of wall panel. 

7.12.2 Reverberation room method 

In Chapter 9 it is shown that the reverberation time of a large, highly reverberant  room 
having a nearly uni form distribution of wall absorption is given by 

To = O. 16 V / S o ~  (7.65) 

in which V is the room volume, So is the area of the room boundary and ~ is the spatial- 
average, diffuse incidence, sound-absorption coefficient of the surface of the room. The 
empty room is first calibrated by measuring its spatial-average reverberation time in 1/3 
octave frequency bands. A sample of the test material of at least 10 m 2 in area is then 
mounted on a suitable surface, and the reverberation time measurement is repeated. On 
the basis of the assumption that Eq. (7.65) remains valid, the diffuse field absorption 
coefficient of a sample of area $1 and absorption coefficient N-, is calculated from the 
relation 

~-[l~-d = 1 + ( S o l S 1 ) [ ( T o / T 1 ) -  1] (7.66) 

This technique has been used for many years, for want of a practical alternative, even 
though it is known to be unreliable, principally because the conditions assumed in the 
derivation of Eq. (7.65) are violated by the presence of a highly absorbent sample 
covering part of one boundary surface. 

It should also be noted that the absorption provided by a single, undivided sample of 
an absorbent material is significantly less than that provided by distribution of smaller 
samples of the same total area. This is not fundamentally an indication of the weakness 
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of the measurement technique, but more a result of the diffraction produced by the edges 
of the samples that enhances absorption. 

Quest ions 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

7.7 
7.8 

A sample of normal specific acoustic impedance ratio Zn = 2 -  6j at 200 Hz is 
placed in an impedance tube. At this frequency, the sound pressure level at a 
distance of 300 mm from the sample is 96 dB. Determine the complex amplitudes of 
the incident and reflected plane waves. 
A 200 Hz plane wave is attenuated by 40 dB when travelling 1 m within an air- 
saturated porous material. The structure factor and porosity of the material are 1.5 
and 0.95, respectively. Estimate the flow resistance of the material using the 
approximate expression in Eq. (7.11). You may assume an adiabatic fluid bulk 
modulus. 
Solve Eq. (7.9a) for k' exactly in terms of s, co, h, P0 and K. Compare with the 
approximate solution given by Eqs (7.11) and (7.12) in the case s = 1.5, h = 0.95, 
cr - 5000 kg m-3  s-~ and K = 1.0 at 200 Hz. Substitute the approximate solution 
for a obtained for the answer to the previous question and re-estimate the 
attenuation in dB per metre. 
From Eq. (7.10) calculate Zc for h = 0.95, K = 0.90, s = 1.5, a = 104 kg m -  3 s -  1 at 
100 Hz and 1 kHz, assuming that the material is saturated with air. Compare with 
the approximate value based upon Eq. (7.13). 
A cloth having a flow resistance of 1000 kg m - 2  s-1 is placed over a sheet of porous 
foam of which z~ = 1.6 - j 103/f. Calculate the normal incidence absorption 
coefficient at 100 Hz and 1 kHz. 
A sound absorber comprises a 2-mm thick perforated aluminium sheet covering a 
thick sheet of mineral wool. The holes in the perforate are 3 mm in diameter and 
arranged in square array at a pitch of 12 mm. The resistance of the perforate is 
50 kg m - 2  s-1. The normal specific acoustic impedance ratio of the mineral wool 
surface at 1 kHz is 1 .6-  0.5j. Calculate the normal incidence absorption coefficient 
of the absorber at 1 kHz. Also calculate the mass per unit area equivalent to the 
inertial impedance of the perforate. [Hint: See the penultimate paragraph of 
Section 4.4.1 .] 
Confirm Eq. (7.25) by double differentiation of ~(4~) with respect to q~. 
A limp porous sheet has a resistance ratio R' - 2.0 and mass per unit area m. 
Calculate the sound power dissipation coefficient at an angle of incidence of 45 ~ 
and frequencies of 200 Hz and 2 kHz for values of m of 1.0 and 0.1 kg m -2. The 
porosity may be taken as unity. 

7.9 The same material is placed parallel to a rigid wall at a distance of 250 mm. 
Calculate the absorption coefficient at 45 ~ at a frequency such that kl = 0z/2) sec 4~. 
[Hint: Eq. (7.48).] 

7.10 The reverberation time of an empty room in the 500 Hz 1/3 octave band is 5.5 s. Its 
volume is 350 m 3 and its surface area is 300 m 2. With a 10 m 2 sheet of material 
placed on the floor, the reverberation time is 4.2 s. Estimate the diffuse field 
absorption coefficient of the sample. 



8 
Sound in Waveguides 

8.1 Introduction 

In previous chapters we have considered the generation and propagation of sound in 
volumes of fluid in which no single direction of propagation was preferred or special: 
sound energy could spread without limit. However, within ducts, which are ubiquitous 
components of manufacturing and process plant, power generation plant, gas, oil and 
water distribution networks and heating and ventilation systems, sound energy is 
constrained to follow their particular routes. Flow-generating devices, flow-control 
devices and turbulent flow all generate sound in ducts. If allowed to escape, it can have 
adverse effects on the health of personnel, on the surrounding environment and on 
verbal and musical communication in auditoria, lecture rooms and schools. The 
radiation of sound from the compressors and bypass fans of jet aircraft, and from the 
exhaust stacks of electrical power-generating gas turbines, is dependent upon the 
coupling of the sources to the acoustic modes of the ducts that contain them, and on 
the coupling of these modes to the outside air. Noise generated internally if sufficiently 
intense, threatens the mechanical integrity of duct structures, and has been known to 
produce fatigue damage of walls and even valve failure. Noise generation within ducts 
does have its positive aspects; for example, water pipe leak detection is based upon time 
taken for sound to travel from leaks to transducers placed in various positions along a 
pipe. The modelling, analysis and measurement of sound in ducted fluid systems are 
clearly of great importance in engineering acoustics. 

Sound waves generated in a duct are continuously reflected by the walls so that the 
sound is guided along its path; hence a duct is said to form an acoustic 'waveguide'. 
There are two principal effects of this confinement: it limits the spatial forms of sound 
field that may propagate sound energy at any particular frequency; and it suppresses the 
geometric attenuation of sound which occurs in free field, so that the sound power flux in 
a duct of uniform cross-section is independent of position, except in as much as it may be 
attenuated by dissipative mechanisms. In practice, most ducts are not entirely uniform 
but incorporate features such as bends, junctions, area transitions and branches. Many 
also incorporate flow-control devices such as valves, dampers and diffusers; these reflect 
and scatter sound so that the resulting fields are very complex. In a textbook on 
fundamentals, it is not possible to deal with the great diversity of geometric forms of duct 
that are encountered in practice, or with the complicating influences of mean flow, 
turbulence and non-uniform temperature. Consequently, the analytical section of the 
chapter is confined to sound propagation in uniform ducts, and networks thereof, 
containing otherwise stationary fluid. The term 'duct' may be taken to include all pipes, 
tubes, conduits and closed channels. 

181 
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Sound fields in uniform ducts fall into two broad categories. At frequencies where the 
acoustic wavelength considerably exceeds the peripheral length of a duct cross-section, 
the only form of sound field that can propagate freely, and can transport sound energy, 
is the axial plane wave. Other, non-planar, field components are created by sources of 
sound, and by geometric non-uniformities within ducts; but these decay rapidly with 
axial distance from the source. Sound fields in small-diameter pipes and tubes, such as 
domestic gas, oil and water pipes, hydraulic lines, and car exhaust pipes fall into this 
category over most of the audio-frequency range. Such ducts may be modelled as one- 
dimensional 'transmission lines' that may be connected to form networks. This form of 
model is used in Sections 8.2-8.6. 

At frequencies where the acoustic wavelength is of the order of the cross-section 
peripheral length, or less, interference between wall reflections produces non-plane 
propagating forms of sound field that are characteristic of the shape of the duct cross- 
section; these are termed 'acoustic duct modes'. The higher the frequency, the greater the 
number of modes that are able to propagate. The sound power is shared among the 
propagating modes to a degree determined by the particular source. In practice, the 
plane wave mode tends to transport the major proportion of the power, except in ducts 
excited by high-speed rotating sources such as gas turbine rotors. 

The transmission of sound energy along ducts can be inhibited by two forms of passive 
attenuator (we here exclude active control by means of loudspeakers). The insertion into 
a duct of cross-sectional areas S of a device or component that presents to a plane wave 
an acoustic impedance different from poc/S will create a reflected wave and therefore 
reduce the on-going proportion of incident sound power (although the net sound power 
will be the same on both sides if the device has a purely reactive effect). This mechanism 
of reactive attenuation is employed at low frequencies in the range where only plane 
waves propagate. At higher frequencies, reactive attenuation is less effective, and the 
resistive mechanism of sound absorption is employed. Various forms of porous material 
and acoustic resonators are introduced into a duct in such a way as to maximize the 
attenuation, and, in cases where fluid mass is transported, to minimize the resulting loss 
of static pressure (or flow energy). 

The sound power radiated by a source into a duct is influenced by the presence of the 
duct walls. The pressure generated by a category of source that displaces fluid, such as an 
oscillating piston sliding in a tube, or a loudspeaker located in a duct wall, is greatly 
affected by the constraint on fluid motion applied by the walls. The impedance presented 
to the source is very different from that which is presented to the same source operating 
in free space, or in a plane baffle that bounds an otherwise unbounded fluid volume. 
Dipole source radiation is altered by the presence of duct walls because reflection 
effectively produces source images, which may increase or reduce the radiated power, 
depending upon the orientation of the dipole relative to the wall. 

Particularly strong, frequency-dependent, variations of impedance are presented to a 
source by reflections of sound from impedance discontinuities in a duct. For example, 
the impedance presented to a source of unsteady mass introduction, such as the flow of 
internal combustion (I.C.) engine exhaust gas into an exhaust manifold/pipe, is 
dependent upon the reflections created by reactive attenuators downstream, and also 
the reflection from the open end of the pipe. These impedance variations cause the sound 
power generated by such Category 1 sources to vary in concert. The sound power 
generated by Category 2 sources, such as the axial momentum fluctuations generated by 
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compressor blades, is affected by the influence of duct reflections on the associated 
volume velocities. 

This dependence of sound power on the acoustical properties of the duct complicates 
the analysis of the effect of attenuators inserted into a duct for the purpose of noise 
control. It is possible for an insertion to produce an increase in sound power generated 
by an in-duct source that may exceed the attenuation produced by the attenuator, 
thereby producing a net increase in the sound power transmitted by the system. This has 
significant implications for the design of standardized procedures for evaluating the 
sound power of ducted sources such as ventilation fans. Acoustic resonances of a duct 
can dramatically affect the behaviour of aeroacoustic sources such as oscillatory 
boundary layer separation and associated vortices produced by flow over solid bodies 
within the duct. Such a flow-acoustic interaction mechanism has led to serious vibration 
and damage to the heat exchangers of power-generation plant. On a more positive note, 
the operation of wind instruments such as clarinets and pipe organs depends crucially 
upon this form of interaction. 

This chapter begins with a descriptive account of the behaviour in the time domain of 
plane wave pulses generated by impulsive piston displacement in a uniform tube that has 
various forms of termination. Subsequent analysis in the frequency domain of plane 
wave fields in simple acoustic transmission lines of uniform cross-section terminated by 
various forms of impedance illustrates the phenomena of characteristic (natural) 
frequencies, characteristic functions (modes) and resonance. The vibroacoustic interac- 
tion between a piston and a fluid in a tube is analysed in order to illustrate coupled fluid- 
structure modes and resonance. The application of acoustic impedance to the modelling 
of transmission line networks is then introduced, together with some archetypal 
examples of predominantly reactive attenuation systems. 

The chapter continues with an analysis of sound propagation in a uniform two- 
dimensional waveguide with rigid walls. The phenomena of transverse modes and their 
associated cut-off frequencies are explained, together with modal phase and group 
velocity. The rigid walls are then replaced by locally reactive impedance boundaries that, 
if they have a resistive component, attenuate waves propagating in the duct. This is a 
simple model of a duct lined with sound-absorbent material. Modes of three-dimen- 
sional ducts of rectangular and circular cross-section are then briefly described, and 
modal excitation and energy flux in the former are examined. This section closes with 
examples of the attenuation performance of lined ducts and splitter silencers. 

The final part of the chapter deals briefly with acoustic horns. The physical principle 
underlying their function is explained, the most simple form of the 'horn (wave) 
equation' is introduced, and the characteristics of some simple forms of horn are 
illustrated. 

8.2 Plane w a v e  pulses in a uni form tube 

Figure 8.1 illustrates a uniform rigid-walled tube of cross-sectional area S fitted with a 
close-fitting, sliding, rigid piston at x = 0 and containing a fluid that is assumed to be 
inviscid. The tube is terminated by a rigid plug at x = L. At time t = 0, the piston is 
displaced very rapidly a very small distance into the tube and then rapidly brought to a 
halt (Fig. 8.1(b)). As shown by Fig. 8.2(a), a plane pulse of positive particle velocity 
travels away from the piston at speed of sound, accompanied by a plane pulse of positive 
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Sliding ~_~ 
piston 

I (a) x=0 =L 

(b) 
Fig. 8.1 (a) Piston-driven tube. (b) Displacement velocity and acceleration time-histories of the 
piston. 

pressure in accordance with Eq. (3.29(a)). (Note: non-plane pulses cannot be generated 
by a uniformly moving rigid piston.) Work done by the piston on the fluid is transferred 
into energy transported by the pulse. After time t -  L/c the pulse reaches the rigid 
terminal plug, and a reflected pulse of equal and opposite particle velocity is generated 
by the requirement for the total particle velocity at the plug to be zero. In accordance 
with Eq. (3.29(b)), the reflected pulse pressure has the same magnitude and sign as the 
incident pulse. The reflected pulse travels back to the piston in time L/c. This pulse 
reflects off the now stationary piston to send a pulse identical to the original outgoing 
pulse down the tube, the process continuing indefinitely /f dissipative processes are 
absent. The period of a signal from microphone installed flush with the tube wall is 2L/c, 
which will produce a line spectrum with components at a harmonic series of frequencies 
given by f ,  = nc/2L. These are the acoustic natural (characteristic) frequencies of a 
rigidly bounded fluid column of length L (see Section 8.3). (Will the spectrum vary with 
microphone position?) Following the cessation of activity of any form of source, free 
(unexcited) sound in the tube can exist only at the natural frequencies. The pulse pattern 
is illustrated in Fig. 8.2(b). 

Suppose now that, instead of remaining stationary after its initial movement, the 
piston is rapidly returned to its original position at the instant when the reflected pulse 
hits it. In 'riding the punch' of the pulse, positive work is done by the fluid on the piston, 
the piston absorbs all its energy and the fluid returns to its original state of equilibrium. 
This is an elementary example of the general problem of the scattering of incident sound 
by a mobile body. The total scattered field is the sum of that scattered from the 
motionless body plus that radiated by any associated motion of the body. An immobile 
piston would generate a positive-going pulse of positive pressure, as in the preceding 
case; but the reverse motion of the piston produces a positive-going pulse of negative 
pressure, which cancels it. By a similar process, a loudspeaker can be made to absorb 
incident harmonic sound by driving it with an appropriate amplitude and phase. 

If the piston is returned rapidly to its original position at the time when the original 
pulse hits the rigid termination (at time t = L/c), it will send a pulse of negative pressure 
and particle velocity down the tube (Fig. 8.2(c)). If the piston is then again displaced 
positively into the tube as the reflection of the original pulse hits it (at time 2L/c) it will 
generate another positive pulse that, according to the principle of scattering explained 
above, will add to the reflection of the returning pulse from the piston as if stationary. If 
this process of periodic positive and negative piston displacement continues, the 
positive-going and negative-going pulses will be progressively amplified without limit: 
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Fig. 8.2 (a) Pressure and particle velocity of the initial pulse. (b) Free pulse pattern. (c) Pulse 
pattern with cycled piston. (d) Free pulse pattern in a tube with pressure-release termination. 

acoustic resonance is occurring at all the natural frequencies of the tube. The energy of 
the acoustic field grows as the square of the number of passages of the reflections. Note 
that the amplitude spectrum of the pulse patterns detected by a microphone depends 
upon its location because the spacing between the positive- and negative-going pulses 
varies with position. (Students are encouraged to verify this statement.) 

If the fundamental period of piston displacement does not coincide with the inverse of 
any of the natural frequencies, resonance, and the associated progressive amplification 
of the acoustic pulses, do not occur. The total number of pulses in the tube grows with 
time but, because they do not superimpose, the acoustic energy increases only linearly 
with the number of passages of the reflections. We see that sound can be excited in the 
tube at any frequency but that resonance only occurs if the excitation has frequency 
components that coincide with one or more natural frequencies. 
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Suppose now that the rigid plug termination is removed to produce an open-ended 
tube and that the piston is given a single positive impulsive displacement. The radiation 
resistance ratio of an open tube end at low frequencies (ka << 1) is half of that of a rigid 
piston oscillating in a baffle (Eq. (6.55)), and the additional freedom for the near field to 
'wrap around' the end of the pipe in the absence of a baffle reduces the reactive 
component from 8 ka/3n to 0.6 ka, where a is the tube radius. The impedance ratio in 
this frequency range is so small that we may initially assume for the purpose of the 
present exercise that, together with the pressure, it is zero (the so-called 'pressure-release' 
condition). In this case, an initial pulse of positive pressure is reflected as one of equal 
negative pressure; the particle velocities in both incident and reflected pulse are therefore 
equal and both positive (Fig. 8.2(d)). This negative pulse is then reflected by the now 
stationary piston as a negative pulse, which is subsequently reflected at the open end as a 
positive pulse, which then returns to the piston. The pulse has traversed a distance of 4L 
during one cycle. The sequence is now repeated endlessly. 

In this case, the fundamental period of the pressure pulse train resulting from a single 
initial displacement of the piston is equal to 4L/c. This corresponds to a fundamental 
natural frequency that is one half of that of the rigidly terminated tube. If the piston is 
pulsed at twice this rate, alternate pulses are cancelled at the piston surface, which shows 
that twice the fundamental frequency is not a natural, or resonance, frequency of this 
system, in contrast to the closed tube. Pulse sequence analysis demonstrates that the 
natural (and resonance) frequencies of the open-ended tube are restricted to odd 
multiples of the fundamental frequency, given by fn - (2n - 1)c/4L. 

In fact, a tube opening has a small positive reactance. This has the effect of making it 
slightly longer, in acoustical terms, than the geometric length. The 'end correction' to L 
for the opening of an unflanged circular section tube is approximately 0.6 times the 
radius a, so reducing the natural frequencies. Low frequency radiation resistance is such 
that the low-frequency sound energy is weakly radiated by each incident pulse, so that it 
slowly decreases, unless the piston is periodically displaced to inject new energy. If so, 
resonant response is limited by the requirement for input power to balance radiated 
power. High-frequency energy is radiated very effectively upon its first encounter with 
the opening, so that no high-frequency resonance is possible. This form of behaviour, in 
which the stronger resonances are confined to the lower harmonics, is characteristic of 
many musical wind instruments. 

We now suppose that the tube is terminated by a device that offers a purely resistive 
impedance having a specific acoustic resistance ratio denoted by r. It can be closely 
realized by placing a rigid porous sheet over the open end of a tube. In the ka << 1 
frequency range, r can be selected to be far greater than both the real and imaginary 
parts of the radiation impedance with which it is in series. The piston is given a rapid 
positive displacement, as before. The pulse is reflected from the termination (unless 
r = 0); but now the form of the reflection depends upon whether r is greater or less than 
unity. The ratio of pressure amplitudes of reflected to incident waves is given by Eq. 
(7.20) as 

R = ( r -  1)/(r + 1) (8.1) 

If r > 1, the pressure of the reflected pulse at the termination is positive and the 
associated particle velocity is negative. The piston is given a negative displacement at 
the time the initial pulse hits the termination, generating a pulse of negative acoustic 
pressure and particle velocity. It is then given a positive displacement at the time when 
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the reflection of the initial pulse hits it. The particle velocity of the pulse that it generates 
will be equal to the sum of that which it would produce in the absence of the reflection 
(i.e. that of the original pulse) plus that produced by the reflection of the returning pulse 
from its surface as if stationary. Hence the positive pressure of the new pulse will be in 
the ratio 2r/(1 + r) to that of the original pulse. The process is then repeated, the next 
pulse produced by positive piston displacement being in the ratio 3r 2 -t- 1/(1 + r) 2 to the 
original pulse. The same progression will apply to the pulses produced by the negative 
displacement of the piston. The reader is left to continue the progression, whereupon it 
will be found that the ratio will asymptote to a finite value that increases with r; with 
r = 2, the asymptotic value of the ratio is 1.5. Resonances occur, but the energy in the 
tube remains finite because the resistive termination dissipates energy. A similar exercise 
may be carried out for values of r less than unity; again the energy in the tube remains 
finite. 

It should be noted that the resonance frequencies are the same with a rigid plug as with 
a termination having r > 1; and they are the same as for the open end of negligible 
impedance with r < 1. This is because a resistance of the termination is assumed not to 
be frequency dependent and imposes no time delay on the reflection. However, reactive 
terminations in the form of an acoustic 'spring' (such as the air within a layer of porous 
foam at low frequency), or acoustic 'mass' (such as that associated with a perforated 
sheet) do introduce time shifts because the particle velocity induced by a pressure acting 
on the termination is proportional to the time derivative and time integral of the 
pressure, respectively. In frequency domain terms, these forms of termination induce 
phase shifts of the + re/2 on the reflected waves. They therefore alter the natural and 
resonance frequencies from those with a purely resistive termination. 

8.3 Plane wave modes and natural frequencies of fluid in 
uniform waveguides 

In the previous section, some aspects of one-dimensional waveguide behaviour in the 
frequency domain have been inferred from pulse train patterns in the time domain. We 
now develop a more rigorous analysis of the plane wave modes and natural frequencies 
by solving the Helmholtz equation (Eq. (3.20)) subject to the boundary conditions 
imposed by the terminations. The practical importance of the following models is not 
limited to their applications to acoustic transmission lines. Uniform ducts carrying plane 
waves constitute one-dimensional enclosures. Study of their natural frequencies, modes, 
response to excitation and energy flow behaviour prepares the ground for the subsequent 
analysis and physical understanding of the behaviour of sound in two- and three- 
dimensional ducts, and for extension in the following chapter to the acoustics of three- 
dimensional enclosures, which is of vital importance to the field of internal vehicle noise. 
The following section also presents a case of fluid-structure interaction, which is an 
elementary example of a type of problem commonly encountered in the field of 
vibroacoustics. We begin by assuming that the terminations are conservative and do 
not absorb (dissipate) sound energy. 

8.3.1 Conservative terminations 

If the impedance of a termination is purely imaginary (reactive), it absorbs no energy 
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x = 0  

p(x) 

x = L  x 

n = l  

n = 2  

n 3 

Fig. 8.3 Pressure and particle velocity distributions of low-order standing waves in a closed tube. 

from the fluid. Consider first the case shown in Fig. 8.3 of rigid terminations at x = 0 and 
x = L. Equation (3.23) gives the general harmonic solution for pressure in the form 

p(x, t) = [,4 exp ( - j k x )  + lq (jkx)] exp (jo)t) (8.2) 

The particle velocity is zero at x = 0. Equation (3.31) gives A =/~. The spatial 
distributions of sound pressure and particle velocity are given by 

and 

p(x, t) = 2A cos kx  exp (jo)t) (8.3) 

u(x, t) = (j/oopo)Op/Ox = - (2jA/poc) sin kx  exp (jcot) (8.4) 

The zero particle velocity condition at x -  L can only be satisfied if sin kL  = 0 or 
kL = mz: the tube length equals even integer multiples of half a wavelength. The only 
allowed frequencies of free vibration are thus given by 

f~ = nc/ZL (8.5) 

This result confirms the conclusion from the pulse model presented above. 
These special frequencies are termed 'natural '  or 'characteristic' frequencies because 

they are proper to the system. Mathematicians also call them 'eigenfrequencies' from the 
German word 'eigen', which means 'own'. These correspond to the harmonics of the 
velocity-time history of the periodically pulsed piston in the case of rigid termination 
illustrated in Fig. 8.2(c). The corresponding spatial distributions of sound pressure are 
given by 

p(x) -- 2,~ cos (mzx/L) (8.6) 

as illustrated by Fig. 8.3. Note that these pure standing waves may be termed 
'characteristic functions' or 'eigenfunctions'. Engineers more commonly called them 
'modes' (meaning 'forms'). These modes form an 'orthonormal set' in that they satisfy 
the condition of orthogonality; in the case of a uniform medium, this means that the 
integral of the product of any two different eigenfunctions over the bounded domain is 
zero. Each mode therefore behaves like an independent single-degree-of-freedom 
oscillator. The total energy is the sum of the modal energies, irrespective of their 
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respective amplitudes. The complex amplitude 2A is undetermined, because no excita- 
tion has been assumed to exist. 

Now we assume that the impedance of the termination at x = L is zero. Equation (8.3) 
requires cos kL to equal zero. Hence the natural frequencies are given by 
kL = (2n - 1)re/2 o r f ,  = (2n - 1)c/4L. In this case, L -- (2n - 1)2/4; that is, odd integer 
multiples of 2/4, confirming the conclusions from the pulse study above. The corre- 
sponding modes take the form p ( x ) =  2Acos [ (2n -  1)rcx/2L]. These modes form an 
orthonormal set. 

As a further example, we now assume a termination that is purely inertial in nature, 
having a specific acoustic impedance ratio given by z ' t -  jogm/poc, where m represents 
mass per unit area. Equations (8.3) and (8.4) give the specific acoustic impedance ratio at 
position x in the field as 

z'(x) = j cot kx  (8.7) 

which must equal that of the termination at x = L. Hence, 

cot kL = ogm/poc = (kL) (m/poL) (8.8) 

The solutions for kL  correspond to the natural frequencies of the system that are 
represented by the intersections of the curves presented in Fig. 8.4(a). The presence of the 
inertial termination is seen to increase the natural frequencies relative to those with the 
rigid termination, the ratio tending towards unity as f r equency -  and i m p e d a n c e -  
increases. With a very large mass, the lowest natural frequency corresponds closely with 
that of the mass coupled to a spring whose stiffness equals that produced by bulk 
compression of the whole volume of fluid. With very small inertial impedance the natural 
frequencies tend to those of a tube open at one end. Figure 8.4(a) shows that the natural 
frequencies do not form a harmonic series. The wavenumbers corresponding to the 
natural frequencies are greater than for the rigidly closed tube, and therefore the 
associated wavelengths are shorter. 

In the case of a purely elastic termination of stiffness per unit area s at x - L ,  the term 
- (sL/poc2) /kL replaces the inertial term on the right-hand side of Eq. (8.8). The 
solutions for natural frequencies correspond to the intersections shown in Fig. 8.4(b). 
The frequencies do not form a harmonic series. The presence of the elastic termination is 
seen to decrease the natural frequencies relative to those of the rigidly closed tube, the 
ratio increasing as frequency increases. For very small elastic impedances the natural 
frequencies tend to those of an open tube, and for very large elastic impedance they tend 
to those of a tube with rigid termination. 

The acoustic modes of fluid systems having finite, reactive impedance boundaries, 
such as the two above, do not form orthonormal sets, although the complete system, 
including the boundary structures, does satisfy a more general form of orthogonality 
condition that is beyond the scope of this book. 

The natural frequencies of the system with a termination consisting of an undamped 
mass-spring oscillator are easily found from the construction of Fig. 8.4(c). At its in 
vacuo natural frequency o~0, the impedance of the oscillator is zero, but this will not be a 
natural frequency of the system unless koL - ~ooL/c also equals (2n - 1)~z/2. This system 
is an elementary case of fluid-structure coupling in which the dynamic properties of both 
media influence the coupled natural frequencies and modes. 
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8.3.2 Non-conservative terminations 

Consider the model of a tube terminated rigidly at x = 0 and at x = L by a frequency- 
independent complex impedance having non-zero resistance. The dissipation of sound 
energy by a resistive termination must be reflected in the form of the time dependence of 
pressure and particle velocity in free vibration. Unless a termination is perfectly 
absorbent (anechoic), sound energy will be stored in the interference field, which exhibits 
quasi-periodicity produced by multiple reflection of travelling waves at the boundaries. 
(A free oscillatory field losing energy cannot be perfectly periodic since it never exactly 
repeats any specific state.) The rate of energy leakage will be equal to the energy flux, or 
intensity, of the field. Intensity is equal to the product of pressure and particle velocity. 
Energy is proportional to the square of particle velocity or pressure, which are linearly 
related to each other. Hence, the rate of energy loss will be proportional to the stored 
energy. Consequently, energy varies exponentially with time, and pressure and particle 
velocity decrease exponentially at half the rate of energy. 

We may therefore express the combination of quasi-periodicity and exponential decay 
by assuming a time dependence in the form e x p ( j o ~ t ) e x p ( - 6 t ) .  The exponent may 
equivalently be written as a function of a complex frequency in the form exp (joo't), 
where o~' = ~ + j6. In the exponential representation, the locus of the associated phasor 
takes the form of a spiral instead of the usual circle. Readers may be uneasy with this 
concept, but it is compatible with the expression for the free vibration of a viscously 
damped oscillator developed in Appendix 5. 

(Note: since complex frequency does not represent pure harmonic motion, we may 
not strictly employ the concept of impedance at real frequency e~ in the following 
analysis. However, provided that the fractional decrease in amplitude over one cycle o f  
oscillation is very much smaller than unity (2~z6/o3 << 1), the bandwidth of the spectrum 
is so small as to allow us to use impedance at frequency co with insignificant error. This 
condition also ensures that the damping of any mode is very much less than the critical 
value.) 

We may now introduce the complex frequency into the wave equation and seek 
a solution for the associated spatial distribution of the sound pressure and 
particle velocity. We assume an expression for the sound pressure in the form 
p(x, t) -- A exp (2x)exp (j~o't) and introduce it into the wave equation to give 

[2 2 + (~o'/c)2]/5 = 0 (8.9) 

The solutions for 2 are 

2 = +_ j(o3'/c) = +_ jk'  (8.10) 

where k ' =  k + j6/c is a complex wavenumber, a concept previously encountered in 
Chapter 7. However, there is a crucial difference between the significance of the 
imaginary part of the wavenumber in the two cases. 

The complexity of the wavenumber in Eq. (7.7), which expresses the spatial distribu- 
tion of pressure in waves travelling in resistive media, arises from the continuous loss of 
sound energy to heat as the waves propagate; this accounts for its negative imaginary 
part ( - j~) .  In the present case, the fluid medium is assumed to be inviscid, and no such 
propagation loss occurs. The complexity of k' here arises from the assumption of 
exponential temporal decay. The imaginary part of k' is positive, seemingly expressing 
an exponential growth with distance travelled by each plane travelling wave. However, 
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neither of these two individual waves is a complete solution to the homogeneous wave 
equation in a bounded volume. We shall find that their combination in the form of an 
interference field exhibits no non-physical amplification and no energy dissipation 
within the fluid. Energy is simply transported towards the resistive termination by 
means of progressively weaker spatial oscillations of energy. 

The pressure field takes the general form 

p(x,  t) = [,'t exp ( - j k ' x )  + B exp (jk'x)] exp (jco' t) (8.11) 

The particle velocities in the right- and left-travelling waves are given by the momentum 
equation as 

u + (x, t) = (j/co'Po) OP+/O x = ( A / p o c ) e x p ( - j k ' x ) e x p ( j c o ' t )  (8.12a) 

o r  

and 

+ + 
u (x, t) - p (x, t)/poc (8.12b) 

u -  = (j/co' po) Op- /Ox = - (B/poc) exp (jk'  x) exp (jco't) (8.13a) 

o r  

u - ( x ,  t) = - p - ( x ,  t)/poc (8.13b) 

The pressures and particle velocities are, as expected, related by the characteristic 
acoustic impedance of a lossless fluid, unlike that of Eq. (7.10). 

The rigid boundary condition at x = 0 requires that ,4 = /~ .  Hence the pressure field is 
expressed as 

p(x,  t) = 2,4[cos (kx) cosh (6x/c) - j sin (kx) sinh (6x/c)] exp (jco't) (8.14) 

the particle velocity field is expressed as 

u(x, t) - (2A/poc) [cos (kx) sinh (6x/c) - j sin (kx) cosh (6x/c)] exp (jco't) (8.15) 

The specific acoustic impedance ratio at position x is given by 

z'(x) - p(x)/poc u(x) = j cot k 'x  (8.16) 

of which the phase is ~ p u - - t a n - 1  [sin (2kx) /s inh (26x/e)]. This differs from the pure 
standing wave value of _+ rt/2, and varies with x. 

Solutions for the complex natural frequencies and mode shapes of the system are 
found by equating the expression in Eq. (8.16) with x = L to the specific impedance ratio 
of the termination z~. Thus 

cotk'L = - j z ~  (8.17) 

Since we are concerned here with the non-conservative action of a termination, we 
shall restrict z~ to a purely resistive component r. (Note: the prime is omitted in the 
following analysis for the sake of typographical simplicity.) This will considerably 
simplify the analysis and its physical interpretation. Equation (8.17) now becomes 

cosk'L = - j r  (8.18) 

This equation may be separated into real and imaginary parts to give 
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exp (26L/c) cos (2kL) = (r + 1)/(r - 1) (8.19a) 

and 

exp (26L/c) sin (2kL) = 0 (8.19b) 

We distinguish two sets of solutions of Eq. (8.19b). When r < 1, kL = mz/2, with n 
odd; when r > 1, kL = mz/2 with n even. The first set of solutions for kL corresponds to 
the natural frequencies of a tube with zero impedance at one end and the second set 
corresponds to those of a rigidly terminated tube. This is in agreement with the 
conclusions from the foregoing pulse studies that purely resistive impedance introduces 
no time delay (or phase change) in the reflected pressure relative to the incident pressure. 
The solution of Eq. (8.19a) for r > 1 is 

6L/c = In [(1 + r ) / ( r -  1)] 1/2 (8.20a) 

which, for r >> 1, is well approximated by 

6 ,~ c/Lr (8.20b) 

For r < 1, the solution to Eq. (8.19a) is 

6L/c = ln[(1 + r)/(1 - r)] 1/2 (8.21a) 

which, for r << 1, is well approximated by 

6 ~ cr/L (8.21 b) 

The variations of 6 with r clearly indicate the tendency for the modal damping to 
increase as r tends to 1, which corresponds to zero reflection and an absence of modal 
behaviour. The linear dependence of 6 on c/L is physically reasonable: the rate of energy 
flow towards the termination is proportional to c and stored energy is proportional to L. 
The limit 2~z 6/(o << 1 proposed for valid use of impedance corresponds to r >> L/2 if 
r > 1 or r << L/2 if r < 1. The resulting general expression for the pressure distribution 
in a natural mode is 

p(x) = 2,4[cos (knx) cosh (6x/c) - j sin (knx) sinh (6x/c)] (8.22) 

with k~ and 6/c appropriately chosen to suit the value of r. These are 'complex modes' in 
which the phase of the pressure varies continuously with x, unlike real modes in which 
the phase varies in steps of +_ ~/2 at nodes. The phase of the modal pressure at x relative 
to that at x = 0 is 

4)(x) - arctan [ -  tan (kx) tanh (6x/c)] (8.23) 

All bounded elastic systems with resistive boundaries possess complex natural modes. 
The physical reason is that in free decay from an initially excited state, the stored energy 
must leak towards the resistive boundaries. Analysis of the instantaneous intensity in the 
time domain is algebraically complicated and the details are omitted for the sake of 
brevity. It reveals that the physical process involves the 'pumping' of energy towards the 
termination by largely reactive oscillatory exchanges between locally stored kinetic and 
potential energy in the manner explained in Chapter 5; but with some cyclic 'leakage' of 
energy towards the resistive boundary associated with the fact that the energy 'swings' 
progressively weaken with time because of the time decay component inherent in 
complex frequency. 
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8.4 Response to harmonic  exci tat ion 

8.4.1 Impedance model 

It is generally much easier to find solutions for the response of dissipative systems to 
harmonic excitation than those for free vibration because energy is continuously injected 
to maintain pure harmonic motion. In principle, the impulse response of dissipative 
systems can be determined from the harmonic response by means of the inverse Fourier 
transform (see Appendix 4), but mathematical difficulties can arise if non-causal forms 
of dissipation, such as hysteretic damping, are assumed (see Appendix 5). 

We assume that a piston sliding in a tube undergoes inexorable harmonic oscillation 
with velocity u = U exp (j~ot). ( 'Inexorable' means that the impedance of the piston and 
its driving mechanism is so high that it maintains its amplitude irrespective of the 
reaction of the fluid in the tube. This is not the case with a real loudspeaker.) The specific 
acoustic impedance ratio presented to the piston at x = 0 is given by Eq. (4.22) as 

z' t + j tan k L  
z' (O) - 1 + jz '  t tan k L  

(8.24) 
r(1 + tan 2 kL)  + j[x(1 - tan 2 kL)  + (1 - x 2 - r 2) tan kL] 

(1 - x tan kL)  2 + (r tan kL)  2 

in which z~ has been written as r + jx .  This expression may be termed a 'transfer 
impedance' relation. It may be applied to a series of individual sections of 
duct connected through impedance discontinuities to determine the impedance of 
the chain. The imaginary part of z'(0) is zero when 2 t a n k L  = [ ( 1 -  x 2 -  rZ)/x] +__ 
[((1 - x 2 - r2)/x) 2 + 4] 1/2. The real part of z'(0) is always positive. 

The sound pressure is related to the piston velocity by 

p(x,  t) = [poc U/(cos k L  + j'z~ sin kL)] [z~ cos (k (x - L)) - j sin (k(x - L))] exp (jogt) 
(8.25) 

which exhibits the resonance behaviour previously inferred from the pulse studies 
performed in the previous section. (Students should confirm and interpret this result.) 

At frequencies for which tan k L  -- O, z'(O) = z~, the length of the tube equals an integer 
number of half wavelengths and the system behaves as if the terminal impedance were 
applied directly to the piston. These are the natural frequencies of the tube when closed 
rigidly at both ends. At frequencies for which tan k L  = ~ ,  z'(0) = (z~)-1, the length of 
the tube equals an odd number of one-quarter wavelengths and the specific acoustic 
impedance ratio presented to the piston is the inverse of that of the termination. These 
correspond to the natural frequencies of the tube with a rigid plug at one end and a 
'pressure release' termination at the other. 

If z't is purely resistive 

z'(0) = [r(1 + tan 2 kL)  + j tan k L  (1 - r2)]/[1 + (r tan kL) 2] (8.26) 

which equals unity at any frequency if r = 1 (zero reflection by the termination). The 
resonance frequencies are given by Im {z'(0)} = 0, of which the solution r -  1 corre- 
sponds to a pure travelling wave system and only the solutions tan k L  = 0, r > 1 and 
tan k L  = ~ ,  r < 1 are relevant to resonance. This is consistent with Eq. (8.19b). The 
variation of z'(0) with k L  with r = 3 and x = 0 is plotted in Fig. 8.5. 

If z't is purely reactive 
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Fig. 8.5 Variation of z'(0) presented to the piston with kL for r = 3 and x = 0. 

z'(0) = j[x(1 - tan 2 kL) + (1 - x 2 tan kL)]/[1 - x tan kL] 2 (8.27) 

which is purely imaginary at all frequencies. This makes physical sense because a purely 
reactive terminat ion can dissipate no energy. The resonance frequencies are given by 
Im {z'(0)} = 0, or cot kL = x, which is consistent with Eq. (8.8). 

The power radiated into the tube per unit cross-sectional area is given by 

l l r( l + tan2 kL) ] 
W' - -~ pocl (_712 (1 - x tan kL) 2 + (r tan kL) 2 (8.28) 

which is plotted in non-dimensional  form Fig. 8.6 for r = 3 and x = 0. 
The sound power radiated from an open-ended tube is of interest in relation to 

internal combust ion engine exhaust pipes. The acoustic radiat ion impedance ratio at the 
opening is a complicated function of ka, except in the range of frequency where ka << 1, 
when it takes the approximate  form Za,raa ~ (ka)2/4 + j 0.6 ka = R + jX.  The sound 
power input to a tail pipe per unit volume velocity per unit cross-sectional area (most of 
which is radiated to the environment)  is given by W" -- 1/2poc Re {Z'(0)}, where Z'(0) is 
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Fig. 8.6 Non-dimensional sound power radiated into the tube with r = 3 and x = 0. 
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Fig. 8.7 Normalized sound power radiated into an exhaust tail pipe. L/a = 100; c = 399 m s-1. 
- -3  Po = 1.0 kg m 

given by Eq. (8.24) with r + jx  replaced by R + jX. The normalized sound power input 
to a tail pipe of length L is plotted in Fig. 8.7 for L/a = 100 up to ka - 0.2. The mean gas 
density has been taken as 1.0 kg m-3.  This corresponds to a frequency of 727 Hz for a 
35-mm diameter exhaust pipe. Note that k in the exhaust pipe has been taken to be 0.86 
times that in the outside air to allow for the elevated speed of sound in the exhaust gas. 
The effect of pipe resonances on the power is clearly seen. At frequencies for which 
kL = (2n - 1)~z/2 or ka = (2n - 1)~z/200, the inlet impedance ratio equals the inverse of 
the outlet impedance ratio, and is therefore large. A four-stroke engine running at 
3000 rpm exhausts gas with harmonic frequency components at integer multiples of 
100 Hz, which correspond to integer multiples of ka = 0.0276, as indicated on the figure. 
Clearly, some harmonics of the source can coincide with peaks in the radiated power 
curve as engine speed and/or exhaust gas temperature varies. This model is a gross 
approximation to the real physical system, partly because the impedance presented by an 
exhaust system to the exhaust valve opening can be sufficiently large at certain 
frequencies to affect the exhaust flow. Tuning of the system to optimize scavenging 
(discharging the exhaust gases) is therefore possible. 

8.4.2 Harmonic response in terms of Green's functions 

An alternative approach to developing expressions for the response of a fluid in an 
enclosure to boundary vibration is offered by the Kirchhoff-Helmholtz (K-H)  integral 
equation (6.48). As explained in Chapter 6 (Section 6.4.5), the boundary pressure term 
may be eliminated by selecting a Green's function that satisfies the inhomogeneous 
Helmholtz (harmonic wave) equation having a delta function source on the right-hand 
side (Eq. (6.10)), together with the condition of zero normal pressure gradient on all 
boundaries. Happily, we have already found functions that satisfy these conditions for a 
uniform duct in which only plane waves exist; they are the eigenfunctions (modes) 
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expressed by Eq. (8.6). They are known as the 'rigid-wall' modes and they form what is 
known as a 'complete set' of orthogonal functions. This means that any physical 
quantity that is continuously distributed over the length of the enclosed length of fluid 
may be expressed as a sum of these functions, each with a coefficient to give the correct 
physical dimensions. 

[Note: the rigid-wall modes and associated eigenfrequencies must not be confused with 
the natural modes and frequencies of  a fluid volume that has other than rigid boundaries. 
They constitute a set of so-called 'basis functions' because they form a basis for 
constructing a series representation of an arbitrary function. Their utilitarian impor- 
tance is that it is easy to determine them, either analytically (in cases of boundaries 
having regular geometry) or numerically, using finite or boundary element models, and 
that they can be used conveniently to express the coupling between flexible enclosure 
boundaries and the contained fluid, as we shall see later. They also approximate very 
closely to the natural modes and frequencies of real 'almost rigid-walled' enclosures such 
as reverberation rooms.] 

In accordance with the above, a Green's function for the tube of cross-sectional area 
S, which represents the particular pressure response to a harmonic delta function source 
of unit strength, may be expressed as the sum of an infinite series of rigid-wall modes, 
thus: 

oo 

G(xlxo) - ~ An cos (nrcx/L) (8.29) 
n = 0  

Substitution into the inhomogeneous Helmholtz equation with a one-dimensional delta 
function source term gives 

OZG/Ox 2 + k2G = - (~(x - Xo)/S (8.30) 

Multiplication by cos (m~zx/L) and integration over the length L yields, by virtue of the 
orthogonality of the eigenfunctions and the property of the delta function (Eq. (6.7)), 

(L/2) [k 2 - (nrc/L) 2] An = - (1/S) cos (nrcxo/L) (8.31) 

because all the terms having m r n disappear and f0 L cos 2 (mzx/L) dx = L/2. Substitution 
for An in Eq. (8.29) gives the Green's function as 

2 x-~ cos (nrcxo/L) cos (nrcx/L) 
G(xlxo) - -S-s ~'n=o k2 - k2 (8.32) 

where k, = mz/L. 
Note that the one-dimensional delta function must be used because a point source 

would produce non-plane field components. It corresponds physically to a pulsating 
plane diaphragm traversing the duct at x = x0 and has dimensions of [L]- 1. It is divided 
by the cross-sectional area of the duct, because the source must represent volume 
velocity per unit volume to satisfy dimensional compatibility with the terms on the left- 
hand side of the equation. (Students should check this.) The Green's function is now 
introduced into the K - H  equation (6.46). Non-zero normal pressure gradients exist at 
the surface of the piston and at the surface of a termination of arbitrary, non-infinite 
impedance where the pressure gradient and pressure are related to the specific acoustic 
impedance ratio by Op/Ox = (jk/z~)p. The K - H  equation becomes 
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p(x) -- G(Op/On) dS - G(xlO)(-jkpocU) dS1 + G(xlL)(jkp(L)/z' t) dS2 (8.33) 
1 2 

where S~ and $2 represent the surfaces of the piston and termination, respectively. Note 
that the normal points into the fluid volume and therefore Op/On - - Op/Ox at x = L. As 
explained in Chapter 6, the volume velocity generated by the action of pressure on the 
finite impedance boundary at x -- L appears to constitute a source. However, it is not an 
active source of energy, but a passive boundary response that affects the field by its 
induced motion. 

The Green's function given by Eq. (8.32) is introduced into Eq. (8.33) to give the 
complex amplitude of pressure at position x in the duct as 

2jkPoc(J [~n COS(nrcx/L ) p(L) (-1)" cos(nrcx/L)] 
p(x) - - ~ k 2 - k 2 - z--T-t ~ ~:5 Z ~-5 j (8.34) 

in which integration over the end boundaries is replaced by the products of the normal 
pressure gradients with the cross-sectional area, because the field is plane. The series 
representation is now used to express p(x) and p(L) as 

p(x) = Z A m  cos (mrcx/L) and p(L) = Z A q  ( -  1) q (8.35a,b) 
m q 

Substitution in Eq. (8.34), followed by multiplication by cos (lrcx/L) and integration over 
the length of the tube, yields 

: [!, 
Remarkably, the series solution of Eq. (8.35a), with Am = An given by Eq. (8.36), is 
equivalent to the much simpler closed form solution of Eq. (8.25). Extraction of 
coefficient A~ gives 

An[kZ- k2 -2jk/z;L] = ---~-2jk [1-, Z( -1)n+qAq-  PoC~r qr n (8.37) 

Each coefficient An is seen to be a function of all other coefficients Aq C n. This implies 
that the rigid-wall modes are all mutually coupled. This is because the pressure response 
component expressed by each rigid-wall mode An cos (nrcx/L) is partly determined by the 
termination particle velocity, which is itself determined by the sum of all the pressure 
terms in Eq. (8.35b). In the general case of arbitrary termination impedance, Eq. (8.37) 
may be solved approximately by an iterative technique (initially assuming zero 
coupling), or more rigorously by a variational approach; but these procedures are 
beyond the scope of this book. 

In cases where either the real or imaginary (or both) parts of the termination 
impedance ratio is extremely large, as with almost impermeable structures having large 
mass or stiffness, the influence of the coupling term on each coefficient becomes very 
small, especially at frequencies close to the eigenfrequency of the rigid-wall mode 
concerned (k,~ kn), provided that the eigenfrequencies are well separated. The coupling 
effect is further weakened by the fact that ( -  1)n+q takes alternate positive and negative 
values in the summation over q. 

Therefore, as a first-order approximation, we may consider Eq. (8.37) with the 
coupling term neglected at frequencies in the close vicinity of con = ckn = mzc/L. The 
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substitution of z; = r + j x  shows that the expression has a form similar to that of the 
resonant response of a simple oscillator to a harmonic input (Appendix 5). The small 
reactive part of the boundary contribution slightly alters the resonance frequency and 
the resistive part has the effect of a viscous damper. In the case z; = r, the equivalent 
viscous damping coefficient is ~ = c/rLco,,, in agreement with Eq. (8.20b), since 6 = ~o)n. 
Consequently, under the conditions appropriate to this approximation, we may 
conclude that near each rigid-wall eigenfrequency, the fluid behaves predominantly like 
a simple, viscously damped oscillator. This model will be found to be useful when we 
consider the acoustical behaviour of nearly rigid-walled, reverberant rooms in the 
following chapter. Note that it is not valid to neglect the coupling term at frequencies 
remote from each rigid-wall eigenfrequency where no single mode predominates. 

The above model and analysis conceals a subtlety that puzzles many students when 
they first become aware of it. We have expressed the pressure response to excitation by a 
moving piston, and the effect of a passively moving boundary, in terms of a sum over 
functions, each of which has zero normal gradient (therefore, zero normal particle 
velocity) at these boundaries. This apparent paradox is, of course, inherent in the general 
K - H  integral equation. It must be realized that the Green's function introduced above is 
not the solution of the wave equation subject to the actual boundary conditions. It does 
not satisfy the actual boundary conditions; it simply expresses a relation between the 
actual normal pressure gradient at the boundary and the pressure generated in the fluid. 
This property is inherent in the reciprocal form of the Green's function. 

The solution based upon superposition of rigid-wall modes is not well suited to energy 
flow computations. It is clear that sound energy cannot travel from source to termina- 
tion via any single hard-wall mode, each of which has the form of a pure standing wave in 
which pressure and particle velocity are in quadrature. On the basis of this model, energy 
can only flow by means of 'collaboration' between the pressure associated with each 
rigid-wall mode and the particle velocities associated with others, because, in general, 
different modal pressure responses are not in quadrature. Solutions for intensity 
distributions based upon this form of model show that, whereas a good approximation 
to the magnitude of the pressure field, and to the stored energy, can often be obtained by 
truncating the modal series to include between ten and 100 terms, the intensity solution 
does not converge until a number of terms that is one or two orders greater is employed. 

In this one-dimensional case, it is obviously much more sensible to use Eq. (8.25) than 
the series solution. However, in the more general three-dimensional case, the series 
solution is more useful, as we shall see in Chapter 9. 

8.5 A simple case of structure- f lu id interaction 

Acoustic pressures generated in a fluid that is in contact with a structure influence its 
vibrational behaviour. In the majority of cases of mechanical systems operating in 
atmospheric air, the effect is small because the impedance of the structures greatly 
exceeds that of the air, even at structural resonance frequencies where the impedance is 
minimal. Exceptions include stiff, lightweight panels, such as the honeycomb sandwich 
structures used in aerospace vehicles, for which acoustic damping often exceeds 
structural damping, and all highly flexible panels that form the boundaries of air 
cavities, such as rectangular-section ventilation ducts, in which large reaction pressures 
are generated at the resonance frequencies of the cavities. Fluid loading profoundly 
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Fig. 8.8 Spring-mounted piston in a tube excited by a harmonic force. 

influences the natural frequencies of structures such as marine vehicles, water tanks, and 
pipes that convey liquids, or gases at high pressure. This effect must be accounted for in 
mathematical models of such systems. For example, at low audio frequencies, the speed 
of bending waves in the steel hull plate structures of surface ships in contact with water is 
little affected by the mass of the steel and is controlled principally by the 'added' mass of 
the water that moves with the hull. 

As a simple example of fluid-structure interaction we now consider the effect of plane 
waves in a fluid contained within a uniform tube on the vibrational response to a 
harmonic force of a sliding piston spring-mounted within the tube, shown in Fig. 8.8. 
The tube is assumed to be rigidly terminated. The impedances of the piston-spring 
system and the fluid column combine in series because they share the same particle 
velocity at the interface. Consequently, the mechanical impedance presented to the 
exciting force is that of the piston and spring in series with that of the fluid column" 

Z m = j (com - K/co) - jpoc S cot k L  (8.38) 

in which M and K are the mass and stiffness of the piston system. 
The natural frequencies of the combined system, at which the reactive component of 

the mechanical impedance is zero, satisfy 

cot k L  = (M/poSL)  k L  - (KL/pocZS)/kL (8.39) 

in which M / p o S L  is the ratio of the masses of the piston and the fluid and KL/poc2S is the 
ratio of the stiffness of the spring to the bulk stiffness of the fluid in the tube. The 
solutions are indicated by the intersections of the impedance curves of the mechanical 
and acoustic components in Fig. 8.4(c). If the piston mass is sufficiently high and the tube 
sufficiently short, the fundamental natural frequency will correspond to a value of k L  
well below n/2, in which case the fluid reacts as a simple elastic spring. The correspond- 
ing natural frequency is given by co2 _ pocZ/mL, where m is the piston mass per unit area. 
In this ideal system, the piston will not move at the acoustic natural frequencies of the 
tube blocked at both ends when cot k L  = oo. 

This air-spring phenomenon is of widespread importance in noise control because it 
operates in all air cavities at low frequencies, strongly coupling the components on either 
side. Among other effects, it limits the maximum vibration isolation obtainable with 
floating floors mounted on resilient pads, and controls the sound insulation of double- 
leaf walls and windows at low frequencies. 

The pressure response of the fluid to a harmonic force F exp (jcot) applied to the piston 
is given by Eq. (8.25)with 0 equal to F/Zm and z; equal to oo. With a termination of 
finite impedance that has a resistive component, the response of the piston is damped by 
the radiation of sound energy into the tube. 
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8.6 Plane waves in ducts that incorporate impedance 
discontinuities 

8.6.1 Insertion loss and transmission loss 

All real duct systems incorporate geometric non-uniformities, either in the form of 
variations of cross-section along their lengths or locally non-uniform features such as 
bends, junctions and valves. Therefore, the acoustic impedance varies with position, 
which, in turn, implies wave reflection. Geometric non-uniformity is exploited in noise- 
control systems designed to attenuate sound energy transmitted along, and out of, duct 
systems. A common example is the expansion chamber (muffler) used to reduce the 
exhaust noise of internal combustion engines. 

Attenuators that function on the principle of wave reflection are reactive, although 
many also incorporate resistive elements. In the case of a purely reactive attenuator, the 
principle of energy conservation demands that the rate of energy flow through the system 
is the same at all positions. If so, how does a reactive attenuator attenuate? The answer 
to this apparent paradox is that reflection reduces the net energy flow relative to the 
unattenuated case: transmitted energy equals incident energy minus reflected energy. 
Consequently the ongoing energy flow is reduced, just as the rate of flow of water 
through a garden hose is the same at every point, but you can attenuate the flow by 
partly closing the nozzle. (In this case the attenuation mechanism is different because the 
water flow rate is controlled by the balance between the static pressure loss through the 
system and the available supply pressure.) 

Although the principle and the mechanism of reactive acoustic attenuation are clear, 
the matter of quantifying the effect is somewhat problematic. Two principal indices of 
attenuation are in common use. The 'sound power transmission coefficient' z is defined 
as the ratio of transmitted power to so-called incident power. This latter term is rather 
misleading, since it may be confused with the net incident power. It is more precisely 
termed the 'incident-wave power'. The definition of z also assumes that the duct section 
downstream of the attenuator is anechoically terminated; otherwise, it is influenced by 
the impedance characteristics of the whole system downstream of the attenuator. 
(Consider the case of the potato inserted into the end of a tail pipe.) This definition 
represents the performance of the attenuator in isolation; it is independent of any effect 
on upstream source power that wave reflection by the attenuator may produce by 
altering the load impedance presented to the source. The sound power transmission 
coefficient of a reactive attenuator may be expressed in terms of the acoustic impedance 
ratio Z' presented to an incident wave as z = 4R/[(1 + R) 2 + X'2], where Z ' -  R + jX.  
This is equivalent to the expression for the normal incidence sound power absorption 
coefficient of a plane surface (Eq. (7.23)). The logarithmic form of z is the 'sound power 
transmission loss', given by T L -  101ogl0(1/z)dB. It is explained diagramatically in 
Fig. 8.9. 

A sound power reflection coefficient may be analogously defined, energy conservation 
demanding that the sum of the sound power transmission and reflection coefficients be 
unity, unless the attenuator actually generates sound, for example by producing 
turbulence in a flowing fluid. The sound power so generated would add to both 
transmitted and reflected sound power. 

The 'sound power insertion loss' is defined as the logarithmic ratio of the sound power 
transmitted by a system before the insertion of a noise-control device to that after 
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Fig. 8.9 Definitions of 'transmission loss' and 'insertion loss'. 

insertion. Unlike ~, this measure not only accounts for the performance of the isolated 
attenuator, but also for any effects of insertion, such as alteration of source sound 
power, or the effects of changes to the flow regime, temperature distribution, and, most 
importantly, the generation of sound by the attenuator itself. Insertion loss is therefore 
installation sensitive, and not unique to an attenuator, but it provides a more realistic 
and reliable measure of attenuator performance. Insertion loss is defined in Fig. 8.9. 

8.6.2 Transmission of plane waves through an abrupt change of cross- 
sectional area and an expansion chamber 

The acoustic impedance of a uniform tube that carries only progressive plane waves is 
given by Eq. (4.17) as _+ poc/S, where S is the cross-sectional area of the tube. If this area 
changes abruptly at some point, the associated change of impedance will cause incident 
waves to be reflected. The acoustic flow field in immediate vicinity of the area 
discontinuity cannot be one-dimensional and plane. Non-plane sound fields are 
generated but, at low frequencies, they are confined to the immediate vicinity of the 
discontinuity, and only plane waves can propagate and transport energy. The effect of 
the discontinuity is to introduce an additional inertial impedance associated with the 
local kinetic energy of the non-planar particle motion. It may be represented by a 
lumped acoustic element, as explained in Chapter 4. 

In the case of a junction between two circular section tubes of considerably different 
diameter, as illustrated in Fig. 8.10, the inertial acoustic impedance of the junction is 
nearly always much less than the plane wave impedance of the narrower of the tubes, and 
can then be safely neglected. Consequently, plane wave pressures on either side of the 
junction may be assumed to be equal. As shown in Chapter 4, the elastic impedance of 
this local fluid region is relatively so high that it can be assumed that the volume 
velocities on either side of the junction are also equal. 

For the purpose of studying the acoustic effect of a junction in isolation, it is assumed 
that it joins two anechoically terminated tubes. The harmonic wave system shown in Fig. 
8.10 is represented by incident, reflected and transmitted waves of complex amplitudes 
A,/~ and C. The junction is at x = 0. Pressure equality gives 
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Fig. 8.10 Abrupt change in cross-sectional area. 

+ 9 = C (8.40) 

Volume velocity equality gives 

(s /poc) - = ( S 2 / p o c ) C  (8.41) 

The reason why wave reflection must occur is now obvious: both equations cannot be 
satisfied if S~ :/: $2 and/~ is zero. The solution for the ratio of transmitted to incident 
wave pressure amplitudes is 

C / A -  2/($2/$1 + 1)= 2m/(1 + m) (8.42) 

where m = S~/$2. Note that the pressure amplitude ratio is different for sound incident 
from the two directions; it is greater than unity for sound incident upon a contraction 
(m > 1) and less than unity for sound incident upon an expansion. Consequently, care 
must be exercised in quantifying the effect of the impedance discontinuity in terms of 
sound pressure levels. The reflected wave interferes with the incident wave to produce a 
spatial variation of pressure amplitude on the incident side of the area discontinuity. As 
explained above, it is safer, and less ambiguous, to define the performance in terms of the 
ratio of transmitted to incident sound powers. 

The ratio of power carried by the transmitted wave to that carried by the incident 
wave, which is the sound power transmission coefficient of the junction, is given by the 
product of the cross-sectional areas and the plane wave intensities as 

-- [ S  2 [C  2/2poc]/[SllA 2/2poc ] = 4m/(1 + m) 2 (8.43) 

Unlike the pressure ratio, it is less than unity in both cases and decreases with increase in 
m. It is the same in both directions, or reciprocal. Since the area discontinuity is assumed 
to dissipate no energy, the net powers are equal on both sides. 

The reflecting effect of a change of section is exploited in the design of internal 
combustion exhaust system mufflers, of which a major component is the expansion 
chamber, illustrated in Fig. 8.11. The acoustic impedance at the left-hand inlet (F) to the 
expansion chamber equals that of the larger diameter tube of length L terminated at G 
by that of the smaller diameter tube (poc/S1). The specific acoustic impedance transfer 
expression (8.24) may be adapted for acoustic impedance by replacing z~ by the acoustic 
impedance ratio z~ = Zt So/poc, where So is the cross-sectional area of the tube to which 
the transfer expression applies. Hence, Z~ = (poc/S1) (S2/poC) and 

Z'v = Zv S2/poc = (1 + jm tan kL)/(m + j tan kL) (8.44) 

The acoustic impedance ratio presented to the incident wave in the smaller-diameter 
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Fig. 8.11 Expansion chamber. 

tube is ZFS1/pOC = mZ'v. Now, B/A  = (mZ{  - 1)/(mZ'v + 1), giving the ratio of trans- 
mitted to incident sound powers as 

r = 1 - /1/AI 2 = 4/[4 C O S  2 kL  + (m + m-1)2 sin 2 kL] (8.45a) 

Values derived from Eq. 8.45a for an area ratio of ten are plotted in Fig. 8.12 in terms of 
the sound power transmission loss. Frequencies for which sin kL = 0 are the natural 
frequencies of the closed expansion chamber at which the impedance at F equals that at 
G, so that the expansion chamber is 'short circuited' and the transmission loss is zero. At 
intermediate frequencies corresponding to cos kL  = 0, the impedance ratio at F equals 
the inverse of that at G and ~ takes a minimum value given by 

l : m i  n - -  4/(m + m-])2 (8.45b) 

The expressions derived above apply to an abrupt change of section that joins ducts of 
any uniform cross-section. In cases where the transition is less abrupt, such as a short 
conical adaptor for example, these expressions only apply approximately if the transi- 
tion length is much less than a wavelength; otherwise, an acoustic horn model is required 
(see Section 8.11). 
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Fig. 8.12 Transmission loss produced by an expansion chamber with an area ratio of ten. 
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8.6.3 Series networks of acoustic transmission lines 

The impedance transfer expression may be used to derive expressions for, or perform 
numerical studies of, the impedance of a number of transmission lines connected in 
series. One works away from the ultimate termination to the location of interest using a 
repeated application of the transfer expression, together with the insertion of lumped 
elements as appropriate. A disadvantage of this procedure is that the transfer expression 
is not a linear relation between impedances. 

As an alternative, the transfer process may be formulated in terms of a 'two-port' 
model, which is a 'black box' relating pressure and volume velocity at the input port to 
the corresponding quantities at the output port. If the system is linear, the relations are 
linear. The pressure and volume velocity at one station of a duct system carrying only 
plane waves are uniquely related to the corresponding quantities at another station by 
the transfer properties of the intermediate system. Here we derive the transfer relations 
for a section of uniform duct by using the expressions for pressure and volume velocity 
of two oppositely travelling harmonic plane waves of different complex amplitude at two 
stations, one at x = 0 and one at x - L. 

/~(0) = A +/~  (8.46a) 

0(0) = S ( A -  Yg)/poc (8.46b) 

/~(L) = A exp ( - j kL)  + B exp (jkL) (8.46c) 

Q(L) -- [A exp ( - j kL)  - B exp (jkL)] S/poc (8.46d) 

Elimination of A and/~ transforms these equations into the two-port form as 

fi(0) =fi(L) cos kL + jQ(L) (poc/S) sin kL (8.47) 

Q(O) = j~(L)(S/poc) sin kL + Q(L) cos kL (8.48) 

In matrix form, these become 

[~(01 Q(L) ] (8.49a) 

where 

[ coskL J(P~ 1 (8.49b) 
[7] - j(S/poC ) sin kL cos kL 

(Students should determine the inverse form of T and then check the product of the two.) 
The principle of the two-port has already been implicitly applied in the general 

treatment of acoustic lumped elements in Section 4.4.1, in which two different models are 
presented. In one, pressure is assumed to be uniform across the element (the same at 
both ports) and volume velocity is different at the two ports and vice versa in the other. 
Consequently, acoustic lumped elements may readily be incorporated into a chain of 
ducts. The two-port matrix for a chain of elements is simply obtained by multiplication 
of the matrices that characterize individual elements. This procedure is physically more 
explicit than the transfer impedance approach. 

For example, consider two sections of uniform duct with cross-sectional area S~ and 
length L~ connected by a length of duct of cross-sectional area $2 and length L2, which is 
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much less than a wavelength. The matrix relating the pressures and volume velocities at 
the inlet and outlet of the system is given by 

[/~in Qin]-[T1][T2][T3][ ~~ Qout ] (8.50) 

where the matrices [T1] and [T3] are given by Eq. (8.49b) and the matrix [T2] is obtained 
from Eq. (4.16) as 

[1 J(P~ (8.51) 
[T2]-- jogSzLz/PoC2 1 

which corresponds to the matrix [T] with kL2 << 1. 
With the assumption that the outlet duct is anechoically terminated, the matrix 

relating input to output quantities in terms of wave amplitudes may be used to obtain an 
expression for the sound power transmission coefficient. 

8.6.4 Side branch connections to uniform acoustic waveguides 

Industrial and domestic pipework systems commonly incorporate multiple branches, 
often connected by T-junctions as illustrated in Fig. 8.13. Sound waves travelling in any 
one branch will induce sound waves in all connected branches. The acoustic energy 
transported by the wave incident upon a branch must be conserved, unless some 
dissipative or generation mechanism operates within the junction. The distribution of 
the energy among the connected branches depends upon the relative impedances of 
the junctions, just as it does in an electrical circuit. 

Side branch elements, such as closed-end tubes, may be attached to pipes and other 
forms of duct as (predominantly reactive) noise-control devices. As with the expansion 
chamber, the principle employed is to introduce as large as possible an impedance 
discontinuity in order to maximize energy reflection. It is not generally feasible to 
increase the junction impedance without adversely affecting the function of the pipe in 
transporting fluid with minimum energy loss. Consequently, one attempts to minimize 
the junction impedance by employing side branch resonance. 

We shall assume that the frequency is sufficiently low to restrict propagation in all the 
connected ducts to plane waves. Hence the dimensions of the junction volume are all 
small compared with a wavelength. As in all cases of abrupt changes of geometry, non- 
planar wave motion must occur in the proximity of junctions, which implies that some 
non-propagating kinetic energy is locally generated. The influence of the associated 

Zb 
A 

B 

C 

Fig. 8.13 Tee junction. 
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inertial impedance on the behaviour of the system depends upon its magnitude relative 
to the magnitudes of the impedances of the connected tubes. For the sake of simplicity, 
the influence is assumed to be negligible, which implies that the pressure may be assumed 
to be uniform over fluid in the small junction volume. Because of the very high stiffness 
of fluid in this volume, continuity of volume velocity through the junction may also be 
assumed. We denote the acoustic impedances of the junction, the branch and the 
continuation of the main duct beyond the branch by Zj, Zb and Zc, respectively. We can 
now write the conditions of continuity of pressure and volume velocity in terms of 
complex amplitude as 

/~ --  A + /~ = 0 b Z b  --  0 c Z c  (8.52a,b,c) 

and 

Oj -= ( A -  JI~)S/poC -" Ob -1- Oc -= lffj/Zj (8.53a,b) 

Substituting 0 b  = l~/Zb and Qc = ~j/Zc in Eq. (8.53b) gives the impedance of the 
junction presented to the incident wave as 

1 1 1 
t (8.54a) 

Zj  Z c  Z b  

o r  

Zj = ZbZc/(Zb + Zc) (8.54b) 

which confirms that the side branch and continuation duct are in parallel because they 
share the same pressure. The sound power reflection coefficient is 

O{ r __ i / ~ / ~  2 = ( Z j  - -  1)/(Zj + 1) 2 __ ZtbZtc - (Ztb -1- Ztc) 2 
Z'bZc + (Z'b + Zc) (8.55) 

where Z i - ZjS/poc, Z'b = ZbS/poc, Zc - Z~S/poc and S is the cross-sectional area of the 
main duct. 

The sound power transmission coefficients into the continuation duct and into the side 
branch are determined by expressing the transmitted powers as V2/~12Re {1/Zc} and 
V2/~ 2 Re { 1/Zt,}, respectively. The relation between/~/A and Zj  is then used to relate the 
power to the power transported by the incident wave. The results are 

"Cc 4 Z'bZ'c 2 - Re {1/Z~} (8.56) 
Z'bZc + Z'b + Z'c 

and 

i , , 12 ZbZc  Re {1/Z~*} 
"/7 b - -  4 Z~,Z c + Z~ + Z c (8.57) 

Clearly, the effect of the side branch on 7c depends upon Zc as well as Zb, and therefore 
on the impedance characteristics of systems downstream of the side branch. 

To study the influence of side branches in isolation, we now assume an anechoic 
termination by putting Zc to unity. The expressions in Eqs (8.54-8.57) become 

Zj = Z~,/(1 + Z~,) (8.58) 

O~r = l l + 2 /~1-2  (8.59) 
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and 

~:c = 4 Z~/(1 + 2 Z{,)I 2 

"gb - 4 Re{Z~,}/I 1 + 2 Z~, 2 _ _  1 - - 5 ~  r - -  "C c 

as required by energy conservation. 

(8.60) 

(8.61) 

8.6.5 The side branch tube 

The side branch is assumed to take the form of a uniform tube of cross-section S1. A 
closed-end side branch has an infinite terminal impedance. Its input impedance Zb is zero 
at frequencies for which its length is an odd number of one-quarter wavelengths. Note 
that these are natural frequencies of a tube having one rigid termination and one 
pressure release termination. Equation (8.59) indicates that all the incident power is 
reflected at these frequencies. This is why such a side branch is often referred to as a 
'quarter wave tube'. At frequencies where the length of the side branch corresponds to an 
integer number of half wavelengths, the impedance Zb equals the infinite termination 
impedance; the side branch is effectively closed off and has no effect. Figure 8.14 
illustrates the form of frequency variation of the sound power transmission loss. Note 
that this system performs effectively over only very small frequency ranges. In practice, it 
can be used to control tonal noise. However, correct tuning to the source frequency is 
essential, and is sensitive to gas temperature. 

It might be wondered why the maximum effect does not occur at the resonance 
frequencies of a piston-driven, closed-end tube that correspond to the natural frequen- 
cies of a tube closed at both ends. The reason is that, unlike the piston, which is 
inexorably driven to produce a given volume velocity, the side branch is driven by the 
incident sound pressure. The impedance of the primary tube is finite, and the volume 
velocity driven into the side branch is maximal when the side branch impedance is 
minimal. This example indicates that care must be exercised when appealing to the 
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Fig. 8.14 Transmission loss produced by a closed end side tube. 
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phenomenon of resonance to explain acoustic phenomena in enclosed volumes of fluid; 
the internal impedance of the source has a crucial influence on system response and 
power input. 

As might be expected, a tube terminated by an open end produces maximum effect at 
the natural frequencies close to those of a tube closed at both ends, because the inlet 
impedance then equals the acoustic radiation impedance of the open end, which we 
know to be very small at low ka. As shown in Chapter 4, the reactive component of the 
radiation impedance of a tube of radius a opening to free field corresponds to an 
additional effective length (end correction) of 0.6a. This must certainly be applied at the 
free end of the side branch, but just what correction should be applied at the junction end 
is a moot point: it depends upon the area of the side branch relative to that of the 
primary tube. Readers are left to draw their own conclusions from experimental 
observations. 

At frequencies where the side branch length corresponds to odd integer multiples of 
one-quarter wavelength, the entry impedance ratio is the inverse of the terminal 
impedance ratio, and therefore large. The side branch is effectively blocked off and has 
little effect. Theoretical results based upon only one end correction are presented in Fig. 
8.15. In the frequency range below the lowest resonance frequency, an open-ended side 
branch acts as a high-pass filter from zero up to the frequency at which its length 
corresponds to one quarter of a wavelength, the side branch impedance corresponding 
approximately to that of the total mass of the fluid in the tube. It will be noticed that the 
maximum attenuation decreases and the bandwidth increases with frequency, reflecting 
the dependence of the radiation resistance on the square of frequency. Open-ended side 
branches are not of great interest in practice because they leak fluid as well as sound 
energy, although they will act in much the way indicated in Fig. 8.15 if they open into a 
large, fairly absorbent, closed volume. 
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Fig. 8.15 Transmission loss produced by an open end side tube. 
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8.6.6 The side branch orifice 

A circular aperture of radius r in the wall of a tube of radius a has an acoustic impedance 
ratio given approximately by Z{~ ~ [(ka)2/4 + jO.5(ka)(a/r)] when kr << 1, of which the 
resistive part corresponds to that of a point monopole. Unless r/a << 1, the sound 
pressure is very small in the vicinity of the orifice, the reflected wave being almost in 
antiphase with the incident wave. Equation (8.60) gives the sound power transmission 
coefficient as 

Zc "~" (ka)2(a/r)2/[1 + (ka) 2 (a/r)2], ka << 1 (8.62) 

which tends to unity as r/a tends to zero. The orifice acts as a high-pass filter with a 
- 3  dB point at a frequency given by ka = r/a or f =  rc/2ga 2 (for example, r = 3 mm, 
a = 20 ram, f -  406 Hz). 

Although the orifice has the same practical disadvantages as an open tube, it plays a 
crucial role in the operation of many musical wind instruments in which the position of 
the first open finger/key hole controls the effective acoustic length of the air column and 
hence determines the pitch of the note played. One important engineering example of the 
exploitation of the reflective capacity of an orifice is in the diagnosis of leaks in heat 
exchanger tube. Short pulses of high-frequency sound are fed down the tube run and the 
inverted polarity and delay of the returning pressure pulse indicates the presence, size 
and location of any leak. Blockages are indicated by returns that are not inverted. 

8.6.7 The Helmholtz resonator side branch 

Side branch Helmholtz resonators may be used as reactive noise-control devices for 
ducts. Their low impedance in the vicinity of resonance causes strong wave reflection. 
The impedance ratio presented to a tube of radius a by the mouth of an undamped 
Helmholtz resonator, based upon expressions derived in Section 4.4.1, is 

Z'  -- QcaZ/poc)[Rint + j(poc2/ogo Vo)((og/O9o) 3 - (09/090))] (8.63) 

where ~o0 is the undamped natural frequency of the resonator. For a given resonance 
frequency and main duct diameter, the inertial component of the impedance may be 
reduced by increasing the resonator volume, thereby increasing the attenuation perfor- 
mance. The maximum resonant attenuation decreases as the internal resistance of the 
resonator is increased. This is provided mainly by viscous losses in the neck, unless it is 
supplemented by the insertion of resistive material. Equation (8.60) gives the sound 
power transmission coefficient at resonance as 

~c(O90) = 4[R~nt/(1 + 2 R~nt)] 2 (8.64) 

which is proportional to (R~nt) 2 if Rint << 1. An example is presented in Fig. 8.16. 
According to the lumped element model, there is only one resonance frequency. 
However, any resonator exhibits higher-frequency resonances associated with acoustic 
modes of the cavity and neck that behave as small 'rooms' (see Chapter 9). These affect 
sound power transmission to varying degrees. Fluid flow passing over the opening of a 
resonator will stimulate its resonances and generate sound. It is therefore wise to cover 
the aperture with a porous sheet to suppress this undesirable effect. 

The radiation resistance presented by a duct to air oscillating in the side branch 
resonator neck is much greater than that presented by air in a large room. Consequently, 
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a resonator has a much broader attenuation curve (effective bandwidth) in the former 
case. 

8.6.8 Bends in otherwise straight uniform waveguides 

Almost all acoustic waveguides of practical interest incorporate bends that are generally 
either radiused or mitred in form, although other forms such as the lobster back are also 
used (Fig. 8.17(a)). At frequencies at which only plane waves propagate along the 
straight sections, radiused bends in pipes offer little impedance change to incident waves 
and produce little reflection. Mitred bends present a more abrupt change in boundary 
geometry and generate increasingly strong reflections as the frequency approaches the 
lowest cut-off frequency of the waveguide (see Section 8.7.1 below). A qualitative 
physical explanation of this behaviour is provided by Fig. 8.17(b). The spatial phase 
gradient of the pressure field produced by interference between the incident plane wave 
and that reflected from the bend wall increases with frequency. The interference field 
therefore becomes increasingly less well matched to a plane wave field in the downstream 
leg, which has uniform phase over the cross-section. The mismatch reaches a maximum 
when the waveguide width equals a half wavelength. The magnitude of the reflection 
coefficient depends upon the specific form of duct cross-section. (Rigorous analyses can 
be found in references [8.1] and [8.2].) 

8.7 Transverse modes of uniform acoustic waveguides 

8.7.1 The uniform two-dimensional waveguide with rigid walls 

So far we have assumed that our waveguides allow only axially directed plane waves to 
propagate. The following analysis of the sound field in a uniform, two-dimensional, 
infinitely extended waveguide with rigid walls serves to introduce the phenomenon of 
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Fig. 8.17 (a) Bend geometries. (b) Qualitative explanation of transmission loss peak near to the 
frequency at which the wavelength equals twice the duct width. 

other (higher-order) modes of propagation which are formed by interference between 
plane waves propagating in non-axial directions. Before embarking upon a rigorous 
mathematical analysis, it is worth exploring a simplified geometric model of the problem. 
We must first take careful note that, however complex the interference field resulting 
from multiple reflection of sound from the parallel walls, the acoustical disturbances that 
combine to form the field travel at the speed of sound. This would appear to be obvious 
at this point, but the results of the forthcoming mathematical analysis will give pause for 
thought about this fact. 

Consider a periodic train of plane pressure pulse waves as shown by the heavy lines in 
Fig. 8.18(a): the exact spatio-temporal form of the pulses is immaterial to what follows. 
If portions of these pulse trains are to be contained within the boundaries of a uniform 
waveguide with rigid walls it is necessary to superimpose another train of periodic pulses 
(indicated by the lighter lines) in order to satisfy the boundary conditions of zero normal 
particle velocity at all times. Clearly, these correspond to the multiple reflections of the 
plane waves from the waveguide walls. The spatial separation (along the propagation 
direction) of pulses in a periodic train that propagates at any particular angle 0 to the 
waveguide axis cannot exceed that shown in Fig. 8.18(b): but the separation can be 
reduced by submultiples, and remain periodic, as illustrated by Fig. 8.18(a). Any other 
positioning of a second set of periodically separated waves does not change the spatial 
period of the sequence. The lowest frequency (Hz) component of the periodic spectrum 
derived from a microphone placed in the waveguide is given by the speed of sound 
divided by the pulse spacing (that is c/2d sin 0) where d is the waveguide width and 0 is 
the angle of the propagation direction to the waveguide axis (except on the axis where 
the lowest frequency has twice this value). As 0 approaches n/2, this frequency 
approaches c/2d, at which the wavelength equals 2d. This frequency is termed the 
'lowest cut-off' frequency of the waveguide. The introduction of submultiple separation, 
as illustrated by Fig. 8.18(a), leads to the conclusion that their exists an infinite set of cut- 
off frequencies given by fn = nc/2d, n integer. 

In summary, in a duct of given width, a particular angle of plane pulse propagation is 
uniquely associated with a harmonic series of frequencies (for a given speed of sound in 
the fluid). The corollary of this statement is that any temporally harmonic sound field 
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Fig. 8.18 (a) Periodically spaced plane pulses in a uniform duct with rigid walls. (b) Maximum 
periodic pulse spacing for a given direction of propagation. 

within a waveguide may be decomposed into a set of harmonic plane waves travelling in 
a number of discrete directions, this number increasing with frequency. The plane wave 
directions appear in pairs, with angles _+ 0. At any frequency, each pair of component 
plane waves produces an interference field that takes the form of a pure standing 
wave across the width of the duct, as shown in Fig. 8.19. Each interference pattern is 
convected along the waveguide by its parent plane waves at a speed c/cos 0, which is 
greater than the speed of sound. The total propagating field at any frequency comprises 
the superposition of these convected interference patterns, each pattern travelling at a 
different speed along the waveguide. These interference patterns are known as the 
'modes' of the waveguide and the minimum propagation frequencies are known as the 
modal 'cut-off' frequencies of the waveguide. The plane wave is known as the 'zero- 
order' mode, which propagates at all frequencies and does, of course, travel along the 
waveguide at the speed of sound. 

Having considered the geometric aspects of sound propagation in a two-dimensional 
waveguide, and the origin of waveguide modes in terms of component plane waves, we 

. . . . .  U , "  " . .  , , Y - . "  _ _  
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Fig. 8.19 Interference (transverse standing wave field) produced by the intersection of harmonic 
plane waves: (a) particle velocity; (b) pressure. 
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Fig. 8.20 Coordinate system for two-dimensional uniform duct. 

now tackle the same problem in terms of the solution of the harmonic form of the wave 
equation, subject to the boundary conditions of zero normal particle velocity at the walls 
and infinite axial extension of the waveguide. Since energy can propagate to infinity, a 
harmonic field can only be sustained by a harmonic source. We initially exclude the 
source region from the model. The coordinate system is shown in Fig. 8.20: convention 
dictates that the axial coordinate is z. The acoustic pressure satisfies the two- 
dimensional, homogeneous Helmholtz equation, subject to the prescribed boundary 
conditions, as 

OZp/Oy 2 + OZp/Oz 2 + kZp = 0 (8.65) 

together with the boundary conditions 

Op/Oy = 0 at y = 0 and y = d (8.66) 

A trial separable expression for the spatial distribution in the form /5(y,z)= 
exp (21z)exp (22y) yields 

(2 2 + ~,~ + k 2) p = 0 (8.67) 

from which the non-trivial solutions for 22 are 

22 = -!- j(2~ + k2) 1/2 = -t- jfl  (8.68) 

giving the pressure field as 

p(z,  y, t) = e x p ( 2 1 z ) [ / i e x p ( - j f l y )  + B e x p ( j f l y ) ] e x p ( j c o t )  (8.69) 

The boundary conditions require that 

jfl  exp (21z)[-- A exp ( - j f l y )  + 1~ exp (j//y)] = 0 (8.70) 

for all values of z at y = 0 and y = d. The first condition yields 

/~ = A (8.71) 

which reduces the expression in Eq. (8.69) to 

p(z,  t) = 2 exp (21z)A cos (fly) exp ( j o t )  

Application of the second boundary condition requires that 

sin//d = 0 

or  

fl = +__ nn/d, n = O, 1, 2 , . . .  

Substitution in Eq. (8.68) yields solutions for 21 and 22 as 

(8.72) 

(8.73) 

(8.74) 



8. Sound in Waveguides 215 

~1 --  -+" j [ k2  - -  (nT"c/d)2)l/2; /]'2 - -q- jmz/d (8.75a) 

with equivalent wavenumbers given by 

knz = [k 2 -- (nrc/d)2]l/2; kny - nrc/d (8.75b) 

The expression for the pressure field becomes 

p,  (z, y, t) = An exp ( + j k ,  zz) cos (mzy/d) exp (jcot), n = 1, 2 , . . .  (8.76) 

At any frequency, for any value of the integer n that satisfies the condition k > mr~d, 
the field that propagates in the positive-z direction may be considered to be formed by 
the superposition of two plane waves having wavenumber vectors with components 
_+ kny and knz in the y and z directions, respectively. The corresponding wavenumber 
vector diagram is shown in Fig. 8.21. The cosinusoidal pressure distribution correspond- 
ing to each value of n is characteristic of the waveguide field and is therefore defined as a 
waveguide mode. The first few lowest-order modal pressure distributions are illustrated 
by Fig. 8.22. Note that the transverse particle velocity component is maximum at the 
nodal points of zero pressure. This may be confirmed by considering the pattern of total 
particle velocity on the basis of the construction presented in Fig. 8.19. 

The natural frequency of a mode of order n is given by knz = mr~d, orfn -- ne/2d. This 
frequency, at which the modal wavenumber vectors are normal to the waveguide axis, is 
also known as the modal 'cut-off' frequency, because at lower frequencies Eq. (8.75b) 
indicates that the axial wavenumber knz is imaginary. (Note" it has become common 
practice to refer to this frequency as the modal 'cut-on' frequency.) In the present case, 
the modal cut-off frequencies correspond to n half wavelengths in the waveguide width d. 
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Fig. 8.21 Wavenumber vector diagram. 

Pressure (m) Axial particle velocity (---~) 

=" " " "u II ~ ' [ 
I I 

. . . l l  I I ~ 1 ~  

Fig. 8.22 Transverse distributions of pressure and axial particle velocity of low-order modes. 
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This behaviour is compatible with that inferred from the plane pulse wave construction 
presented above. 

Above its cut-off frequency, each modal pattern of pressure (or particle velocity) 
propagates in the axial direction with a phase speed Cph equal to co/k,z. Except for the 
plane wave mode, k,z is always less than the acoustic wavenumber k = co/c: the 
corresponding phase speed is always greater than the speed of sound. However, readers 
should not be tempted to infer that acoustic disturbances, and therefore, information, 
can travel along the waveguide at supersonic speeds. The component plane waves that 
interfere to form the modal pattern each travel at the speed of sound. Consequently, it is 
essential to define a speed that truly represents the speed at which information (signals) 
can travel along the waveguide. 

The speed in question is known as the 'group speed'; it corresponds in unidirectional 
waves to the speed of energy propagation. The group speed Cg of any wavefield in any 
direction is defined by Cg = Oco/Ok, where k is the wavenumber component in the 
direction concerned. In the present case, the relevant wavenumber component is k,z. 
The group speed of a mode in the axial direction z is (Ok, z/Oco)-1, which gives 

Cg n "-- c[1 -- (nT~/kd)2] 1/2 (8.77) 

which is zero at cut-off, when k = kyn = nrc/d, and is asymptotic to c as k tends to 
infinity. The variation with non-dimensional frequency kd of the phase and group speeds 
of a set of low-order modes is illustrated by dispersion curves in Fig. 8.23 (see Appendix 
3). Multi-frequency acoustic signals are dispersed during propagation because each 
frequency component is distributed among the various propagating modes, each of 
which has a different phase velocity. The first component of the signal to arrive is that 
carried by the zero-order, axially propagating, plane wave. Others follow later because 
the component plane waves that form the higher-order modes follow a zigzag path as 
they repeatedly reflect from the walls. 

We now turn to the question of the behaviour of a mode below its cut-off frequency. 
When k < mt/d, knz is imaginary and [knzl = [ ( n r t / d )  2 - k2] 1/2. The z-dependence of the 
modal field takes the form exp (-Iknzr)Z, indicating that the modal pressure field decays 

Axial 
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(knz) 

(a) 

Wavespeed c 

(b) I 

/ /  n--' 
11; 

i n =/3 

2= 3~ kd 

% = % h  ,, n=O 

2~ 3~ kd 

Fig. 8.23 (a) Modal dispersion curves. (b) Modal phase and group speeds. 
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exponentially with distance along the waveguide, the rate of decay decreasing as 
frequency increases towards its cut-off value. The modal phase does not vary with z, so 
the mode does not propagate as a wave and the modal pressure simply oscillates. The 
zero-order (n = 0) plane wave mode possesses no cut-off frequency and therefore 
propagates at all frequencies. Cut-off modes are not accounted for by the plane pulse 
wave construction introduced above. 

8.7.2 The uniform two-dimensional waveguide with finite impedance 
boundaries 

Sound energy travelling along a waveguide may be attenuated by lining the walls with a 
material layer that possesses a finite impedance having a resistive component. A reactive 
component will alter the spatial form and propagation speed of the sound field, but 
dissipates no energy. The reader is encouraged to rework the above analysis in the case o f  
'pressure release' boundaries. It will be found that the plane wave cannot exist because it 
has a uniform pressure distribution over the cross-section of a waveguide and therefore 
cannot satisfy the zero pressure condition. The non-zero order modal cut-off frequencies 
are the same as those of the rigid-walled waveguide, which means that sound cannot 
propagate below the lowest modal cut-off frequency. A thin plastic or rubber tube filled 
with water presents a good approximation to such a waveguide. This principle is used to 
attenuate noise propagation in liquid transport pipelines, but the flexible inner tube must 
be enclosed in a pressurized, gas-filled container to counteract static pressure in the 
liquid. 

The two-dimensional waveguide model is modified by replacing the rigid walls with 
so-called 'impedance boundaries' that are assumed to be locally reactive. The boundary 
conditions of Eq. (8.66) are replaced by 

p/(Op/Oy) = jzw/k  (8.78) 

where Zw is the specific boundary impedance ratio. Application of the same analytical 
procedure as that applied to the rigid-walled waveguide yields the following transcen- 
dental equations. 

For fields which are symmetric about the waveguide axis, 

cot[(1 + (~l/k)2) 1/2 (kd/2)] = -jZw[1 + (~l/k)2] 1/2 (8.79a) 

For antisymmetric fields 

tan[(1 + ()tl/k)2) 1/2 (kd/2)] = -jZw[1 + (21/k)2] 1/2 (8.79b) 

These equations must be solved numerically to obtain the modal values of 2~ and 22, of 
which there is an infinite set of pairs. If the wall impedance has a resistive component, 
both 21 and 22 are complex at all frequencies, indicating that modal amplitudes decay as 
they propagate. This is the basis of the installation of sound-absorbent linings on duct 
walls to attenuate noise transmission. 

Pure plane waves cannot exist in waveguides with non-rigid walls because any pressure 
on the wall will produce a component of particle displacement normal to the wall. 
Instead, the lowest-order mode is termed the 'principal mode'. Higher-order modes 
possess cut-off frequencies that differ from those of the rigid-wall waveguide of equal 
width. It is impossible to choose a wall impedance that maximizes the attenuation of all 
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Fig. 8.24 Characteristics of the principal mode in a duct with walls of finite impedance: g = duct 
width. Reproduced with permission from reference [8.4]. 

propagating modes. In practice, the principal mode usually carries the largest proportion 
of sound energy. For this reason, L. Cremer [8.3] proposed that the wall impedance 
should be selected to maximize the attenuation of this mode. The required wall 
impedance ratio is given by 

Zw = (0.930 - 0.744j) (kd/2rc) (8.80) 
Examples of mode attenuation and phase speed are presented in Fig. 8.24, which is 
adapted from reference [8.4]. Further examples of calculated attenuation performance 
are presented in Section 8.10. 

8.7.3 The uniform waveguide of rectangular cross-section wi th rigid walls 

A simple extension of the analysis presented in Section 8.7.1 to waveguides of 
rectangular cross-section having dimensions a and b shows that the modal pressure 
takes the form 

tim,, (X, y, Z) = Am,, exp ( +_ jkm,,Z) cos (mrcx/a) cos (nrcy/b) (8.81) 

where kmn -- [k 2 - (mrc/a) 2 - (n:rc/b)2] 1/2. The modal cut-off frequencies are given by 

fmn = (c/2rc)[(mTr,/a) 2 + (nTr/b)2] 1/2 (8.82) 

The cross-sectional regions of uniform phase for some low-order modes are shown in 
Fig. 8.25. The regions are separated by nodal surfaces of zero pressure and maximum 
transverse particle velocity. 

8.7.4 The uniform waveguide of circular cross-section with rigid walls 

The wave equation in cylindrical coordinates is used to analyse sound fields in 
waveguides of circular cross-section so that the wall boundary condition may be 
associated with a fixed value of the radial coordinate. This coordinate system is shown 
in Fig. 8.26. The Helmholtz form of the equation is stated without proof as 

10p 10Zp 02p 02p + -  + + + k2p - O (8.83) 
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Fig. 8.25 Regions of uniform phase in low-order modes of a uniform waveguide of rectangular 
cross-section. 
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Fig. 8.26 Cylindrical coordinate system. 

Modal  solutions of this equation subject to a rigid wall condition at r - a are 

/~mn(r, ~b, z) = Amn Jm (krr) cos sin (m~b) exp (-jkzz) (8.84) 

where Jm(krr) is the Bessel function of order m and k 2 + k 2 - k 2. Just as the 
trigonometric functions sin x and cos x are defined by series in powers of x, the Bessel 
function of order m is defined by the series 

m - + 2  

m! 1! (m + 1)! 
+ + . . .  (8.85) 

2! (m + 2)! 

Bessel functions of orders one and two are shown in Fig. 8.27. The rigid wall boundary 
condition corresponds to the points of zero radial pressure gradient indicated on the 
figure. The radial particle velocity component  is maximum at the points of maximum 
gradient. The rigid wall boundary condition constrains kr to take an infinite set of discrete 
values that depend upon m and n. 

The cosine product  proper to the modes of a rectangular section duct is replaced by a 
product of cos/sin functions of the angular coordinate 4~ and a Bessel function which 
describes the radial variation of pressure. The cos/sin functions exhibit radial lines of 
zero pressure (nodal surfaces) that occur at angular intervals of ~z/rn. The circumferential 
particle velocity component  is maximum at these surfaces. The cross-sectional regions of 
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Fig. 8.27 Bessel functions with points of zero gradient indicated. Reproduced with permission 
from Miller, K. S. (1956) Engineering Mathematics. Reinhardt, New York. 
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Fig. 8.28 Regions of uniform phase in low-order modes of a uniform, circular cylindrical 
waveguide. 

uniform phase for low-order modes are shown in Fig. 8.28. Circular section waveguides 
exhibit the phenomenon of modal cut-off, the cut-off frequencies for a selection of low- 
order modes being presented in Table 8.1. 

The lowest cut-off frequency is given by ka = 1.84, or 2 -  1.7 times the diameter 
compared with twice the width of a square section waveguide. 

8.8 Harmonic excitation of waveguide modes 

The fluids in practical waveguides such as ventilation ducts and industrial pipes are 
excited by a great diversity of sources. Positive displacement pumps and internal 
combustion engine exhaust flows operate essentially as Category 1 volume/mass 
displacement sources. Axial fans in ducts operate principally as Category 2 force 
sources, generating mean pressure changes in the fluid. Flow-control valves produce 
turbulence that results in fluctuating forces on the solid components, the reaction forces 
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Table 8.1 Cut-off frequencies of acoustic modes of hard-walled ducts of 
circular cross-section a 

n 

m 0 1 2 3 4 

0 0 3.83 7.02 10.17 13.32 
1 1.84 5.33 8.53 11.71 14.86 
2 3.05 6.71 9.97 13.17 16.35 
3 4.20 8.02 11.35 14.59 17.79 
4 5.32 9.28 12.68 15.96 19.20 
5 6.42 10.52 13.99 17.31 20.58 
6 7.50 11.73 15.27 18.64 21.93 
7 8.58 12.93 16.53 19.94 23.27 
8 9.65 14.12 17.77 21.23 24.59 

a Values of kra (= ka) are tabulated. 
Adapted from Sound and Structural Vibration (Fahy, 1987)-  see 
Bibliography. 

constituting Category 2 sources. They also generate sound by means of turbulent 
mixing, which constitutes a Category 3 source. 

Clearly, in this textbook, it is impractical and inappropriate to attempt to analyse the 
effects of real source complexity or the effects of mean flow, viscosity, non-uniform 
temperature, boundary layers and turbulence on sound propagation. Consequently, the 
following analysis is confined to excitation by a harmonic point monopole source of an 
infinitely extended waveguide of rectangular cross-section containing an otherwise 
quiescent fluid. Any other more complex source may be synthesized in terms of a spatial 
distribution of monopoles. 

A point monopole source generates a sound field that is symmetric about any plane in 
which it is located. Hence it may be considered that the plane represents an otherwise 
rigid boundary. We define this plane to lie at z = 0. The axial particle velocity normal to 
this plane may be represented by the delta function distribution 

u, (x, y, t) = V2 Q 6(x - x0) 6(y - y0) exp (jogt) (8.86) 

where Q is the volume strength of the monopole. The pressure field in the region z > 0 
may be represented by an infinite sum over modes expressed by Eq. (8.81) with a negative 
sign in the exponent. The axial particle velocity of the field is obtained by the application 
of the z-directed momentum equation to allow the equality of source and field axial 
particle velocities on the plane to be expressed by 

(kmn/ogpo) /~m, cos (mnx/a) cos (nny/b) = V2 Q 6(x - xo) 6(y - yo) (8.87) 

Multiplication of both sides of the equation by cos (pnx/a)cos(qny/b), followed by 
integration over the area of the plane, yields, by virtue of the orthogonality of the cosine 
functions, 

(kmn/gO Po) Amn ~'mn ab - 2Q cos (mnxo/a) cos (nnyo/b) (8.88) 

in which emn = 4 with m = n = O; emn = 2 with m or n = 0, m :~ n; and emn = 1 with 
m r  

The total pressure field is given by 
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CX) 

p(x, y, z, t) - exp (jcot)~ ZAmn cos (m~zx/a) cos (mzy/b) exp (-jkm,z) 
m n 

(8.89) 

with the complex pressure amplitude of mode given by 

Amn = 2c~176 cos(mTtxo/a) cos(mzyo/b) (8.90) 
kmn gmnab 

in which kmn--[k 2 -  (rare~a) 2+ (ng/b)2] 1/2. For the plane wave mode (m = n = 0), 

Aoo = pocQ/2ab. 
Each modal amplitude is seen to be proportional to the value of the modal cross- 

sectional pressure distribution at the location of the source and to increase towards 
infinity at the modal cut-off frequency. In practice, real sources possess finite internal 
impedance, which limits the effect, but modal pressures do exhibit very large values close 
to the corresponding cut-off frequencies. The amplitudes of modal fields that are excited 
below their cut-off frequencies decay exponentially with distance from the source. Their 
presence allows the near field in the close vicinity of the monopole source, which is not 
affected by wave reflection, to approach that of the monopole in isolation. 

The sound field generated by a point source in a hard-walled duct of rectangular cross- 
section may also be determined by the use of an image source model, in which wall 
reflections are replaced by an infinite set of source images distributed over the plane z = 0 
as shown in Chapter 9. This model is more useful than the modal model for representing 
the field in the vicinity of a source plane, because the resulting summation of free-field 
Green's functions converges more rapidly than the modal sum. The contrary holds far 
from the source plane. Students are urged to write computer programs to check this. 

Division of the expression in Eq. (8.89) by -jo~poQexp(joot) gives the Green's 
function of the fluid, which satisfies the rigid boundary condition Og/On = 0 at the walls 
in the region z > 0. According to the K - H  equation, this function, together with its 
companion for the region z < 0, may be used to determine the response of the fluid in a 
waveguide to a specified field of wall vibration. If the walls are rather flexible, as in the 
case of rectangular section heating, ventilation and air-conditioning ducts, or a duct 
contains a liquid of high impedance, the K - H  integral must be solved together with the 
equation of motion of the walls. This is a complicated problem of structure-fluid 
interaction, of which a simple example is presented in Chapter 9. 

8.9 Energy flux in a waveguide of rectangular cross-section 
with rigid walls 

The time-average intensity in any harmonic sound field is given by ~/2 Re{riO*}, where/~ 
and ~ are the complex amplitudes of pressure and particle velocity. The transverse 
intensity of an isolated mode in a hard-walled duct is zero because the transverse 
component of particle velocity is in quadrature with the pressure. The axial intensity 
distribution is given by 

I,z = (1/2 o0p0) Re {kmn} Am, J 2 [cos (m~zx/a) cos (mzy/b)] 2 (8.91) 

The axial intensity of individual modes excited below their cut-off frequencies is zero. 
The modal power per unit modal pressure amplitude is zero at the cut-off frequency and 
asymptotic to (gmn/4) times the plane wave power at very high frequency. 
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Fig. 8.29 Mean intensity distributions in a uniform, rigid-walled duct excited by a point monopole 
(duct width = 1 m, fl0 = 168 Hz; vector scale ~/1/4). Reproduced with permission from reference 
[5.1]. 

The isolated mode picture is simplistic, because the pressure in one mode can 
cooperate with the particle velocity in another that is excited at the same frequency. 
Consequently, we must extend the intensity expressions to include all the modes. This 
results in an extremely complicated intensity vector field in which, close to a source, even 
the cut-off modes take part. As noted in Chapter 5, the time-average intensity generally 
exhibits circulatory patterns in interference fields, of which the waveguide field is an 
example. The effect is illustrated by Figs 8.29(a-c), which show the calculated intensity 
fields in a two-dimensional duct excited by a line monopole source (to preserve two- 
dimensionality). The effect of the presence of the first-order mode is clearly seen in the 
patterns of Fig. 8.29(a), in which it is excited just below cut-off, and Fig. 8.29(c), in which 
it is excited just above cut-off. When the source is centrally located, at the nodal point of 
this mode, its influence disappears, as seen in Fig. 8.29(b). 

The complexity of the intensity pattern generally increases with frequency. However, 
when such an intensity field is integrated over a wide frequency band, representing 
excitation by a broadband source (which is valid by virtue of the independence of 
intensities associated with sound fields of different frequencies), the complexity largely 
disappears and the direct field of the source becomes evident. This feature applies not 
only to intensity fields, but also to spatial distributions of m e a n  square  pressures and 
particle velocities, and hence to energy density distributions. The implication for models, 
predictions and measurements of mean square pressure fields in enclosures is profound, 
as we shall see in the following chapter. It may be qualitatively explained by graphically 
superimposing the mean square distributions of many standing waves of different 
wavelength-  the spatial fluctuations average out to produce a 'smoother' field. 

Integration of the total axial intensity over the cross-section of the duct demonstrates 
that the total power transported by the duct is equal to the sum of the powers 
transported by each mode, as a result of modal orthogonality. 
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8.10 Examples of the sound attenuation characteristics of 
lined ducts and splitter attenuators 

Extensive numerical studies of the attenuation of sound in two-dimensional, uniform 
ducts produced by resistive wall linings are presented in Sound Absorption Technology 
(Ingard, 1994 - see Bibliography). The resistance ratio of the wall lining is given by 
R = ~d/poC, where ~ is the material flow resistivity and d is the lining width. Examples of 
theoretical attenuation rates per air channel width are presented in Figs 8.30(a) and (b) 
for various values of R as a function of frequency in terms of the parameter channel 
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Fig. 8.30 Attenuation of the fundamental mode in a rectangular duct with one side lined with a 
locally reacting porous layer of thickness d with a total normalized flow resistance R. Channel 
width -- D and fraction open duct area = D/(d + D): (a) 20% open duct area; (b) 70% open duct 
area. Reproduced with permission from Ingard, K. Uno (1994) Sound Absorption Technology. 
Noise Control Foundation, Poughkeepsie, NY. 
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width/wavelength. It will be observed that the maximum value of about 4 dB per channel 
width is largely independent of R (for R > 2), although the low-frequency performance 
increases monotonically with R and the mid-frequency performance decreases mono- 
tonically with R. The effective bandwidth increases with the ratio of lining to duct width. 
Note that the maximum occurs in a frequency range around the first-order mode cut-off 
frequency of the equivalent rigid-walled duct, where the channel width equals half a 
wavelength. Many duct lining materials used in practice do not exhibit local reaction. 
The analysis of the resulting coupled waves that propagate in both the air and the lining 
is beyond the scope of this book. 

For practical reasons to do with problems of physical robustness, acoustic resonances 
in linings and the attenuation of higher-order modes, it is more effective to subdivide the 
airway of large ventilation ducts, which may exceed 2 m in width, by means of lined 
splitters, as illustrated by Fig. 8.31. An example of the performance of a splitter 
attenuator is presented in Fig. 8.32. A set of splitters reflects some of the energy of 
incident waves reactively through the change of area (impedance) at entry; the opposite 
change at exit effects further reflection back into the attenuator. The engineering design 
challenge is to maximize attenuation while minimizing the mean pressure loss across an 

Fig. 8.31 A splitter attenuator. Courtesy of Salex Group of Companies. 
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Fig. 8.32 Typical performance of a splitter attenuator showing the contributions from the liner, 
and the inlet and outlet reflections. T = baffle length; H = airway width; D = splitter thickness: 
e, experiment; , theory; . . . . . .  , theory-  propagation loss; ......... , theory-  entry reflec- 
tion loss; . . . . .  , theory-  exit reflection loss. Reproduced with permission from Mechel, F. P. 
(1990) Numerical results to the theory of baffle-type silencers. A custica 72: 7-20. 

attenuator, which significantly affects the power needed to produce the required air flow. 
The A-weighted noise spectra of the centrifugal fans that drive most heating, ventilation 
and air-conditioning systems in large buildings tend to peak in the 63-125 Hz octave 
bands, for which attenuator performance is generally well below peak. Consequently, 
the length of at tenuator required to meet a delivered noise specification is largely 
determined by the performance in these bands. 

The walls of rectangular-section ducts are quite flexible. Wall vibration induced by a 
sound field in a duct produces two important  effects: sound is radiated into the external 
space -  so-called 'break out'; and the propagation and attenuation of acoustic modes in 
the duct are altered, as shown in reference [8.5]. 
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Fig. 8.33 Schematic of an audio horn and driver. Reproduced from Borwick, J. (ed.) (1988) 
Loudspeaker and Headphone Handbook. Butterworth, London. 

8.11 Acoustic horns 

8.11.1 Applications 

Acoustic horns are best known as components of high-power, broadband audio systems 
in which a so-called 'compression driver' comprising a small diameter, lightweight 
diaphragm suspended in an enclosure is attached to the smaller end (the throat) of a horn 
and sound is emitted from the larger end (the mouth), as shown in Fig. 8.33. They are 
most commonly used in public address systems and in sound reinforcement systems in 
large auditoria, stadia and public spaces, which require high-level sound to be accurately 
directed over large distances. Especially short forms of folded horn are incorporated in 
megaphones. 

Direct radiator loudspeakers, which are sources of volume velocity, offer ~ewer 
practical advantages, and a number of disadvantages, for such applications. Over the 
lower part of the operational frequency range, the cone moves more or less as a rigid 
body and the sound power radiated by such a source is given by the time-average 
product of the volume velocity and the space-average sound pressure acting on the 
diaphragm (cone). At any individual frequency, the time-average power is given by the 
product of the mean square volume velocity and the real part of the specific acoustic 
radiation impedance. As we know from Section 6.6, the diaphragms of direct radiator 
loudspeakers, which radiate like rigid pistons in the lower part of their frequency range, 
are very inefficient at low ka, the specific radiation resistance ratio being very much less 
than unity. The result is that almost all of the electrical power fed to the loudspeaker is 
dissipated in the driving coil, typically less than 1% being radiated as sound. Individual 
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direct radiators are more or less omnidirectional at low frequencies and therefore not 
well suited to public address, although arrays of units (columns) are rather effective in 
this respect. In general, direct radiators are not suitable for applications that require high 
sound power output over the frequency range most important for speech intelligibility 
(broadly 800-3500 Hz). 

Clearly high power, together with acceptable reproduction quality and high electro- 
acoustic efficiency (acoustic power radiated/electrical power consumed), require a high 
volume velocity in combination with a high specific radiation resistance that is not too 
frequency dependent. The mass of a diaphragm tends to increase at a greater rate than its 
area, because of the requirement for stiffness, and the velocity produced at any frequency 
by a given magnetic force is inversely proportional to mass. Volume velocity equals 
velocity times area. Hence, there is advantage to be had in using a stiff, lightweight 
diaphragm of small diameter, provided that an appropriately high radiation resistance 
can be offered to it. The highest frequency-independent specific acoustic resistance that 
can be presented to a compact source of volume velocity is that offered by an 
anechoically terminated, uniform tube of the same cross-sectional area. If a tube is 
uniform and terminated by a simple opening, reflections from the open end will cause 
both the input resistance and reactance impedance to vary strongly with frequency, as 
shown earlier in this chapter. This is clearly not a recipe for faithful sound reproduction. 
The acoustic horn provides a solution to this problem by offering a waveguide in which a 
smooth transition takes place between the small throat and a large mouth. Because of its 
large area, the mouth allows efficient radiation of energy into the surrounding fluid, and 
therefore minimizes reflection back to the throat. The directivity of energy radiation is 
controlled by the shape of the wavefront at the mouth and also by the shape of the 
periphery of the horn mouth through the phenomenon of diffraction (see Chapter 12). 

Acoustic horns are not only of interest to audio engineers. They feature in high- 
intensity test facilities for aerospace structures, in particle agglomeration systems for 
pollution control, as noise sources for acoustic wind tunnels, and in anechoic termina- 
tions of flow ducts, among others. The acoustical behaviour of ducts that vary in cross- 
sectional area along portions of their lengths are of concern to engineers because they 
feature commonly as adaptors in industrial ductwork. Solid horns are used 'in reverse' to 
concentrate the ultrasonic energy generated by large-diameter crystals into small areas 
for purposes such as dental drilling, machining of various forms and surface cleaning. 

8.11.2 The horn equation 

This section introduces a form of the wave equation, known as Webster's horn equation, 
which applies exactly to a small family of horn geometries that support so-called one- 
parameter (l-P) sound fields. It also applies approximately to a larger set of horns with 
uniform cross-section shapes, and cross-sectional areas that vary smoothly and mono- 
tonically along their lengths. Solutions to Webster's equation are not explicitly derived 
because they are more appropriately elaborated elsewhere (e.g., Vibration and Sound 
(Morse, 1948), and Acoustical Engineering (Oslen, 1991), listed in the Bibliography). A 
very thorough exposition of the subject of Webster's equation and 1-P wave fields is 
presented by Putland [8.6]. The impedance characteristics of a range of horns of simple 
geometry are presented graphically to illustrate the features that distinguish them from 
uniform tubes. 

Figure 8.34 shows wavefronts bounding a fluid element in a diverging waveguide. The 
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(b) A sectoral horn 

) 

(c) A constant directivityhorn 

Fig. 8.35 A variety of horn shapes. Reproduced with permission from Holland, K. R. (1992) 
A study of the physical properties of mid-range loudspeaker horns and their relationship to 
perceived sound quality. PhD Thesis, University of Southampton. 
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Fig. 8.36 Transmission ratios of ideal, infinite horns of analytic form. Reproduced with permis- 
sion from Morse, P. M. (1948) Vibration and Sound, 2nd edn. McGraw-Hill, New York. 

wavefronts, which have surface area S(x), are assumed to be self similar and the sound 
pressure and particle velocities (directed normally to the wavefronts) are assumed to be 
uniform over the wavefronts. As required by the boundary condition on pressure 
gradient normal to a boundary, the wavefronts intersect the boundary at right angles. 
(Note: this condition is not satisfied by plane waves, which are often assumed.) All fluid 
elements lying between any two closely spaced wavefronts are subject to the same 
conditions and therefore any one may be selected as the subject of the following 
equations. The generalized 1-P coordinate is orthogonal to the local wavefront. 

The volumetric strain is 

= {S~ - [S + (OS/Ox) 6x] [~ + (O~/Ox) 6x]}/S 6x (8.92) 

which, provided that OS/Ox is sufficiently small, e becomes (1/S) O(S~)/Ox to first order. 

The acoustic pressure is therefore given by 

p = - -  p o  c2 e = - -  ( p o c 2 / S ) O ( S ~ ) / O x  (8.93) 

The linearized momentum equation is 

Op/Ox = - Po 02~/Ot2 (8.94) 

Differentiation of Eq. (8.93) twice with respect to t, and of Eq. (8.94) with respect to x, 
yields the wave equation 

S 02p - O [s  OP] (8.95) 
C 2 0 t  2 - -  OX -~X 

Only two geometric forms of horn allow purely 1-P progressive wave solutions 
analogous to the plane wave, in which the intensity varies inversely with S, so that 
waves progress without reflection. These are the conical horn and the cylindrical sector 
horn shown in Fig. 8.35. Other forms of axisymmetric horn that support 'almost' 1-P 
waveforms are the exponential and catenoidal horns, of which sections are shown in 
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Fig. 8.37 Comparison of theoretical and measured pressure distributions in the AX1 horn: (a) 
magnitude; (b) phase. Reproduced with permission from reference [8.7]. (Continued overleaf) 
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Fig. 8.37 (continued) 
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Fig. 8.38 Theoretical wavefronts in a 'bass bin'. Reproduced with permission from reference [8.8]. 
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Fig. 8.36, together with curves of the transmission coefficient. This is a measure of the 
sound power relative to that generated in an anechoically terminated tube of the same 
cross-sectional area as the throat. It will be seen that, except for the conical horn, for 
which the specific acoustic radiation impedance is given by Eq. (6.25), the impedance 
becomes imaginary below a cut-off frequency, and power radiation is impossible. 
Practical horns are not infinitely long, and some degree of wave reflection from the 
mouth cannot be avoided. Figures 8.37(a) and (b) present a comparison between 
theoretical and measured forms of pressure field in an axisymmetric horn [8.7]. 

Commercially available horns assume a great variety of shapes that are designed to 
maximize output power and optimize directivity for particular applications, such as 
outdoor concerts or central clusters for auditoria. Their acoustic behaviour is analysed 
by the application of boundary element and/or finite element computer programs. An 
example of a boundary element method calculation of the wavefronts in a 'bass bin' is 
shown in Fig. 8.38 [8.8]. 

Quest ions  

8.1 A point monopole source of volume velocity amplitude Q0 = 10-3m3 s-1 is 
situated in a rigid-walled duct of rectangular cross-section at a point x0 = 0.Sa, 
y0 = 0.6b, where a and b are the dimensions of the cross-section. If a = 0.5 m and 
b = 0.7 m, and the duct is anechoically terminated at both ends, calculate the sound 
power of the source at 400 Hz. [Hint: either use W = Re {Q/~*}/2, where p is the 
sum of the propagating mode pressures, or integrate the axial component of 
intensity over any cross-sections on both sides of the source.] 

8.2 The duct specified in the previous question is lined with a locally reactive sound- 
absorbent material with a normal specific acoustic impedance ratio Zn - 4.0 (any 
reactive component has been neglected in order to simplify the calculations). 
Calculate the axial attenuation rate of the principal mode at 100 Hz and 1 kHz. 

8.3 A rigid piston of mass M slides freely in a tube of radius a that is terminated at a 
distance I by a rigid plug containing a small hole. The acoustic impedance of the 
hole is assumed to be purely resistive. Derive expressions for the mechanical 
impedance presented to an external force acting on the piston and the flow rate 
through the hole when the piston is excited by a harmonic force of unit amplitude. 
Identify any conditions of resonance. Assume that the piston does not leak flow 
around its periphery. 

8.4 Two opposed rigid steel pistons of 300 mm diameter and 4 mm thickness are placed 
35 mm apart in a tube within which they may slide freely. The pistons are mounted 
upon springs of stiffness 105N m-1.  The tube is anechoically terminated at each 
end. Determine the natural frequencies of the system. Assume that the pistons do 
not leak flow around their peripheries. 

8.5 For the duct specified in Question 8.1 plot the axial phase and group speeds of the 
plane wave and of the (0,1) and (1,0) modes, against frequency. What  are the 
asymptotic values of these speeds as the acoustic wavenumber tends to infinity? 

8.6 A small loudspeaker in a rigid cabinet located in an anechoic chamber is excited by 
a short pulse of positive current followed immediately by an identical negative 
pulse. The open end of a long, anechoically terminated tube is placed symmetrically 
over the loudspeaker cone and the sound pressure-time history is recorded. The 
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tube is then removed and the pressure-time history recorded at the same position. 
Sketch the sound pressure-time histories in the two cases on the basis of the 
assumption that the motion of the loudspeaker cone is controlled by its inertia. 
[Hint: Consider Eq. (6.23) and z of a plane wave.] In qualitative terms, what effect 
do you think the stiffness and damping of the loudspeaker system and the 
inductance of the voice coil would have on the pressure-time history if the same 
time history of voltage were applied to the loudspeaker? [Try this experiment in the 
lab.] 

8.7 Prove that the functions cos (m~zx/l) and cos (mzx/l) are orthogonal over the 
interval l. 

8.8 Two identical side branch filters are attached to a tube at a separation distance l. 
The tube is anechoically terminated beyond the second filter. Derive an expression 
for the acoustic impedance ratio at the entrance to the junction with the first filter 
as a function of kd. [Hints: Represent the acoustic impedance ratio of the side 
branch simply as Z[,. Use the impedance transfer expression in Eq. (4.22), with 
appropriate substitution of Z' for z', to express Z~ for the filter first encountered by 
the incident wave as a function of kl and Z~ at the junction with the second filter.] 
Consider the result at frequencies for which kl = ~z and kl = ~z/2. Interpret your 
results in terms of the influence of the second filter on the impedance downstream 
of the joint with the first filter. Have the results got significance for practical noise 
control? 

8.9 Derive expressions for the sound power transmission coefficient of a short (kl << 1) 
area constriction in an otherwise uniform duct in terms of the two-port formulation 
and the transfer impedance formulation. If they don't  give the same result, 
something's wrong. 

8.10 Repeat the analysis of Section 8.7.1 for a duct with pressure release (Zn = 0) walls. 
Sketch the modal pressure distributions across the duct for the lowest three modes. 
How do the modal cut-off frequencies compare with those of the rigid-walled duct 
of the same dimension? Consider the fate of a plane wave that travels along a rigid- 
walled duct and encounters a section of duct of the same cross-sectional dimen- 
sions, but with pressure release walls. What will happen below the lowest cut-off 
frequency of the duct with pressure release walls? [Hint: consider orthogonality.] 

8.11 Derive Eq. (8.91). 
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Enclosures 

9.1 Introduction 

The behaviour of sound in volumes of air enclosed by solid boundaries is of considerable 
importance to noise control engineers, particularly in relation to the acoustic comfort of 
passengers in road, rail, air and marine vehicles. Very large amounts of money are spent 
by manufacturers in this regard because it is one of the major factors that influence 
potential purchasers. Excessive cabin noise also degrades performance and presents a 
health hazard for truck drivers and air crew. The enclosures of space vehicles that carry 
space satellites must be designed to exclude the rocket noise at launch to a degree 
sufficient to prevent damage to the payload. Other forms of enclosure of engineering 
interest include industrial work spaces, noise control enclosures for machinery and 
plant, machinery rooms, cavities between double walls and windows, and various forms 
of industrial plant, such as heat exchangers. Theoretical models of sound fields in large 
reverberant spaces form the basis of standardized measurement methods for the 
determination of source sound power, the sound transmission loss of partitions, and 
the diffuse field sound absorption coefficient of materials. 

The acoustic behaviour of liquid-filled enclosures, such as water-cooled nuclear 
reactors, rocket propellant fuel tanks, flooded sonar domes, and even highly pressurized 
gas containers, is also of engineering interest; but the interaction between the containers 
and the contained liquid is so strong that vibroacoustic analysis must deal with the fully 
coupled problem. The analytical and behavioural complexity puts such problems 
outside the scope of this book. 

Much of the literature on enclosure acoustics pertains to performance spaces such as 
concert halls and theatres. In this area of the subject, the central interests are in the 
relation between the physical form of the sound field and the associated psychoacous- 
tical phenomena: speech intelligibility, quality of musical sound, the effect on perfor- 
mers, and the subjective response of listeners. Although these facets of the subject are 
fascinating, and still intensively researched, they are comprehensively covered by many 
specialized books on architectural acoustics (e.g. Auditorium Acoustics and Architectural 
Design (Barron, 1993) and Room Acoustics (Kuttruff, 2000), listed in the Bibliography) 
and will not feature here. 

Interference between repeated reflections of sound from the boundaries of an 
enclosure that is not highly absorbent creates a spatially and temporally complex field 
that exhibits five principal features: resonance associated with acoustic modes; rever- 
beration, in which the sound energy density decays approximately exponentially 
following the cessation of source activity; convoluted patterns of energy flow; a tendency 
to spatial uniformity of mean square pressure in response to broadband excitation; and 
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unpredictability. As we shall see later in this chapter, the average separation between 
adjacent resonance frequencies decreases as the square of frequency, so that identifica- 
tion of individual resonances and modes is generally impossible above about five times 
the fundamental resonance frequency. At sufficiently high frequency, and with a source 
of sufficient bandwidth, sound fields in enclosures approximate to an ideal model known 
as the 'diffuse field' in which every point is assumed to receive mutually uncorrelated 
plane waves with uniform probability of direction. 

Enclosures usually contain objects of various size, and the boundaries are often 
geometrically irregular and formed from a variety of materials having different acoustic 
properties, so that incident sound waves are scattered and diffracted to form a highly 
complex acoustic field. Because sound waves are repeatedly reflected, even very small 
departures from perfect regularity and/or uniformity of boundaries are sufficient to 
make enclosed sound fields unpredictable at any specific location, the uncertainty 
increasing with frequency. This led the eminent acoustic consultant Theodore Schultz 
in 1973 to marvel as follows: ' . . .  it is almost incredible to me that we could produce such 
a complex and mysterious thing, just by putting up four walls, a floor and a ceiling, and 
then radiating sound into it. And yet the more we study sound in an enclosed space, the 
more peculiar it seems' [9.1]. 

The phenomenon of the enclosed sound field at frequencies at which the wavelength is 
much less than the average enclosure dimension is thus essentially chaotic in nature. The 
problem of deterministic prediction of the sound pressure at any point is akin to the 
problem of predicting the final rest position of a billiard (snooker, or pool) ball when 
struck so fiercely that it undergoes five or more rebounds. The sensitivity to the angle of 
the initial trajectory is quite remarkable, as successive attempts to repeat a given shot will 
demonstrate. Fortunately, the high density and essential uncertainty of the exact 
frequencies and mode shapes of high-order modes allows statistical statements to be 
made about the spatial probability distributions of sound pressure and sound intensity, 
and about the characteristics of frequency response curves. These matters are of interest 
for those concerned with the random error and confidence in estimates based upon 
sampled field data, but are best treated in specialist monographs such as Room Acoustics 
(Kuttruff, 2000) and Sound Intensity (Fahy, 1995) - both listed in the Bibliography, and 
are only briefly mentioned here. 

An assumption of the existence of one particularly simple probabilistic model of a 
sound field, known as the diffuse field, is made in the modelling of many problems of 
practical concern to engineers, particularly in relation to measurement procedures; for 
this reason it is discussed in some detail. Because it is so widely employed, it is important 
to appreciate its limitations, as well as its convenience. It provides the basis for an 
energetic model that leads to estimates of reverberation times and the relation between 
space-average mean square sound pressures and the sound power injected into an 
enclosure by a source. It is also fundamental to an approach to the analysis of high- 
frequency structural vibration called statistical energy analysis (SEA), which is widely 
used by industry to predict noise caused by structural vibration, and to optimize 
structural design for the minimization of vibration and noise. Readers are referred to 
Theory and Applications of Statistical Energy Analysis (Lyon and de Jong, 1995 - see 
Bibliography) for an introduction to SEA. 

In spite of the problem of uncertainty affecting sound fields in real enclosed volumes of 
complex shape, it is useful to analyse the acoustic behaviour of sound in geometrically 
regular enclosures because the features revealed are generic to all enclosed fields, and 
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thus provide a basis of qualitative understanding and the development of alternative 
models. It is also the case that some systems of engineering interest that incorporate 
enclosed fluid volumes or cavities, such as the combustion chambers of furnaces, the 
cavities between lightweight double walls and windows, the payload spaces of rocket 
launchers and the cabins of passenger vehicles, display undesirable acoustic behaviour at 
the resonance frequencies of certain individual low-order acoustic modes. The nature 
and controlling parameters of the problem can be identified by mathematical modelling 
and analysis, and suitable remedies applied, even though the exact frequencies and mode 
shapes are subject to uncertainty. 

The chapter opens with an introduction to the general features of sound fields in 
enclosures as typified by frequency and impulse responses measured in a small 
reverberant room. An analysis of the modal characteristics of the sound field in a 
rectangular, hard-walled enclosure follows. The concept of modal density is introduced 
and an expression is developed on the basis of a wavenumber lattice diagram. Modal 
energy expressions are developed and the effect of finite boundary impedance is 
examined. The response of fluid in a rectangular enclosure to excitation by a harmonic 
point monopole leads to a modal series expression for the boundary Green's function, 
which is applied to the problem of sound radiation into an enclosure by a vibrating wall. 

The exquisite sensitivity of high-order enclosure modes to small perturbations of the 
system rules out useful extension of the deterministic modal model to frequencies above 
about that of the tenth mode. A quantitative formula is presented for the frequency 
above which only a probabilistic model of enclosed sound fields is viable. The notion of 
randomness of an enclosed sound field, engendered by the unpredictability of modal 
parameters and responses, leads to the concept of a probabilistic model in which 
uncorrelated (statistically unrelated) plane waves propagate in all directions with 
uniform probability: this is the diffuse field. The assumption of 'uncorrelation' obviates 
the problem of wave interference and allows the total mean square pressures and 
intensities to be equated to the sum of that of each wave. It is shown how diffuse field 
relations between mean square pressure and intensity form the basis of an energetic 
model of enclosed sound fields. This yields simple expressions for the relation between 
reverberant energy decay rates and the sound absorption of the boundaries, and for the 
relation between source sound power and mean square sound pressure. These form the 
basis of standardized methods of determination of sound absorption coefficient of 
materials, the sound power of sources and the sound power transmission coefficients of 
partitions between enclosures. 

The diffuse field is an appealing concept that leads to very simple expressions for 
quantities of concern to noise control engineers. However, the conditions necessary for 
its proximate establishment do not usually obtain in auditoria or in enclosures such as 
industrial workshops in which it is required to predict the noise levels and to specify noise 
control measures. Consequently, there is a need for alternative models that avoid the 
complexities of wave interference but are capable of representing non-diffuse, directional 
energy flux. Such models, which completely neglect the wave nature of sound, are based 
upon the concept of geometric 'ray' acoustics, in which sound energy is assumed to be 
transported by bundles of straight rays. They bear a strong resemblance to optical ray 
models. Various forms of assumption are made about the redistribution of energy when 
it encounters a boundary or an object within the enclosure. The closing section of this 
chapter briefly introduces the concepts and assumptions of geometric ray acoustics as 
applied to enclosures. For details of the methods of application and associated 
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computational procedures the reader is referred to reference [9.2]. Geometric acoustics 
also provides the basis of computational modelling of auditoria termed 'auralization', 
which allows a listener to experience the aural qualities of spaces at the design stage [9.3]. 

Ray acoustic models are widely employed for studies of sound propagation in a non- 
uniform atmosphere and in the ocean. The former subject is treated briefly in Chapter 
12. A very thorough exposition of ray acoustics is presented in Acoustics: An Introduc- 
tion to its Physical Principles and Application (Pierce, 1989 - see Bibliography). 

9.2 Some general features of sound fields in enclosures 

Figure 9.1 shows the magnitude and phase of the sound pressure frequency response 
with 1 Hz resolution in the range 0-500 Hz at a point on the axis of a 150mm diameter 
loudspeaker in a small, reverberant, rectangular room of dimensions 2.3 m x 2.2 m x 
2.5 m. The response is normalized on the cone acceleration of the loudspeaker. The 
reverberation time lies in the range 0.8 to 1.4 s. Figure 9.2 shows the frequency response 
in the range 0-5000 Hz (with 10 Hz resolution) and Fig. 9.3 shows the impulse response 
band-limited in the same frequency range. Figure 9.4 shows superimposed frequency 
responses at two points 10 cm apart. The effect of placing a 1 m square plywood panel in 
one corner of the room is shown in Fig. 9.5. The peaks in Fig. 9.1 (a) indicate individual 
resonance frequencies of the room, of which the lowest at about 68.6 Hz corresponds to 
a wavelength of 5.0 m at a temperature of 20~ The phase plot in Fig. 9.1 (b) exhibits the 
rapid slewing of phase in the region of the resonance peaks that is characteristic of modal 
resonance. Above about 400 Hz, the resonance peaks begin to overlap. Above 500 Hz, 
no individual resonances can be detected and the phase variation bears no apparent 
systematic relation to the magnitude. The variation of (wrapped) phase with frequency, 
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Fig. 9.1 Frequency response of a small room, 0-500 Hz: (a) magnitude; (b) phase. 
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Fig. 9.2 Frequency response of a small room, 0-5 kHz: (a) log magnitude; (b) phase. 

Fig. 9.3 Impulse response corresponding to Fig. 9.2. 

shown in Fig. 9.2(b), reveals an underlying sawtooth pattern that corresponds to the 
direct field, on which is superimposed an irregular deviation caused by reverberant 
reflection. 

The impulse response in Fig. 9.3 is the inverse Fourier transform of the frequency 
response in the frequency range 0-5000 Hz (see Appendix 2). The arrivals of the direct 
sound and the subsequent early reflections can clearly be seen. The 10 Hz bandwidth of 
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Fig. 9.4 Frequency responses measured 100 mm apart, 0-5 kHz. 

Fig. 9.5 Effect of the introduction of a 1 m 2 board on the frequency response, 0-5 kHz. 

the effective filter imposed by the Fast Fourier Transform (FFT) analyser used to 
produce these results is wide enough to ensure that the impulse response of the filter is 
sufficiently short not to distort the room impulse response to an unacceptable degree. 
This is an example of the fundamental law of signal analysis that the product of the 
frequency and time resolution is constant; for a high degree of resolution in one domain 
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Fig. 9.6 Spatial variation of sound pressure level at an individual frequency: (a) 250 Hz; 
(b) 5000 Hz. 

one must sacrifice resolution in the other. It is not useful to display the band-limited 
impulse response in the frequency range 0-500 Hz because the impulse response of the 
room is distorted by that of the 1 Hz narrow-band filter through a process termed 
'convolution'. The filter 'rings' for a duration that is long compared with the separation 
in time of the individual reflections. 

Figure 9.6 shows the variation of sound pressure level with position at two individual 
frequencies of 250 and 5000 Hz. There is similarity of ranges between the frequency 
response curve at a fixed point and the spatial variation of sound pressure level with 
position at a fixed frequency. This is a fundamental characteristic of sound fields in 
reverberant enclosures. Figure 9.7 shows the spatial variation of broadband sound 
pressure level in the 1/3 octave bands centred on 250 and 5000 Hz, which have 
bandwidths of about 66 and 1250 Hz. The 'smoothing' effect associated with the 
simultaneous excitation of a large number of modes is clearly seen at the higher 
frequency. 

Fig. 9.7 Spatial variation of sound pressure level in a 1/3 octave band centred on: (a) 250 Hz; 
(b) 5000 Hz. 
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9.3 Apology for the rectangular enclosure 

The sound field generated in any enclosed volume of fluid by a given source distribution 
acting within the volume and/or vibration of the boundaries, may, in principle, be 
determined by solving the wave equation subject to the appropriate boundary con- 
ditions. The Kirchhoff-Helmholtz integral equation derived in Chapter 6 applies. 
Solutions in terms of modes represented by simple analytic functions of space, such as 
sines, cosines, and Bessel functions, are available only for regular enclosure geometries, 
such as rectangular or cylindrical. More complex, irregular geometries of variable 
boundary impedance demand the application of discretized models and computational 
procedures such as the finite element and boundary element methods. These are 
comprehensively explained in such books as Introduction to Finite Element Vibration 
Analysis (Petyt, 1998) and Boundary Elements in Acoustics (Von Estorff, 2000), both 
listed in the Bibliography, and in the manuals of FEM and BEM software. 

In this textbook, which addresses fundamentals, and aims principally to instruct in 
concepts, principles and phenomena, rather than engineering methods, only enclosures 
of rectangular geometry will be studied. The physical behaviour revealed is common to 
all enclosures; only the temporal and spatial complexity of the fields vary. 

9.4 The impulse response of fluid in a reverberant rectangular 
enclosure 

In the preceding chapter, a study of the behaviour of waves generated in a tube by an 
impulsively displaced piston led to the identification of acoustic natural frequencies 
associated with periodicity of arrivals of reflections. In principle, it is possible in a similar 
manner to determine the natural frequencies of the standing wave modes of a three- 
dimensional rigid-walled rectangular enclosure by exciting it by an impulsive point 
monopole source and following the passage of the resulting spherical wavefront as it 
makes successive encounters with the enclosure boundaries. Each reflection may be 
represented by the wavefront generated by an identical (virtual) source located at an 
image point (as if the real source 'saw' itself in a gallery of plane mirrors placed on the 
enclosure boundaries). In practice, it is only straightforward to identify the natural 
frequencies of a small subset of all possible modes because a comprehensive analysis 
requires examination of the geometrical properties of an infinite set of images - a not 
inconsiderable task. 

However, the source image diagram does provide a useful means of visualizing the 
arrival sequence and relative strengths of reflections of sound generated by an impulsive 
point monopole, and it can be adapted to handle source directivity. A three-dimensional 
image source array is difficult to represent and interpret on paper, so a two-dimensional 
enclosure is presented in Fig. 9.8. The source and its images take the form of thin, 
impulsively expanding, tubes that extend to infinity in both directions normal to the 
plane of the paper. If the enclosure walls are perfectly reflective, all the images are 
identical to the physical source and are simultaneously activated. The distance travelled 
by each circular wavefront in time t is r -  ct. The sound pressure of each circular 
cylindrical pulse wave varies as r-1/2 (unlike spherically spreading wavefronts). The 
average rate of arrival of reflections at elapsed time t may be approximately estimated by 
dividing the area of the annulus of radius r = ct and width Ar = cAt by ab, which is the 
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Fig. 9.8 Two-dimensional image array. 

area occupied by each image source. Approximately 2~zc2t ZXt/S reflections arrive in time 
At, giving an asymptotic rate of arrival of 2~zcZt/s, where S is the area of the enclosure. 
Consideration of the equivalent three-dimensional diagram shows that the asymptotic 
rate of arrival is 4~zc 3t2/V, where V is the enclosure volume. 

In a perfectly reflective enclosure, progressively weaker reflections continue to arrive 
at progressively increasing rates for an infinite time. Energy conservation is satisfied 
because the product of the pulse arrival rate and intensity produced by an individual 
image source is independent of time. If the enclosure walls are plane, but have a non- 
zero, locally reactive, impedance, spherical incident wavefronts do not result in spherical 
reflected wavefronts. This may be qualitatively explained by the fact that the angle of 
intersection of a spherical wavefront with a plane surface varies with position on the 
wavefront. (The problem may be rigorously analysed by mathematically decomposing a 
spherical wavefront into an infinity of plane waves in a manner similar to spatial Fourier 
analysis; see Waves in Layered Media (Brekhovskikh, 1960), listed in the Bibliography.) 
However, as a reasonable approximation for enclosures whose walls have a diffuse field 
absorption coefficient ea much less than unity, so that the field remains reverberant, one 
may factor the image strength by c~a on the basis that each wall receives incident waves 
from all directions with equal probability, because the rate of decay of sound energy is 
slow compared with the rate of arrival of reflections. The rate of arrival of energy in the 
enclosure decreases with time, and the sound field decays. 

The image model constitutes a useful device for understanding the distinction between 
the meanings of the terms 'reverberant' and 'diffuse' as applied to sound fields in 
enclosures, which is often blurred in the literature. The sound field in a long, concrete- 
walled, uncarpeted corridor is reverberant, because the proportion of stored energy lost 
per reflection is very small. However, reference to the source image diagram for such a 
long, thin space clearly shows that the distribution of directions of reflection arrival is far 
from uniform. The field is therefore nowhere near diffuse. The contrary case is not 
common, but could be established at the centre of an array of uncorrelated point sources 
distributed uniformly over a spherical surface in free field. This is approximated by 
certain standardized tests for ear defender performance. 

However, the asymptotic statistical estimate of average rate of arrival of pulse 
reflections at a receiver point does not apply to the first few 'early' reflections. These 
crucially influence the intelligibility of speech and the clarity of musical sound in 
auditoria. Consequently, theoretical and experimental studies of the time and strength 
of arrival, together with direction of arrival, form a key element in the prediction and 
evaluation of the quality of auditorium performance. Details will be found in publica- 
tions specifically dedicated to this subject, such as Room Acoustics (Kuttruff, 2000-  see 
Bibliography). 
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Fig. 9.9 Pressure-squared impulse responses in the Royal Festival Hall, London: (a) 18 m from the 
source; (b) 35 m from the source. Reproduced with permission from Barron, M. (1993) Auditorium 
Acoustics and Architectural Design. E & F N Spon, London. 

In practice, the boundaries of all enclosures scatter a greater or smaller proportion of 
incident energy into non-specular directions, thus severely limiting the usefulness of the 
image model for predictive purposes. An example of the actual pressure-squared impulse 
response, or misleadingly called 'echogram', of a large auditorium is shown in Fig. 9.9. 
The densely populated tail is defined as 'reverberation'. Reflections arriving within about 
50 ms of the direct sound are not subjectively perceived as 'echoes'. 

9.5 Acoustic natural frequencies and modes of fluid in a rigid- 
walled rectangular enclosure 

The rectangular enclosure shown in Fig. 9.10 may be considered as a section of duct of 
rectangular cross-section closed by two plane surfaces oriented at right angles to the duct 
axis. Consequently, solutions to the homogeneous Helmholtz equation, subject to the 
boundary conditions of zero normal pressure gradient, are readily obtained by requiring 
the sum of the two modal solutions of Eq. (8.81) to meet this condition at z = 0 and 
z = c. The resulting expression for modal pressure distribution is 

Ptm,, (X, y, Z) = Alm,, cos (lrcx/a) cos (mTcy/b) cos (nTcz/c) (9.1) 

in which the notation of the mode order indices has been altered from that in Eq. (8.81) 
to make it more logically related to the coordinate system. The corresponding 
expressions relating modal wavenumber and natural frequency to the component 
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Fig. 9.10 Rectangular enclosure. 

wavenumbers are 

and 

k~m,, = (&/a) 2 + (mrt/b) 2 + (ng/c) 2 (9.2a) 

~2m, = c2k2m, (9.2b) 

The relation expressed by Eq. (9.2a) is conveniently visualized by means of the 
wavenumber lattice diagram shown in Fig. 9.11. Each mode is represented by an 
intersection of the grid lines (lattice point). Lattice points lying on each of the three 
axes represent 'axial' modes in which the field quantities are uniform over planes normal 
to the relevant axis. Lattice points lying in the x - y ,  x - z  and y - z  planes represent 
'tangential' modes, in which the field quantities are uniform in z, y and x directions, 
respectively. All other modes are termed 'oblique'. Each modal standing wave 
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Fig. 9.11 Wavenumber lattice with superimposed frequency band shell. 
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(eigenfunction) may be decomposed into two (axial), four (tangential) or six (oblique) 
oppositely directed plane travelling waves of equal amplitude. Two examples follow. 

Axial: A cos (lrcx/a) exp (joot) = �89 exp [j(~ot- lrcx/a)] + �89 exp [j(cot + htx/a)] (9.3a) 

Tangential: B cos (lrcx/a) cos (mrcy/b) exp (joot) 
= 1B exp [j(~ot- #cx /a-  m~zy/b)] + �88 exp [j(ogt- lrcx/a + mrcy/b)] 

+ �88 exp [j(oot + lrcx/a-mrcy/b)] + 1B exp [j(ogt + lrcx/a + mrcy/b)] 
(9.3b) 

The modal wavenumber vector, which joins the coordinate origin to the modal lattice 
point, together with its reflection in the x-y,  x - z  and y-z  planes, as appropriate, indicate 
the direction of propagation of these travelling plane wave components. 

The wavenumber lattice construction provides a convenient means of estimating the 
distribution of modal natural frequencies as a function of frequency. It is also extremely 
useful in studies of acoustic coupling between enclosed fluids and the flexible walls of an 
enclosure, as we shall see later. The actual distribution of acoustic natural frequencies of 
a rectangular enclosure is not a smooth function of frequency, as evidenced by the 
example of cumulative mode count illustrated by Fig. 9.12. However, a smoothed 
estimate of the density of the distribution is obtained by noting that each mode point 
occupies a volume of wavenumber 'space' equal to ~z3/abc. The locus of constant acoustic 
wavenumber k (or o9 = ck) lies on the spherical surface as shown in Fig. 9.1 1. This 
surface encloses a volume of wavenumber space equal to ~k3/6 in one octant. Hence, the 
number of modes having natural frequencies lying below 09 is given approximately by 

N(og) ~ o93 abc/6rc2c 3 -- o93 V/6rc2c 3 (9.4) 

Fig. 9.12 Cumulative mode count of a 10 m x 5 m x 3 m enclosure. Reproduced with permission 
from Nelson, P. A. and Elliott, S. J. (1992) Active Control of Sound. Academic Press, London. 
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where V = abc. The average number of modal natural frequencies per unit frequency is 
given approximately by 

ON/~oo ~ 09 2 V/2~2c 3 (9.5a) 

In terms of frequency f(Hz)  

~N/df  ~ 4:rcf 2 g/c 3 (9.5b) 

A more accurate expression may be obtained by making individual estimates of the 
density of axial, tangential and oblique modes. The results are as follows: 

ONa/~f = L/2c (9.6a) 

~Nt/Of = rcSf/c 2 -  L/2c (9.6b) 

and 

~No/~f = 4~zf 2 V / c  3 - rcSf/2c 2 (9.6c) 

where S = 2(ab + bc + ac) and L = 4(a + b + c). 
The relative densities of the three classes of mode depend upon the relative dimensions 

of the enclosure. As frequency rises, the modal density becomes increasingly dominated 
by that of the oblique modes, and the expression in Eq. (9.5) is known as the 'asymptotic 
modal density'. It has been shown by statistical analysis, the details of which need not 
concern us, that this expression applies in the asymptotic limit to any single space 
enclosure, of whatever geometric form. The three expressions of Eq. (9.6) should be 
separately evaluated in cases of highly disproportionate enclosures, such as long 
corridors or large rooms with low ceilings. 

Example: The asymptotic modal density of the very small room described in Section 9.2 
is 0.16 modes Hz-1 at 200 Hz and 4 modes Hz-1 at 1 kHz. 

There exists a rather widely held view that standing waves and modal resonances can 
be weakened, or even eliminated, by making the boundaries of reverberant enclosure 
non-parallel or geometrically irregular. This view is erroneous. Reverberant enclosures 
of all shapes exhibit these features. The only way to suppress the interference effects that 
underlie such behaviour is to introduce sufficient absorption into the enclosure to 
eliminate multiple reflection. It is true, however, that the distribution of modal natural 
frequencies and mode shapes can be altered by modification of enclosure geometry. 
Certain ratios of rectangular room dimensions produce more uniform distribution of 
modal natural frequencies than others and are therefore favoured for small enclosures 
such as recording or broadcasting studios. 

9.6 Modal energy 

The time-average kinetic and potential energy densities of a time-stationary sound field 
are given by the time averages of Eqs (5.4) and (5.5) 

e-g = l p o ( u 2  + v 2 -+- w 2) (9.7a) 

in which u, v and w are the Cartesian components of the particle velocity vector u, and 

-0 7 - l y /poc2  (9.7b) 
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We assume an isolated acoustic mode in a rigid-walled, rectangular enclosure to be 
oscillating harmonically with frequency ~o. The pressure field takes the form 

p(x, y, z, t) = AN COS (hzx/a) cos (m~zy/b) cos (mzz/c) exp (jolt) (9.8) 

where the subscript N stands for lmn. 
The time-average potential energy density at point (x, y, z) is given by 

~ ( x ,  y, z )= ( AN 2/4p0c2) COS2 (l~x/a) COS 2 (m~zy/b) c o s  2 (mzz/c) (9.9) 

The total time-average potential energy is given by the integral of this expression over 
the volume of the enclosure as 

Ep = I A N  2(abc)/32poc2 (9.10) 

in which a is replaced by 2a when I = 0, b is replaced by 2b when m = 0 and c is replaced 
by 2c when n = 0. This is the 'null index' convention, which will be used extensively in 
this chapter. 

The components of modal particle velocity are given by Eqs (3.34) as 

u = -j(1/o~po)(l~z/a)[tan(l~zx/a)]p (9.11 a) 

v - -j(1/~opo)(m~z/b)[tan(m~zy/b)]p (9.11 b) 

w = -j(1/o~po)(n~/c)[tan(mzz/c)]p (9.11 c) 

The time-average kinetic energy density is 

e---~ = (1/2~oZpo)[(l~z/a) 2 tanZ(l~zxa) + (m~z/b) 2 tanZ(m~zy/b) + (mz/c) 2 tanZ(mzz/c)]-~ 

(9.12) 

which, when integrated over the enclosure volume, yields 

Ek -- AN 2(abc)kZmn/32po~~ (9.13) 

subject to the same convention with regard to null modal indices as before. 
The time-average potential and kinetic energies are equal only if the mode oscillates at 

its natural frequency given by Eq. (9.2b), or is excited by broadband noise. 

9.7 The effects of finite wall impedance on modal energy-t ime 
dependence in free vibration 

The boundaries of all physical enclosures vibrate in response to incident sound and are 
to some extent sound absorptive. We have seen in Chapter 8 that the natural frequencies 
of acoustic modes of fluid in tubes having terminations of finite reactive impedance are 
altered from those with a rigid termination. We have also seen that the presence of a 
resistive component of termination impedance renders the natural modes complex in 
wavenumber and natural frequency. Extension of the analysis of the sound field in a two- 
or three-dimensional enclosure with walls of arbitrary impedance is possible, but the 
resulting expressions are complex and quantitative solutions require the application of 
iterative numerical analysis (see reference [9.4]). Alternatively, variational techniques 
may be applied in the form of finite element or boundary element routines. 

A completely general treatment of free vibration is therefore well beyond the scope of 
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this text. However, provided that the magnitude of specific acoustic impedance ratio of 
the boundaries is very much greater than unity, as it is, for example, in reverberation 
chambers and unfurnished rooms, little error is made by assuming that the modes closely 
approximate rigid-wall modes, each vibrating at a complex frequency of which the real 
part equals its rigid-wall value. Because the ratio of imaginary to real part is very small, 
the fractional decrease of modal amplitude per cycle of free oscillation is so small that 
quasi-steady conditions may be assumed to obtain. As suggested by the analysis in 
Section 8.4.2, we may then neglect mode coupling at the boundaries. Hence, on the basis 
of the assumption of local reaction, the time-average rate of absorption of modal sound 
energy per unit area of boundary may be approximated by 

�89 ) Re { 1/Zn} (9.14) 

where PNb is the modal pressure at a boundary having specific acoustic impedance ratio 
z;,. When integrated over a period of time that encompasses a number of cycles of the 
lowest frequency mode contributing significantly to Pb, the cross terms which express the 
work done by the pressure in one mode collaborating with the normal boundary velocity 
generated by the pressure in another mode tend to become very small compared with the 
'self' or 'direct terms', which involve the pressure of one mode and the associated 
boundary velocity. This effect is enhanced if the modal frequencies are well separated. 
This model, which is valid only for rather stiff/massive walls with low absorption 
coefficient, indicates that absorbers are most effective if placed at pressure anti-nodes: 
for example in the enclosure corners. 

Let us now assume that all boundaries have the same uniform impedance. (This 
assumption may be relaxed if appropriate.) The total rate of change of modal energy is 
given by the integral of the above expression over the whole boundary. Using Eq. (9.8) in 
Eq. (9.14) gives: 

d E x / d t  - --(1]AN]2/por Re {1/fn}[ab + be + ac] (9.15) 

to which the convention regarding null modal indices applies. Under the assumed 
conditions, the energy of each mode decreases at a rate that is independent of the 
presence of the other modes; we may therefore concentrate on individual modes. The 
rate of loss of modal energy is proportional to that energy, so it decays exponentially as 
exp (-gut),  where the decay factor is given by 

6N - (dEN/d t ) /EN - 4cRe {1/z'n} + ~ +  (9.16a) 

which, taking into account the null index factor, is greatest for oblique modes and least 
for axial modes. The corresponding modal 'reverberation time' TN, which is defined as 
the time for the modal energy to decay by a factor of 106, is 

TN = 6/~N log10 e = 13.8/~N (9.16b) 

The equivalent modal loss factor (see Appendix 5) is equal to 13.8/TN COlmn. 
The variation of total energy with time is indeterminate unless the numbers and types 

of contributing modes are specified, together with their initial energies; these depend 
upon the directivity, location and frequency spectrum of the energizing source. If a 
measure of the decay of squared pressure at one point is used to indicate total energy 
decay rates, the indication will also vary with these factors. This is the reason why 
reverberation time measurements made using impulsive sources, such as starting pistols, 
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and those made after the cessation of loudspeaker excitation are likely to differ, 
especially if no spatial averaging procedure is employed. 

The approximations and results of the above analysis are not valid if the modal 
density and boundary absorption are so high that individual modal resonant responses 
overlap and resonance peaks are not individually discernible in a frequency response 
curve. In such cases, the rigid-wall modes become significantly coupled and an 
alternative model is required. We shall return to this matter in due course. 

9.8 The response of fluid in a rectangular enclosure to harmonic 
excitation by a point monopole source 

The following analysis is an extension into three dimensions of that presented in Section 
8.4.2, in which a Green's function was expressed in terms of an infinite series of rigid-wall 
eigenfunctions, and the K-H integral was applied to account both for the active piston 
source and the passive motion of the finite impedance boundaries in response to local 
pressure. 

We shall first consider the case of arbitrary enclosure geometry and denote the rigid- 
wall eigenfunctions by 0N(X) in which the position vector x stands for (x, y, z). 
(Remember, these are not the natural mode shapes of an enclosure with finite impedance 
boundaries.) The specific acoustic impedance ratio of the boundaries is denoted by 
Zn(X~), where x~ refers to locations on the boundary. A Green's function that satisfies the 
rigid-wall conditions may be expressed as an infinite series of these functions as 
G(xlx0) = ENAN~IN(X). According to the definition expressed in Section 6.4.2, G 
satisfies V2G + k2G = -6 (x  - x0). Therefore, 

Z ~ziN V21pN(X) -Jr- k 2 Z ~ZiNI//N(X) -- --6(X -- X0) (9.17) 
N N 

The rigid-wall eigenfunctions satisfy the homogeneous Helmholtz equation at the rigid- 
wall mode natural frequencies 09 N = ckN: 

V~ON(X) + kYVON(X) = 0 (9.18) 

Thus 

- + k - - x o )  

N N 
(9.19) 

Multiplication of Eq. (9.19) by OM, followed by integration over the enclosure volume V 
yields, by virtue of orthogonality (all terms zero except for M = N), 

-- ftNk2AN + k2 ftNAN = --IPN(X0) (9.20) 

where AN-- fv Ip~x)dx. Hence, 

G -- Z I//N(X0)I//N(X) (9.21) 
N AN(kz-k2) 

The harmonic form of the K-H equation (6.48) expresses the sound pressure at 
location x generated by a volume velocity q(x0) of monopole source strength, together 
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with a distribution of boundary sources. 8G/an = 0 for the rigid-wall eigenfunctions. 

/~(x)-j~opo fvO(Xo)a(x,xo)axo- f~ G(xlxs)(O~(x)/On)sdxs (9.22) 

The boundary condition is expressed by the fluid momentum equation as ~fi/Sn = 
jkfi(Xs)/Z'~(xs). The source density 4(x0) = Qg(x0 - Xq), where Q is the volume source 
strength of a point monopole located at Xq. Hence, Eq. (9.22) becomes 

f  (xo - xq,[Z   (xo)l A-~{-~j dxo 

[ ~  0~(x)~(xs)l ~(Xs) f dxs (9.23) 
~ au(k~ - k2)j z~,(Xs) 

We now expand/~(x) and/Y(x~) in terms of an infinite series of rigid-wall eigenfunctions as 

])(X) -- Z Am ~m(X) and /~(x~) - ~ ]  AR ~R(x~) (9.24a,b) 
m R 

(Students: note carefully that where a quantity is expressed as the sum of a series, 
different indices should be used for each substitution; if not, cross terms may be 
overlooked.) 

Equation (9.23) becomes 

~IN(X)~IN(Xq) S] ~m 0m(X) -J~,o0 S] A~(k2 _ k~) 
m N 

x~-~ - ~ j  L~ z,(xs) jdx~ 
(9.25) 

Multiplication by ~p(X), followed by integration over the enclosure volume, yields 

ftNAN(k 2 - k 2) -jogpo 0 0N(xq) -jk ~ AR fs(ON(Xs)OR(Xs)/Z'n(Xs)) dx, 
R 

Extraction of the amplitude A N gives the final solution 

AN[AN(kZ - k2) +Jk fs (~2N(xs)/Z'n(Xs)) dxs ] 

RCN 

(9.26) 

This is the three-dimensional equivalent of Eq. (8.37). The second term on the right-hand 
side represents the coupling between the rigid-wall eigenfunctions that is produced by 
the motional response of the boundary to local pressure. 

We now explicitly assume rectangular geometry and, for simplicity of expression, 
uniform boundary impedance. The rigid-wall eigenfunctions take the form of the space- 
dependent terms in Eq. (9.8). Substitution of these eigenfunctions, together with 
performance of the surface integration and neglect of the cross terms for which R -r N, 
yields 

A N  -- 8jc~ ~ cos (l~zxq/a) cos (m~zyq/b) cos (mZZq/C) (9.28) 
abc[k 2 - k 2 -t- (4jk/z~)(1/a + 1/b -t- 1/c)] 

(9.27) 
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to which the null indices convention applies. The appearance in the denominator of the 
product of enclosure dimensions indicates that the pressure amplitude increases as the 
volume decreases. 

The coupling terms under the summation sign on the right-hand side of Eq. (9.27) are 
generally relatively small in cases where the magnitude of the boundary impedance ratio 
is much greater than unity, as in a reverberant space. They are particularly small in cases 
where the rigid-wall model natural frequencies are well separated and at frequencies 
close to the natural frequency of mode N. They are only zero for pairs of rigid-wall 
modes that have all the indices of mode N(l, m, n) different from those of mode R(p, q, r). 
The neglect of cross terms is not admissible at frequencies remote from CON. 

Equation (9.28) takes a similar form to that of the velocity frequency response of a 
damped simple oscillator (Appendix 5). It may be expressed more concisely as 

A N  -- jCOpoQfl/( cO2 - o92 + j R  N _ X N  ) (9.29) 

where fl = 8 c o s  (lrcxq/a) C O S  (mrcyq/b) C O S  (nrCZq/C)/V, RN = 4k(1/a + 1/b + 1/c) 
Re { 1/z'n} and XN = 4k(1/a + lib + 1/c)lm {l/z;,}. The subscript N is retained to indicate 
that the convection relating to null modal indices applies. 

The equivalent loss factor qN = 4c(1/a + 1/b + 1/c) Re { 1/z'~}/CON, which agrees with 
Eq. (9.16a), because 6N = tiN CON. The term XN represents the effect of the imaginary part 
of the boundary impedance. When negative, it represents an inertia-like response of the 
boundary which increases the 'resonance' frequency at which AN is maximum to a value 
greater than CON. When positive, it represents stiffness-like response of the boundary 
which reduces the 'resonance' frequency of maximum IAN to below CON. The term 
'resonance' is set in inverted commas because AN is not the amplitude of a natural mode 
of the enclosure; it is simply a term in the series expansion off(x).  

9.9 The sound p o w e r  of  a point  monopole  in a reverberant  
enclosure 

As we know from Section 6.7, the sound power of a source depends upon the 
environment in which it operates and also on the presence of any other correlated 
sources. The volume velocity of a point monopole in a reverberant enclosure does net 
work against the resistive component of local pressure that it induces. In principle, this 
pressure may be expressed as the sum of all the modal pressures at the source point. 
However, there exists the question of the convergence of the modal series as the distance 
to the source point tends to zero. The form of the free space Green's function indicates 
that the resistive component of pressure tends to infinity as the distance tends to zero, 
which suggests that the number of modes that must be taken into account increases to 
infinity as the distance decreases to zero. It is wise, therefore, when modelling sound 
radiation into an enclosure to assume a finite, but small, source region, rather than a 
delta function source distribution. The modal series solution then converges acceptably 
quickly. 

We avoid this mathematical problem by restricting our attention to the sound 
power injected into a single rigid-wall 'mode'. The modal pressure at the source point is 
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/ iN COS (hzxq/a) cos (mrtyq/b) cos (nTZZq/C), with/iN given by Eq. (9.29). The time-average 
sound power injected into a mode is 

W : �89 {/~(Xq)0* } -- ( 0 2ogpof12/16)[RN/(( o92 -- 092 - XN) 2 -+ R2)] (9.30) 

When modal 'resonance' frequencies are well separated, the total harmonic source 
power peaks at frequencies given by 09 2 = (_0 2 -- X N. 

In the general case, Eq. (9.27) reveals coupling between the rigid-wall eigenfunctions. 
We must therefore not carry the isolated rigid-wall mode analysis any further. More 
comprehensive, rigorous analysis shows that the sound power injected by a broadband, 
random source having a uniform spectral density of source strength, when averaged over 
all possible source positions, equals that which the source would radiated into free field. 
This remarkable result is not restricted to reverberant sound fields but applies equally to 
the vibrational power injected into uniform, reverberant structures [9.5, 9.6]. Advantage 
of this result is also taken in statistical energy analysis. 

9.10 Sound radiation into an enclosure by vibration of a 
boundary 

The Green's function in the form of a series of orthogonal rigid-wall eigenfunctions may, 
in principle, be determined for enclosures of any geometry. We have concentrated upon 
a particular regular form of geometry because readers will be familiar with the 
trigonometric functions involved. The rigid-wall eigenfunctions of irregular enclosures 
may easily be determined by finite element analysis. Once found, they are very valuable 
because they may be employed in the analysis of acoustic coupling between the 
contained fluid and bounding structures, such as vehicle shells. 

Sound is radiated by vibrating structures, and structures vibrate in response to sound. 
These two aspects of vibroacoustics are intimately related. Good radiators are good 
receivers. To illustrate the application of the Green's function to such systems, the 
problem of sound radiation by a vibrating wall panel into an enclosure of which it forms 
a boundary is now briefly addressed. 

The wall motion is represented by a harmonic normal velocity field directed out of the 
fluid which has a spatial distribution represented by qS(xs): 

v~(Xs, t) = ~7,,~b(x,) exp (jcot) (9.31) 

The K-H integral gives the pressure amplitude in the enclosure as 

/3(x) - joopo ~n i s  ~(Xs) ~ I//N(X)IPN(Xs) dxs 
N AN(k 2 - k 2 + jk fu)  

(9.32) 

in which 0N(X) are the rigid-wall eigenfunctions and an ad hoc viscous modal damping 
term has been introduced into the Green's function to account for dissipation of sound 
energy by unspecified mechanisms. Its absence would lead to infinite pressures at the 
natural frequencies of the rigid-wall modes. 

This is termed the 'uncoupled' solution because the wall motion is assumed to be 
inexorable (not affected by the fluid pressure). In practice, the structure is likely to be 
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excited by some external force and the structural response will be influenced by the 
response of the contained fluid. The interaction between the two dynamic systems is 
accounted for in a 'coupled' model formulation. The governing equations of motion of 
both the structure and the fluid must be solved simultaneously, subject to satisfaction of 
the interface boundary condition that the normal velocities of the structure and the fluid 
are equal. 

We now assume that the system takes the form of a rectangular enclosure of which 
all except a single vibrating surface are rigid (Fig. 9.13). The rectangular panel is 
assumed to be simply supported at its edges and to vibrate harmonically in one of its in 
vacuo modes 

~b(Xs) = sin (p~zx/a) sin (q~zy/b) (9.33) 

Equation (9.32) reveals that an individual panel mode drives an infinity of terms in the 
Green's function series. The magnitude of each coefficient of the series is determined by 
two factors: the difference between the panel vibration frequency co = ck and the natural 
frequency (_O N o f  the rigid-wall mode to which the coefficient applies; and the spatial 
coupling coefficient formed by the integral over the surface of the panel of the product 
of the structural mode shape and the eigenfunction of that acoustic mode. The latter 
is given by 

f0 f0 sin (prcx/a) cos (lrcx/a) dx sin (qrcy/b) cos (mrcy/b) d y. 

Values of low modal order integrals are presented in Fig. 9.14. 
If a structure bounding a reverberant enclosure is excited by broadband forces, the 

interaction with the fluid is influenced by the differences between its in vacuo resonance 
frequencies and those of the rigid-wall acoustic modes, as well as by the spatial coupling 
coefficient introduced above. In cases where the minimum structural modal impedances, 
which occur at resonance and are proportional to modal damping, substantially exceed 
the maximum impedance presented by the fluid, which decreases with increase of sound 
absorption, the fluid loading effects are weak, and an 'uncoupled' analysis may be 
developed. This assumption has been used to good effect to deal with problems of sound 
radiation by vibrating structures into enclosed volumes of air, such as those in vehicle 
cabins and transmission of sound through building partitions which separate rooms. 
However, it is quite inappropriate in cases where the enclosed fluid is liquid. This is a 
complicated problem that is best solved by the application of variational procedures 
implemented by computational software packages. 

l 
i T M  a ~ ,  

Fig. 9.13 Enclosure with vibrating wall. 
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Fig. 9.14 Spatial coupling coefficient: integral over x. 

9.11 Probabi l ist ic  w a v e  field models  for  enclosed sound f ields 
at high f requency  

9.11.1 The modal overlap factor and response uncertainty 

The asymptotic acoustic modal density of fluid in an enclosure given by Eq. (9.5) is 
proportional to the square of frequency. The half-power bandwidth of a mode is equal to 
the product of the resonance frequency and the modal loss factor (see Appendix 5). In 
practice, the latter tends to be rather weakly dependent on frequency. A 'modal overlap 
factor' may be defined to indicate the average number of modal resonance frequencies 
lying within the half-power bandwidth of the average mode. Its value is given by the 
product of the frequency, the modal-average loss factor and the asymptotic modal 
density; it tends to increase as the cube of frequency. This is the reason why the 
frequency response curve of pressure in an enclosure changes its character as frequency is 
increased (as evidenced by Fig. (9.2)), the individual modal peaks clustering more closely 
together until they can no longer be individually identified. At even higher frequencies, 
the logarithmic (dB) form of the curve seems to 'invert' with broad maxima being 
interspersed with sharp minima. The formation of the broad maxima due to the 
overlapping of a number of modal resonance peaks is also suggested in the diagram. 
However, we must not neglect to account for relative phase in this qualitative analysis, 
and the effect of modal overlap is more properly illustrated by the representation in 
terms of the complex amplitude of response as illustrated by Fig. 9.15(a). 

The sensitivity of the specific form of the response curve to small variations in modal 
resonance frequencies is illustrated by Fig. 9.15(b), in which one is shifted by only one 
half power bandwidth. This typically equals 2.2/T Hz, where T is the reverberation time 
of the enclosure in that region of frequency (see Eq. (9.16(b))). Since the resonance 
frequencies of high-order modes are extremely sensitive to small variations in boundary 
geometry and impedance distribution, they can never be precisely calculated. Hence, the 
high-frequency response curve is unpredictable in detail: a probabilistic model is the only 
realistic alternative. A modal overlap factor of unity represents the transition between a 
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Fig. 9.15 Illustration of the sensitivity of the frequency response to a small shift of individual 
modal frequency. 

regime of dominance of the frequency response by peaks at individual modal resonances 
and a regime in which the frequency response depends upon the relative amplitude and 
phase responses of a number of locally resonant modes. It also represents a transition 
between a low-frequency range in which reasonably precise deterministic estimates may 
be made of individual modal responses, provided that accurate information about 
enclosure geometry and boundary properties are available, and a high-frequency range 
in which only statistical estimates have any significance. 

9.11.2 High-frequency sound field statistics 

Research carried out during the 1950s, largely by Manfred Schroeder, showed that the 
transition to the probabilistic regime may be marked by that frequency at which the 
modal overlap factor equals three. In terms of air volume V and reverberation time T, 
this frequency, known as the 'Schroeder' or 'Large Room' frequency, is given by 

f~ = 2 0 0 0 ( T / V )  1/2. By treating the real and imaginary parts of the complex frequency 
response of the pressure as independent random variables, estimates can be made of the 
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statistical properties of the spatial distribution of p2 and Lp at a single frequency. Above 
f~, the mean square pressure is predicted to conform to a Poisson distribution, so that the 
pr_obability density distribution takes the form s(p 2) - (1 / (p2)) exp [_p2/(p2)], in which 
(p2) is the space-average mean square pressure. The associated normalized standard 
deviation is unity. The spatial standard deviation of the logarithmic response is 5.6 dB, 
independent of the physical form andproperties of the enclosure. However, the distribution 
is non-Gaussian leading to expected deviations from the space-average sound pressure 
level of + 7.6 and -3 .2  dB. The same figure applies to the frequency response at 
individual positions; Fig. 9.6(b) shows an example. 

The standard deviations decrease if finite bandwidth responses are considered. The 
normalized standard deviation of mean square pressure in a field of bandwidth AfHz is 
given by cr(pZ)/(p 2) ~ (6.9/TAf) 1/2, on condition that TAf>> 2 (or Af>> qf), where Tis 
the band-average reverberation time and q f is the average half-power bandwidth of the 
modes having natural frequencies in the band. 

These results should be taken as a warning to those making theoretical predictions of 
noise levels generated in reverberant enclosures, especially where a deterministic modal 
model is employed. For example, air temperature changes of a few degrees Celsius are 
sufficient to alter harmonic response distributions by significant amounts. 

9.11.3 The diffuse field model 

The essential uncertainty of high-order modal parameters, together with the large 
populations of modes contributing to the response at any frequency under conditions 
of high modal overlap, require a probabilistic approach to the representation of wave 
fields, and to quantitative estimates of associated distributions of energy and intensity 
under such conditions. The previously mentioned decomposition of modal standing 
waves into travelling wave components suggests that a probabilistic model based on 
travelling waves might be feasible. The objection that pure standing waves cannot 
transport energy is countered by the fact that pure standing waves have been shown not 
to exist in tubes terminated by resistive boundaries: the natural modes are complex and 
capable of transporting energy. Nor do pure standing waves exist in sound-absorbent 
enclosures of any geometry. (It is re-emphasized that the employment of rigid-wall 
modes in the Green's function expansion is simply a device for simplifying the 
application of the K-H equation: they are not the natural modes of an enclosure with 
absorbent boundaries.) 

The ideal probabilistic model, which is universally adopted to deal with the problem of 
describing and quantifying high-frequency sound fields in reverberant enclosures, is that 
of the diffuse field. The central concept is that of a sound field consisting of a very large 
set of statistically unrelated (uncorrelated) elemental plane waves of which the propaga- 
tion direction is random with a uniform probability distribution. The assumption of zero 
correlation affords vital simplification, because it excludes interference between different 
elemental waves and allows mean square pressures and intensities associated with each 
wave to be summed. 

This conceptual 'leap' from a sound field comprising a large number of modes that 
are, as individuals, fully correlated distributions of field quantities, to a completely 
uncorrelated set of travelling waves, is not easy to grasp (or even accept). In fact, it 
conceals many problematic theoretical aspects that cannot be explored here. However, 
appeal to the image source model introduced in Section 9.4 may be found useful in 
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clarifying the issue. Let us imagine that the physical point source has a broadband 
random source strength with a uniform spectrum: so too do the images. A feature of 
broadband random signals is that they have a short 'memory'; the correlation between a 
signal and a time-shifted version of itself is negligible for a time shift much greater than 
the inverse of frequency bandwidth. Consequently, signals from broadband random 
images situated at different distances from the observation point in the enclosure lose 
correlation as that distance increases. In a highly reverberant enclosure, image strength 
decreases slowly with distance from the observation point, and a large number of them 
are influential. The larger the enclosure, the more separated are the images, and the 
further they are away, the more plane become their wavefronts as they traverse the 
enclosure. So, the field may be considered to consist of the superposition of many 
travelling waves that become increasingly uncorrelated as the bandwidth of the source 
and the size of the enclosure increase. Spatial isotropy is favoured by enclosures whose 
principal dimensions are similar, and in which the average absorption coefficient is low 
and fairly uniform over the complete boundary, so that the images are reasonably 
uniformly distributed in virtual space and the image strength distributions are similar in 
all radial directions. 

If the enclosure boundaries do not reflect faithfully (specularly) but, at each 
successive reflection, progressively fragment the incident wavefronts and scatter the 
incident sound energy into many directions, one could imagine that the time delays 
between the arrival of the multiply fragmented elements of wavefront at an observation 
point become essentially random. This behaviour further promotes lack of correlation 
between the associated waves as they travel through the enclosure. The presence of 
scattering objects within the enclosure will have a similar effect. Correlation can be even 
further reduced by exciting the enclosure by a number of uncorrelated sources located 
at different positions. 

This qualitative exposition suggests that the conditions favouring the establishment of 
a quasi-diffuse field are as follows: 

1. A large, highly reverberant enclosure having similar principal dimensions; 
2. Similar average absorption coefficients on each section of the boundary; 
3. Strongly scattering boundaries and/or objects within the enclosure; 
4. More than one broadband source. 

It is obvious from the image model that pure tone sources cannot generate an ideal 
diffuse field in the sense we have defined above. The source bandwidth necessary to 
generate a quasi-diffuse field decreases with increase of enclosure volume. 

The apparently plausible diffuse model appears at first sight to have a fatal flaw. If 
uncorrelated plane waves of equal mean square pressure, and therefore equal intensity, 
propagate in all directions with equal probability, the field is spatially isotropic and the 
net intensity is everywhere zero. It would therefore appear that sound energy cannot flow 
from a source to the absorbent boundaries. This would indeed be the case if the direct 
field of the source were neglected. We know from Chapter 5 that the integral over any 
enveloping surface of the normal component of intensity equals the total sound power of 
steady sources operating within the enveloped volume. The intensity at any point on a 
surface enveloping a point source in an enclosure equals the sum of the intensities of the 
direct field of the source and of the reverberant field, /f the two f ie ld  components are 
uncorrelated. A reverberant field must therefore make a negligible contribution to the 
integral over any surface enveloping the source(s), whatever its degree of topological 
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complexity. The ideal diffuse field certainly satisfies this requirement; but this alone is 
not sufficient to explain how it can be responsible for contributing to the dissipation of 
the source power. It is possible for uncorrelated plane waves to transport energy in all 
directions towards the enclosure boundaries without invalidating the condition of zero 
net intensity. The process of boundary absorption can be likened to a distribution of 
negative sources (known as 'sinks') that operate outside any surface enveloping the 
source. According to Section 5.8, they have no influence on the surface integral of 
normal intensity. The weakened reflected waves pass through the enveloping surface but 
have no net effect on the surface integral. 

It might be helpful to reconsider this scenario in the case of an impulsive source, as 
illustrated by Fig. 9.16. The initial (direct field) wavefront passes out through an 
enveloping surface separating the source from the boundary. The transmitted energy is 
registered. A proportion of this energy is absorbed upon first encounter with the 
boundary. The weakened reflected wavefronts pass into and out of the surface, producing 
no net energy exchange. They are again reflected by the boundary, which both weakens 
and redirects them. This process continues until all the energy is dissipated. Only the 
energy carried by the direct field wavefront is registered; but this is dissipated gradually 
by reflections of the 'reverberant' field. In steady state, these processes operate 
continuously, and a large enough assembly of coexisting reflected waves travelling in 
many directions may easily be imagined to produce zero net intensity, yet be responsible 
for dissipating the major part of the energy radiated by the source. 

This discussion suggests a simple test for the degree of diffuseness of a reverberant 
sound field. The intensity directivity of a source in free field will persist at all distances if 
the reverberant field is ideally diffuse. The dominance of the direct field intensity over a 
diffuse field component of much higher energy density is supported by the experimental 
observation that a broadband source in a reverberant room may be easily located by the 
null indication of an intensity measurement system at almost all points within the room. 
(Note: the intensity null lies on an axis perpendicular to the intensity vector and is much 
more sensitive to probe orientation than the intensity maximum.) 

The intensity distribution over a surface enclosing a steady source in an enclosure 
where the absorption is concentrated on one region of the surface is illustrated 
qualitatively in Fig. 9.17. The field is clearly not diffuse. The figure suggests that the 

Fig. 9.16 Impulse intensity sequence. 
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Fig. 9.17 Radial intensity distribution around a source in an enclosure having one absorbent wall. 

presence of one highly absorbent region creates a 'diffusion deficit' in the sound incident 
upon other surfaces. However, it does not itself suffer such a serious deficit (under 
steady state conditions). This physical situation arises in relation to International 
Standard ISO 354 for the determination of diffuse field sound absorption coefficient by 
measurements of reverberation time in a reverberation chamber fitted with an 
absorbent sample on one boundary. The estimate of sound absorption coefficient is 
based upon an assumption of a diffuse field to relate absorbed power to reverberation 
time (see the following section). The standard does recognize the problem of lack of 
diffusion and allows the installation of diffusing elements suspended within the volume. 
Their presence scatters incident sound. The direct sound from the source is thus 
scattered before reaching the test specimen and the reverberant energy is 'rediffused' 
after each reflection. 

The fact that the sound power of a broadband source in a reverberant enclosure is very 
similar to its free field power, except when placed close to boundary, also throws some 
light on the characteristics of reverberant fields in enclosures. It was shown in Section 6.7 
that the sound power of a source is altered by the incidence upon it of sound generated 
by another correlated source. The incidence of many uncorrelated waves incident upon a 
source far from a boundary has no effect on its sound power. But, with a source close to a 
boundary, the first-order image (or the reflected wave which it represents) is too close to 
be uncorrelated, and the source sound power is altered. The form of effect is seen in the 
'in-phase' curve of Fig. 6.20, although the decay of the effect with distance is more rapid 
with broadband sources. 

The incident and reflected wave components of a reverberant field are also mutually 
correlated close to a boundary because, together, they have to satisfy the local boundary 
condition. As a result, the space-average mean square boundary pressure in a broadband 
reverberant field is twice that in the central field region in which boundary correlation 
effects are absent. The corollary is that the spatial-average sound pressure level 
generated by a small Category 1 source is increased by 3 dB on close approach to a 
highly reflective boundary: so too is the sound power. This is a manifestation of acoustic 
reciprocity. The theoretical increases are 6 dB near an edge and 9 dB near a corner. 
Engineers should note that these increases are not generally achieved by real, spatially 
extended noise sources, partly because the various radiating regions are necessarily 
located at different distances from the boundary, and partly because vibrating bodies are 
not pure Category 1 sources. 
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9.12 Applications of the diffuse field model 

9.12.1 Steady state diffuse field energy, intensity and enclosure 
absorption 

Having discussed at length the assumptions and attributes of the ideal diffuse field, we 
now turn to its quantitative implications. An approximation to a diffuse field may be 
produced in free field at the centre of a spherical surface on which uncorrelated, 
stationary, random monopoles of equal mean square source strength are uniformly and 
densely distributed, as illustrated by Fig. 9.18. The monopole source strength is defined 
as poQ(t )per  unit area of spherical surface. Because the associated sound fields are 
uncorrelated, the mean square pressure at the centre of the sphere is, from Eq. (6.23), 

p--5- (po/4~zR)Z4~zR2Q2 = p~QZ/4~z (9.34) 

which is independent of the radius of the sphere R. 
The time-average normal intensity produced on a plane of symmetry by the mono- 

poles located on one side of the plane in a ring of radius R sin ~b, which subtends angle d~b 
at the centre, is 

~n(~b) = Q2(2rcR 2 sin 4) ddp)(po/4~zR) 2 cos dp/poc (9.35) 

The total intensity generated by the sources on one side is 

f 
~12 

In -- Q2(po/16rcc) sin 2~b dq5 - Q2po / 16rcc 
J 0  

(9.36) 

Hence, from Eq. (9.34), the 'one-sided intensity' is 

In - pZ/4poc (9.37) 

where, in the general physical case, p2 represents the space-average mean square pressure 
in the diffuse field remote f rom boundaries. If the plane concerned were rigid, the mean 
square pressure on the surface would equal twice that in Eq. (9.34) because only half the 
sources would contribute, but pressure doubling would occur at the surface. Of course, 
according to this ideal model, the total (two-sided) intensity in the diffuse field is zero. 

Consequently, the relation between the time-average incident power per unit area of 
boundary and the time-average energy density under steady state, diffuse field, condi- 
tions is 

In = pZ/4poc = c~/4 (9.38) 

Fig. 9.18 Spherical array of uncorrelated monopole sources, which generates the ideal diffuse field 
at the centre. 
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The total time-average energy stored in the enclosed field is 

-E = p--2 V/po c2 (9.39) 

where V is the enclosure volume. (In real, quasi-diffuse sound fields, neither ~ nor p2 are 
spatiall__y uniform. They are therefore usually replaced by the space-average values (~) 
and (p2).) The total time-average rate of absorption of diffuse sound energy by the 
enclosure boundary is 

Wabs -- Inn ~ Si~di - --~n(~d)i Z Si -- (-~/4PoC)(~ Z Si (9.40) 
i i 

where ed; is the diffuse field absorption coefficient of boundary area S; and (ed); is the 
weighted arithmetic average diffuse incidence absorption coefficient, conventionally 
denoted by fi, and defined by 

-- ~ (SiO~di)/ Z Si -- Z (Si~ (9.41) 
i i i 

The quantity Sa = A (unit: m 2) is known as the 'absorption' of the enclosure. 

9.12.2 Reverberation t ime 

We now consider the rate of change of sound energy stored in a reverberant enclosure 
during the initial part of the energy decay process following impulsive excitation, or the 
cessation of a continuous source. On the basis of the argument that the proportional loss 
of energy during the average period of oscillation of the field quantities is very small, it is 
reasonable to assume quasi-steady conditions, in which averages taken over intervals of 
the order of one hundred times that period are meaningful. We also assume that the 
diffuse field model holds good. 

The rate of loss of diffuse field energy, given by Eq. (9.40), is proportional to the 
total field energy, given by Eq. (9.39). Hence the energy decays exponentially according 
to 

E(t) = E(0) exp (--60 (9.42) 

where 6 = Ac/4 V. The corresponding reverberation time (E(T)/E(0)) = 10 -6) is given by 

T = 13.8/c5 (9.43) 

In air at 20~ 

T = O. 16 VIA (9.44) 

This formula was derived in the early twentieth century by W. C. Sabine. A later, more 
refined model suggested that A should be replaced by S~/ (1 -  ~). Unlike Sabine's 
equation, this form predicts zero reverberation time in an anechoic chamber. However, 
the assumptions underlying the derivation of both equations invalidate their use in many 
cases of practical interest, and it is necessary to apply a geometric acoustic analysis, as 
explained in the following section. 

Equation (9.44) forms the basis of the most common method of estimating experi- 
mentally the sound absorption of an enclosure. The sound field is excited either by a 
continuous broadband noise source that is suddenly terminated, or by an impulsive 
source such as a starting pistol. The initial rate of decay of the short-term-average 
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Fig. 9.19 (a) Conventional reverberation decay curve (1.25 kHz, T = 1.48 s). (b) Schroeder 
integrated impulse curve (1.25 kHz, T = 1.71 s). Courtesy of J. Shelton, AcSoft Ltd. 

squared pressure at a number of source and microphone positions is measured. A typical 
curve of decay following cessation of a band-limited, random excitation is shown in Fig. 
9.19(a). This curve will not repeat precisely because the initial conditions are random. 
This randomness, together with the associated need to repeat the measurement many 
times at one point to reduce the random error, may be removed by applying Schroeder's 
'integrated impulse' technique. The band-limited impulse response of the enclosure is 
determined by means of an F F T  analyser. The bandwidth must be sufficiently large to 
ensure that the filter impulse response decays much more rapidly than that of the 
enclosure. The impulse response is squared, and integrated over reversed time, starting at 
a time by which the impulse response has decayed to a negligible value. This process 
effectively provides the ensemble average of an infinity of curves obtained by the decay 
method and therefore eliminates random error, as illustrated by Fig. 9.19(b). Because no 
physical reverberant fields are truly diffuse, it is necessary to obtain an ensemble-average 
estimate of decay rates over a range of source positions and orientations, and receiver 
positions. 

It must be understood that Eqs (9.40) and (9.44) are only valid under a range of very 
restrictive conditions. In cases where they do not obtain, for example within fully 
trimmed vehicle interiors, it is preferable to employ an alternative, steady state relation 
presented in the following section. For example, at frequencies higher than about 
500 Hz, the sound field in a fully trimmed car is not reverberant, and the above relations 
are entirely irrelevant. 
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9.12.3 Steady state source sound power and reverberant field energy 
The field that arises from multiple reflections by the enclosure boundary of the sound 
emitted by a source is conventionally distinguished from the direct (free) field of the 
source by calling it the 'reverberant' field. It may not be diffuse, but if assumed to be so, 
the following analysis relates the sound power of a steady source to the time- and space- 
averaged mean square sound pressure in the reverberant field. 

The time-average sound power radiated by any steady source in a reverberant 
enclosure equals the time-average rate of absorption of sound energy by the boundaries 
of the enclosure (plus that of any objects present within the enclosure, which we shall not 
consider here). If we assume that all the power is injected into the reverberant field, Eqs 
(9.40) and (9.41) give the space-average mean square pressure in the reverberant field as 

(p2) = 4 p o c W / A  (9.45) 

where W is the time-average source power. In terms of the reverberation time this 
becomes 

m 

(p2) = 2 5 p o c T W / V  (9.46) 

If, instead, we assume that the sound power injected into the reverberant field is that 
which is not absorbed by the incidence of the direct field on the boundary, we must 
correct Eqs (9.45) and (9.46). The correction is problematic because the direct field is not 
plane and has no unique angle of incidence at the boundary. The best we can do is to 
assume that many angles are involved and therefore assume that the sound power 
injected into the reverberant field is W(1 - ~), which alters Eq. (9.45) to 

(p2) = 4 p o c W ( 1  - ~) /A  (9.47) 

Since the diffuse field relations we have used are only appropriate to enclosures in which 
<< 1, the correction is small. A hydraulic analogy of the balance of radiated and 

absorbed sound power is presented in Fig. 9.20. 
A simplistic idealization of the spatial distribution of sound pressure level in a 

reverberant enclosure is presented in Fig. 9.21, in which the direct and reverberant 
fields are assumed to be uncorrelated. The total mean square pressure at distance r from 
the source centre is given by 

p 2 ( ~ )  = poc W[D(~) /4~zr  2 + 4(1 - ~ ) / A ]  (9.48) 

~ u r c e  

~ ~ ~ ~ ~ ' ~ ' " ' " ~ "  W IA0sor0tion 
= w 

, . ,  

A/(1-a) 

Fig. 9.20 Hydraulic analogy of energy balance in a reverberant enclosure driven by a source. 
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Lp 
(dB) ~ . ~  Direct field 
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N~ eVerberant field 

Log distance from source 
Fig. 9.21 Simplistic model of sound level distribution in a reverberant enclosure driven by a 
source. 

in which D(~) is a source directivity factor. The distance at which the two components of 
mean square pressure are equal is known as the 'reverberation radius', given by 

rr = [ A D ( ~ ) / 1 6 ~ z ( 1  - fi)]l/2 (9.49) 

It is proportional to the square root of the absorption of the enclosure. 

E x a m p l e :  One of the ISVR acoustics teaching labs has a volume of about 280 m 3, a 
surface area of about 290 m 2 and an experimentally estimated absorption of about 40 m 2, 
which is rather independent of frequency. The reverberation radius of an omnidirec- 
tional source is therefore just under 1 m. 

This simple distribution of sound pressure level distribution is only well approximated 
in empty, highly reverberant, rooms having rather similar principal dimensions excited 
by broadband sources. It is rarely observed in practice and should never be used to 
predict sound pressure level distributions in furnished rooms of any form. Even in very 
large, empty, reverberant industrial halls, the scattering effect of the walls and roof is 
sufficient to cause the steady state sound pressure level to fall continuously with distance 
from a broadband source. In spaces containing large scattering objects, such as 
industrial machines, the Lp versus distance curve takes a totally different form from 
that in Fig. 9.21, as shown by Fig. 9.22. 

The effective absorption of an enclosure may be obtained by using the relation 
between space-average mean square pressure and injected sound power (Eq. (9.45)). In 
order conveniently to measure injected power, a compression driver is connected to a 
short length of uniform tube that has its lowest cut-off frequency above the highest 
frequency of interest. The tube is connected to an acoustic horn of suitable size for the 
application; it may be dispensed with if necessary. Two or more phase-matched 
microphones are set into the side of the tube. The imaginary part of the cross spectrum 
gives the transmitted intensity (see Section 5.7), which, when multiplied by the cross- 
sectional area of the tube, gives sound power. (Microphone pair reversal, together with 
arithmetic averaging of the two intensity estimates, removes the need for very precisely 
matched microphones and also removes bias error.) Measurement of the mean square 
pressure at a number of points in the enclosure not close to the horn mouth allows the 
absorption to be estimated. Because steady state excitation is employed, the conditions 
more closely resemble the operational situation, and uncertainties concerning the 
estimate of energy decay rate and its relation to steady state absorption are obviated. 
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Fig. 9.22 Typical sound propagation curves in a fitted factory. Reprinted from Applied Acoustics, 
volume 16, M. Hodgson, 'Measurement of the influence of fittings and roof pitch on the sound 
fields in panel-roof factories', pp. 369-392, copyright (1983), with permission from Elsevier Science. 

9 . 1 3  A b r i e f  i n t r o d u c t i o n  t o  g e o m e t r i c  ( r a y )  a c o u s t i c s  

It has become clear from the previous section that the ideal diffuse field model is not well 
suited to the representation of sound fields in enclosed spaces that are not highly 
reverberant, that have one or two principal dimensions much greater then other(s), that 
have highly non-uniform distributions of sound absorption over the boundaries, and 
that contain large numbers of scattering objects which, by back scattering, impede the 
transmission of sound energy between different regions. 

The wave acoustics model is essential in cases where the principal dimensions of the 
enclosure are of the same order as the acoustic wavelength. This is because wave 
interference dominates the sound field in the form of modes, resonances and diffraction. 
In other cases, where the acoustic wavelength is much smaller than the dimensions of an 
enclosure, interference effects are still observable if the source emits a single frequency 
but, because of the great density of modal frequencies, they largely disappear when the 
bandwidth of a source emits even a rather narrow band of frequencies. 

The acoustic behaviour of enclosed spaces such as offices, industrial workshops, 
airport lounges, railway stations and auditoria, which are occupied by many persons 
and many inanimate objects, is of concern to engineers in relation to speech communica- 
tion and/or noise control. The frequency range of concern typically ranges from 50 to 
5000 Hz. Over much of this range, the topologies of the enclosure boundaries and 
contents are irregular on the scale of an acoustic wavelength. In addition, the impedances 
of the various surfaces often vary widely over distances comparable with a wavelength. 
The combined effect is to scatter incident sound energy into many different directions. 
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Since it is obviously impossible to model this process on the basis of the wave 
equation, various forms of geometric ray model have been developed for implementa- 
tion by computer. Sound energy is assumed to be carried by discrete rays and 
interference is neglected. A source is assumed to emit continuous rays in a large 
number of uniformly spaced radial directions, the angular distribution of intensity 
being specified according to source directivity. The energy propagating in a ray is 
conserved during free propagation (sometimes with air absorption imposed). The 
divergence of the rays automatically accounts for spherical spreading of the energy, so 
that the intensity decreases as the square of the distance travelled. 

When a ray strikes an enclosure boundary, the energy is partially reflected and 
partially absorbed, usually on the basis of the assumption of the relevant diffuse field 
absorption coefficient. Calculations are normally made at octave band centre frequen- 
cies, account being taken of frequency dependence of absorption coefficients. Some 
models account for the dependence of absorption coefficient on the incidence angle, but 
in a highly reverberant space where many rays strike a given surface at different angles, 
this refinement makes little difference to the result. The reflections are normally assumed 
to be specular so that a discrete ray emerges from the encounter (see the discussion of 
reflection in Chapter 12). Although research indicates that most surfaces in industrial 
workshops scatter a proportion of incident sound energy into non-specular directions, it 
is not at present practicable to generate many rays upon each reflection because the 
number of rays that would have to be followed would escalate out of manageable 
proportions. 

When a ray strikes a 'fitting' element (discrete object), such as a machine in a 
workshop, a proportion of the energy is assumed to be absorbed, the rest being 
randomly scattered. Each scattering event is modelled as a virtual omnidirectional 
source. The modelling of the scattering effect of fittings is crucial to the accuracy of 
the estimation of sound pressure levels in spaces containing many discrete scatterers, 
but current models are not fully satisfactory in this respect, not least because it is 
difficult to estimate the scattering effectiveness of fittings of disparate size, shape and 
material. 

Receiver volumes are distributed throughout the region in which it is wished to 
determine the sound pressure level. For the estimate of steady state levels, the energy of 
each ray passing through a volume is accumulated. Rays are extinguished once they have 
lost most of their energy: the extinction criterion varies from program to program. In 
order to estimate reverberant decay behaviour the time sequence of energy 'strikes' is 
recorded. 

A typical example of the spatial variation of steady state sound pressure level 
generated by a single source in a fitted factory space is presented in Fig. 9.22. The curve 
takes a completely different form from that of Fig. 9.21. 

Recent developments in this modelling procedure include the provision of simple 
models of barrier diffraction and some degree of phase representation to account for 
interference effects at low frequencies, although the previously mentioned chaotic nature 
of enclosed sound fields makes it difficult to accept the reliability of such representation. 

A combination of image, ray and statistical models is employed in software for the 
'auralization' of auditoria by means of which projected designs can be aurally sampled, 
and the effect of design changes assessed [9.3]. A recent development, which is 
computationally very efficient, models sound propagation through a network of 'digital 
waveguides' [9.7]. Its effectiveness remains to be fully evaluated. 



9. Sound in Enclosures 269 

Q u e s t i o n s  

9.1 A small lecture room measuring 6 m x 10 m x 3 m has plastered concrete walls. The 
seating covers 80% of the floor area. The empty reverberation time in the 500 Hz 1/3 
octave band is 1.3 s. The estimated diffuse field absorption coefficient of the walls 
and uncovered floor in this band is 0.05. Estimate the absorption coefficient of the 
seating area in the 500 Hz band. 

9.2 The sound power of a source in the 500 Hz 1/3 octave band is 10-3 W. It is placed in 
a room having a volume of 150 m 3 and reverberation time in this band of 1.2 s. 
Estimate the space-average reverberant mean square pressure and the correspond- 
ing sound pressure level. 

9.3 A small enclosure has two acoustic mode natural frequencies of 121 Hz and 132 Hz 
in the 125 Hz 1/3 octave band. The corresponding modal loss factors are 10 .2  and 
1.6 x 10 -2, respectively. Calculate the individual modal reverberation times. Use a 
computer to display the time history of the pressure during free decay resulting from 
the superposition of the modal pressures at a position where the initial modal 
pressure amplitudes and phases are equal. What does the result tell you about 
attempts to measure reverberation time in narrow bands in small enclosures at low 
frequency? 

9.4 Construct an image set for a rigid-walled, rectangular room of dimensions 10 m x 
6 m x 3 m with a 100 Hz harmonic point monopole situated at a point of your 
choice. The source is suddenly switched on at a time of zero volume acceleration. 
Synthesize the complex pressure amplitude at another point of your choice by means 
of sequential addition of the sound pressures generated at the receiver point. The 
sequence is determined by the relative distances of the images from the receiver 
point. Output the real pressure amplitude after each addition. Don' t  forget to 
include the direct field. Observe the evolution of the pressure amplitude as the largest 
image distance increases. Does the sum converge? Compare the results with the 
receiver point at distances of 0.3 and 6 m from the source. Also, select a frequency 
that corresponds to one of the rigid-wall mode natural frequencies. What do you 
learn from these studies? How could you modify your model to ensure convergence? 

9.5 A dipole source consisting of two closely spaced harmonic point monopoles of 
opposite sign is substituted for the monopole in the previous question. Select a 
suitable separation distance and exploit the principle of superposition. How do the 
results differ from those with monopole excitation in qualitative terms? Can you 
offer physical reasons for the differences? 

9.6 What is the average absorption coefficient of the ISVR room described in Section 
9.12.3? 



10 
Structure-Borne Sound 

10.1 The nature and practical importance of structure-borne 
sound 

A large proportion of noise is generated by the vibration of solid structures. The 
mechanical energy involved has often been transmitted from remote mechanical or 
acoustical sources by means of audio-frequency vibrational waves propagating in 
connected structures. The associated phenomena and processes are collectively classified 
as 'structure-borne sound', which has become accepted as the English equivalent of 
K6rperschall (literally 'body sound'). This is the title of a classic book on the subject by 
Cremer et al. (1987), which has appeared in two English and three German editions (see 
Bibliography). (For the benefit of non-native English speakers, I should explain that 
'borne' is the past participle of the verb 'to bear', meaning 'to carry'.) If you are reading 
this book in a large building you may well be aware of the activities of other occupants 
and of service machinery through the agency of structure-borne sound. We shall employ 
this term to cover all forms of audio-frequency vibration of solid structures, since they 
are inevitably accompanied by the generation of sound in contiguous fluids. The term 
'vibroacoustics' is reserved for the study of processes involving acoustic interaction 
between solid structures and fluids. In North American English, the term 'structural 
acoustics' is used to cover both these aspects of the subject. 

The subject of structure-borne sound is far more complex than that of fluid-borne 
sound in otherwise quiescent fluids. Whereas inviscid fluids can support only dilatational 
acoustic waves, two fundamental forms of vibrational wave can exist in unbounded 
elastic solids because they can support shear stress. In the 'longitudinal' wave the particle 
displacement velocity is colinear with the local direction of wavefront propagation. 
Figure 10.1 illustrates the longitudinal, volumetric, strain of a plane slice of an infinitely 
extended solid volume. As in Fig. 3.2, which shows the fluid equivalent, longitudinal 
strain is seen to incur shear strain because the element changes shape as well as volume. 
The diagonals rotate relative to each other, but the element as a whole does not rotate. 
Hence, this form of wave is described as being 'irrotational'. Unlike an inviscid fluid, a 
solid resists shear strain, which affects the elastic constant that relates longitudinal stress 
to longitudinal strain. 

In the 'transverse' wave the particle displacement vector is perpendicular to the local 
direction of wavefront propagation. Figure 10.2 (a) illustrates the strain of a plane slice. 
It will be observed that this form involves longitudinal strain of the diagonals together 
with rotation of the element. This type of wave is therefore described as being 
'rotational'. Its kinematic form is illustrated by Fig. 10.2(b). 

These two forms of wave are known as the P-wave and the S-wave by geodynamicists 

270 
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Fig. 10.1 Longitudinal wave strain and direct stress. 
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Fig. 10.2 Pure transverse wave: (a) strain; (b) kinematic form. Reproduced with permission from 
Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 

and seismologists. Geodynamicists model wave propagation in volumes of solid and 
liquid whose dimensions greatly exceed the wavelengths of the waves that they support. 
Except near interfaces between different media, the waves behave as if propagating in an 
infinite volume. Many mechanical structures that radiate (and respond to) sound take 
the form of thin plates and shells. Acousticians must therefore deal with volumes of solid 
in which one or more principal dimensions are considerably less than a wavelength over 
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Fig. 10.3 Quasi-longitudinal wave; kinematic form. The lateral strain is greatly amplified. 
Reproduced with permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic 
Press, London. 

much of the frequency range of interest. For example, the longitudinal wavelength in 
steel at 1000 Hz is 5 m. Such systems are structural waveguides, which share the features 
of modes and cut-off frequencies with their fluid counterparts. 

The presence of the virtually stress-free surfaces of rods, beams, plates and shells 
immersed in gases has a significant effect on the forms of wave which they support. (We 
shall use the word 'rods' to mean uniform solid structures which are designed principally 
to sustain longitudinal forces, as opposed to 'bars' and 'beams' which are designed to 
sustain bending forces.) The lack of constraint on displacement normal to a free surface 
allows significant lateral strain to be produced by internal forces acting parallel to the 
surface. This is called the 'Poisson' effect after the French mathematician who first 
evaluated the coefficient of lateral strain. As a result, pure longitudinal waves cannot exist 
in rods or plates, which instead support quasi-longitudinal waves, illustrated in Fig. 10.3. 
In-plane transverse waves in uniform flat plates in which the displacements are parallel to 
the median plane are not affected by the stress-free condition on the parallel surfaces. 

When a longitudinal wave is obliquely incident upon a stress-free surface it generates 
both reflected longitudinal and transverse waves. Similarly, when a transverse wave is 
incident upon a stress-free surface it generates both forms of reflected wave. This 
transformation process in beam and plate structures produces a hybrid form of wave 
called a 'bending' or 'flexural' wave. The particle displacements have components both 
normal and parallel to the direction of wave propagation, as shown in Fig. 10.4; the 
former greatly exceed the latter. A characteristic of bending waves that crucially affects 
their acoustic interaction with fluids is that they are 'dispersive', a form of behaviour 
previously encountered in Chapter 8 in relation to duct modes. The bending wave phase 
speed in uniform beams and plates is proportional to the square root of frequency. 
Therefore it is inevitable that, at some frequency, it equals the frequency-independent 
speed of sound in a contiguous fluid. This is known as the 'critical frequency' or 'lowest 
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Fig. 10.4 Bending (flexural) wave; kinematic form. Reproduced with permission from Fahy, F. J. 
(1987) Sound and Structural Vibration. Academic Press, London. 
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coincidence frequency'. It is of great significance in vibroacoustics. We shall meet it in 
connection with sound radiation from vibrating plates at the end of the chapter. 

Uniform bars and beams of symmetric cross-section can also carry torsional waves, 
which are pure shear waves. In isolation, they are not of great importance for sound 
radiation because they are extremely inefficient; but they couple with bending waves in 
cases where the cross-section is asymmetric, and play an important role in beam 
stiffeners attached to plate structures. Curvature of shell structures creates waves 
involving longitudinal, shear and flexural strains; the resulting complexity places them 
outside the scope of this book. A thorough treatment will be found in Structure-borne 
Sound (Cremer et al., 1987 - see Bibliography). We shall not deal with surface waves, 
such as Rayleigh and Lamb waves, which become important at frequencies when the 
shear wavelength becomes extremely small compared with the overall dimension of the 
supporting body. Surface waves play an important role in earthquake damage. 

Over much of the audio-frequency range, bending waves in thin plates and shells have 
the lowest mechanical impedance of the structure-borne wave family; they therefore tend 
to be most strongly excited by vibrational forces. Per unit of energy density, they also 
impose the largest normal displacements on contiguous fluids. For these two reasons, 
acoustic interaction between fluids and structures tends to be dominated by flexural 
waves. However, structure-borne sound transmission usually involves other wave types 
to a greater or lesser degree. For example, there exists a phenomenon in building 
acoustics, called 'flanking transmission', whereby structure-borne sound travelling in the 
solid flanking structures bypasses dividing partitions, hence degrading the overall 
insulation performance. Sound energy in the source room is accepted by the structure 
principally in the form of bending waves. Bending wave energy is partly converted to 
quasi-longitudinal and in-plane transverse waves at its intersections with the dividing 
partition; in these forms, it can largely bypass other structural junctions to give rise to 
sound radiation in remote rooms through the agency of the bending waves in the 
bounding structures. This process is illustrated qualitatively by Fig. 10.5. Impact noise is 
also largely transmitted by vibrational waves. 

Airborne sound is transmitted 'directly' through solid partitions by the simultaneous 
processes of vibrational response to incident sound and radiation of sound from the 
other face. This is distinguished from the indirect process involving wave transmission 

// /e 
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Fig. 10.5 Illustration of flanking transmission. 
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along structural waveguides by being classified as 'airborne' sound transmission. 
Airborne sound transmission through partitions is the subject of Chapter 11. 

Structure-borne sound transmission is clearly very important in building acoustics 
[10.1]. It is also a major factor in vehicle refinement engineering. For example, in a car, 
structure-borne sound is generated by unsteady tyre-road interaction, by engine and 
transmission line (power train) vibration and by exhaust system vibration. It tends to 
exceed airborne contributions to interior noise below about 400 Hz. 

10.2 Emphasis and content of the chapter 

There exist numerous textbooks devoted to theoretical structural dynamics and vibra- 
tion in which the main analytical emphasis is placed on the deterministic modelling and 
prediction of modes, natural frequencies, and response to harmonic, random and 
impulsive excitation by applied forces or displacements. Computational methods 
applied to discretized continuum models, widely employed in engineering practice, are 
extensively treated in books devoted to finite element and boundary element methods. 

This book is concerned principally with the vibroacoustic and structure-borne sound 
aspects of structural vibration. The audio-frequency range is so wide that structure- 
borne noise and vibroacoustic problems involve large numbers of high-order structural 
modes. Vibrational wave fields, structural boundary conditions, dynamic properties of 
joints and solid damping mechanisms are more complicated than their acoustic counter- 
parts. It will therefore not be a surprise to learn that the uncertainty of natural 
frequencies, mode shapes and response, already encountered in relation to enclosed 
sound fields in the previous chapter, applies with even greater force to vibrational fields 
comprising many high-order structural modes. The resulting dynamic variability is 
exemplified by Fig. 10.6(b), which presents the response curves of a set of 41 nominally 
identical beer cans subjected to the same acoustic excitation. The repeatability of 
response of an individual sample shows far less variation, as shown by Fig. 10.6(a). (Of 
course, the cans had been opened and emptied in a controlled way by our dedicated 
laboratory staff.) 

Given uncertainties of this order, it is not surprising that probabilistic models, such as 
SEA (statistical energy analysis), which deal with energetic quantities, are increasingly 
applied to practical problems of structure-borne sound and vibroacoustics. Emphasis 
will be given to the concepts, principles and relations that relate to energetic models in 
preference to an exposition of classical free and forced modal vibration analysis. One of 
the motivating factors is that probabilistic models are still under development, and are 
less well established than the computational packages for the analysis and prediction of 
'low-frequency' structural vibration that most students of mechanical engineering would 
be taught to use. 

After a qualitative explanation of the energetic approach to modelling the behaviour 
of structural systems in the audio-frequency range, the principal forms of vibrational 
wave of interest in engineering acoustics are introduced. The associated equations of 
motion that govern their behaviour in uniform bars, beams and thin plates, together 
with their harmonic travelling wave solutions, are presented. (The linear stress-strain 
relations fundamental to the derivation of these equations will be familiar to engineering 
students and are not reiterated.) Expressions are derived for the associated energy and 
power flux densities, for asymptotic modal density and for a range of impedances. It is 
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Fig. 10.6 Acoustically induced beer can response: (a) repeatability; (b) population responses. 
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then shown how the latter may be used to derive expressions for vibrational power 
inputs by given forces and velocities and for vibrational power transmission coefficients 
of structural joints. The chapter closes with an analysis of sound radiation from a 
vibrating, simply supported, uniform, rectangular plate, which illustrates the relation 
between the modal and spatial Fourier transform approaches. Some qualitative 
observations regarding sound radiation from stiffened and cylindrical structures are 
also presented. 

10.3 The energy approach to modelling structure-borne sound 

An archetypal structure-borne sound problem is illustrated in Fig. 10.7(a). A known 
vibrational force excites structural vibration in one component. Vibration is transmitted 
to other components, which radiate sound. In Fig. 10.7(b) the excitation takes the form 
of an inexorable velocity excitation. This duality of source representation emphasizes the 
fact that, unlike acoustical sources, it is rarely possible to specify vibrational sources as 
belonging purely to category (a) or (b). This is because the reaction of the receiving 
structure to which the input is applied often has a significant effect on the force and 
velocity at the excitation point. (Consider the bit of a pneumatic drill applied to hard rock 
and to asphalt.) This complication also bedevils attempts to develop standardized 
methods for quantifying the 'strengths' or 'outputs' of vibrational sources in a form that 
can be applied to an arbitrary receiving structure. The practical importance of the 
distinction is considerable. If the nature of the source is not well known, it is impossible to 
select the appropriate means of reducing its effect by modification of the receiving system. 

For simplicity, we shall initially assume a given broadband point force source, and 
sound radiation into air, which does not normally require a fully coupled analysis (see 
Section 9.10). In the conventional approach, the computational procedure adopted 
depends upon the assumed value and distribution of damping. If damping is represented 
by a complex elastic modulus, the normal modes and natural frequencies of the directly 
excited structural component, and any indirectly excited coupled components, would be 
computed (using finite element analysis). The modes and natural frequencies of the total 
system components would then be determined using a computationally efficient modal 
coupling asssembly method. The frequency response of the system would then be 
obtained in terms of a modal summation, which may be applied to any number of 
frequencies lying within any range of frequency up to some fraction of the highest 
predicted modal frequency of the computed modes: the fraction depends upon the 

(a) (b) 
Fig. 10.7 Archetypal model of structure-borne sound problem: (a) force excitation; (b) velocity 
excitation. 
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accuracy required. If the damping is not proportionally distributed, the component 
modes would not be orthogonal, and the frequency response would have to be computed 
frequency by frequency by a direct finite element solution, which is a much greater 
computational task. 

This model, in principle, allows the amplitude and phase distribution over the whole 
radiating surface to be computed over the relevant frequency range. Either the boundary 
element method, which implements the K-H integral (Eq. (6.46)), or a sound radiation 
finite element model, would then be applied, frequency by frequency, to compute the 
radiated field and sound power. In addition to the labour required to generate and 
correctly mesh the two media, the computational effort increases in proportion to 
(frequency)", where n lies between 2 and 3, because the element size must be decreased as 
frequency is increased. The investment of time and labour necessary to model audio- 
frequency vibration of complex engineering structures in this way is therefore very 
substantial. 

Selection of the most appropriate and efficient theoretical modelling and analysis 
procedures in the practice of engineering should be influenced by the degree of 
confidence that can be placed in the resulting predictions in relation to the effort, time 
and expense involved. The ease of interpretation of the results by designers in terms of 
guidance with respect to ameliorative measures is also a major consideration. In the 
extremely simple example introduced above, the computational task is manageable and 
the effort probably justifiable. As the size and complexity of a system, and therefore the 
number of interacting modes, increases, it becomes a far more problematic exercise on 
account of the uncertainty associated with the dynamic properties of structural joints, 
boundaries and damping distributions referred to above. One has therefore to question 
whether the conventional, deterministic modelling of problems of structure-borne sound 
is the appropriate choice or whether an alternative approach might be more profitable. 

Engineers faced with this problem have taken the lead from the acousticians, who 
make extensive use of energetic descriptions of sound fields, source outputs and the 
performance of noise control systems. A great advantage of the use of energy as a 
primary descriptor of the state of a vibrating system is that it is a conserved quantity, 
unlike sound pressure or structural acceleration. It is also the case that the usual end 
product of a structure-borne sound calculation is the sound power radiated into the air. 
When divided by the mechanical power expended by the source(s), this form of mechano- 
acoustical efficiency makes a useful target for reduction by noise control design. 

We now follow that lead by redefining the structure-borne sound problem introduced 
above, as illustrated by Figs 10.8 and 10.9. The source injects mechanical power into the 
directly excited component. This component dissipates a proportion of this power 
through damping and transfers the rest to the connected component, which dissipates a 
proportion of this power internally and radiates the remainder into the air. The number 
of degrees of freedom of the structure has apparently been reduced from hundreds or 
thousands (of modes) to two, representing the time-average total energies stored in the 
components. Of course, the dynamic properties and processes that control the behaviour 
of the system are the same in both formulations; but it turns out that total stored energy 
is far less sensitive to perturbations of physical detail, and to boundary conditions, than 
the individual modes that contribute to that energy. Also, the principle of conservation 
of energy can be invoked directly as a check on numerical calculations. 

A beneficial feature of multi-mode vibrational systems is that the impedance of a 
component, when averaged over a frequency band that embraces many modal natural 
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Fig. 10.8 Energetic model of structure-borne sound problem. 
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Fig. 10.9 Energetic model; schematic. 

frequencies, closely approximates that which would obtain if the system were infinitely 
extended, or highly damped. It is much easier to estimate such impedances than to 
compute them in terms of modal summations. In this introductory text it is not 
appropriate to pursue the analytical and statistical evidence for this behaviour, but the 
case of sound radiation by a source into a highly reverberant enclosure offers a particular 
example (Section 9.9). 

The foregoing serves as the rationale for the emphasis of the following sections on the 
characteristics and energetic properties of waves travelling in uniform bars, beams and 
flat plates, rather than on modal behaviour associated with particular geometries and 
boundary conditions that is comprehensively dealt with in many other textbooks. 

10.4 Quasi-longitudinal waves in uniform rods and plates 

Young's modulus, denoted by E, is defined to be the ratio of longitudinal stress to 
longitudinal strain in a uniform rod subject to axial tension. In pure longitudinal strain 
of an infinitely extended, uniform homogeneous solid, as illustrated by Fig. 10.1, the 
longitudinal stress-strain relation obtained from elasticity theory, is 

axx = B(O~/Ox) (10.1) 

in which B = E(1 - v)/(1 + v) (1 - 2v) and v is Poisson's ratio, which has a value in the 
range 0.25-0.35 for most homogeneous structural materials, but is close to 0.5 for 
virtually incompressible materials such as rubber. Poisson's ratio is defined as minus the 
ratio of lateral to direct strain. The Poisson effect may be seen in the extreme lateral 
strains undergone by a stretched elastic band. The condition of near incompressibility 
explains why rubber is only effective as a resilient material for vibration isolation if 
employed either in pure shear (no volumetric strain), or in small blocks which are 
allowed freedom to bulge laterally. Pinching a sheet of rubber between thumb and 
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forefinger clearly gives a misleading indication of its behaviour when compressed 
uniformly over a large area. 

Derivation of the longitudinal wave equation is analogous to that for sound in an ideal 
fluid (Section 3.9.1), with B replacing the adiabatic bulk modulus and direct stress axx 
replacing sound pressure. The resulting phase speed is 

el-- (B/p) 1/2 (10.2) 

In uniform flat plates, in which only the two free surfaces of a strip of rectangular cross- 
section are stress free, and only lateral strain normal to the plate surface is possible, B is 
replaced by El(1 - v 2) and the phase speed of the quasi-longitudinal wave is 

c~ = [E/p(1 - y2)]1/2 (10.3) 

In uniform rods, B is replaced in Eq. (10.2) by E, and the phase speed of the quasi- 
longitudinal wave is 

c7 - ( E / p )  1/2 (10.4) 

A selection of material properties and longitudinal wave speeds is presented in Table 
10.1. 

The kinematic form of the quasi-longitudinal wave is illustrated by Fig. 10.3. The ratio 
of lateral to longitudinal displacement in circular section rods is approximately equal to 
the ratio of rod diameter to wavelength, which is generally very much less than unity. 
Because the speeds of quasi-longitudinal wave usually exceed that of sound in air, they 
are efficient sound radiators. A proportion of the noise from a pneumatic drill is so 
radiated. But the associated surface displacements are so small that this form of 
radiation is usually swamped by that from the associated bending waves. In water, 
which has a higher sound speed and characteristic specific acoustic impedance, sound 
radiation from this type of wave is of relatively greater importance. 

10.5 The bending wave in uniform homogeneous beams 

10.5.1 A review of the roles of direct and shear stresses 

Comparison of Fig. 10.2(b) and Fig. 10.4 reveals two principal differences between 
transverse and bending waves. The former, unlike the latter, involves no particle 
displacement in the direction of propagation, and no rotation of cross-sectional laminae. 
Differential rotation of adjacent laminae in the bending wave clearly involves long- 
itudinal strain of the interjacent, axially oriented 'fibres' of the beam. The following 
exercise is suggested as a visual aid to revisiting the roles of longitudinal strain and stress 
in resisting both moments and transverse forces applied to a beam. 

Pick up a paperback book between thumb and fingers placed on opposite sides of the 
spine with either top or bottom edge facing you (not this one, it's too thick). Hold the 
spine firmly in a horizontal plane and observe the relative displacements of the edges of 
the pages. (If it is your own book, you could draw a set of parallel lines on the top or 
bottom edge of the book across its thickness, when in its flat, undistorted form. I shall 
probably be castigated by bibliophiles for this barbaric suggestion.) Note the shear 
'strain' of the face. Complete collapse is prevented only by the constraint applied by the 
spine. If you now use both hands to clamp both spine and opposing edge tightly between 
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Table 10.1 Material  properties a and longitudinal wave speeds 

Young ' s  modulus  Density p Poisson's ratio 
Material  E (N m -  2) (kg m -  3) (v) cl (m s -1) c ) (ms  -1) c7 (m s -1) Cs (m s -1) 

Steel 2.0 x 1011 7.8 x 103 0.28 5900 
Aluminium 7.1 x 101~ 2.7 x 103 0.33 6240 
Brass 10.0 x 10 l~ 8.5 x 103 0.36 4450 
Copper  12.5 x 101~ 8.9 x 103 0.35 4750 
Glass 6.0 x 101~ 2.4 x 103 0.24 5430 
Concrete 

light 3.8 x 109 1.3 x 103 
dense 2.6 x 10 l~ 2.3 x 103 
porous  2.0 x 109 6.0 x 102 

Rubber  
hard 2.3 x 109 1.1 x 103 0.4 2120 
soft 5.0 x 106 9.5 x 102 0.5 

Brick 1.6 x 10 l~ 1.9-2.2 x 103 
Sand, dry 3.0 x 107 1.5 x 103 
Plaster 7.0 x 109 1.2 x 103 
Chipboard  b 4.6 x 109 6.5 x 102 
Perspex C 5.6 x 109 1.2 x 103 0.4 3162 
Plywood b 5.4 x 109 6.0 x 102 
Cork - 1.2-2.4 x 102 
Asbestos cement 2.8 x 10 l~ 2.0 x 103 

a Mean  values from various sources. 
b Great ly variable from specimen to specimen. 
c Tempera ture  sensitive. 
Reproduced from Sound and Structural Vibration (Fahy, 1987)-  see Bibliography. 
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fingers and thumbs, and then try to apply a pure rotation about the centre line of each 
edge, you will experience strong resistance. 

In the first case the book has offered very little resistance to the bending and shear 
forces applied by its weight. In the second case the resistance to bending was consider- 
able. Why the difference? Consideration of what your fingers and thumbs are trying to 
do in the second case offers the clue. They are trying to extend and compress the widths 
of the front and back covers: that is, produce in-plane strain. They are not applying a net 
force to the book (except to stop it falling on your toes). The only role the pages are 
playing in the resistance to bending distortion is to hold the covers apart, which would 
otherwise buckle in to meet each other. 

In the first case, the lack of resistance to distortion produced by the self weight is 
caused by the lack of shear constraint, which allows the pages to slide easily over each 
other. Had the pages been stuck together with a very stiff glue, the book would hardly 
have drooped at all because then differential slippage would require in-plane strain to 
take place in each page, and the elastic modulus of paper is sufficient to put up a good 
fight. 

10.5.2 Shear force and bending moment 

These examples serve to illustrate the fact that longitudinal strain of the fibres of a beam 
act as an agent of resistance to both transverse forces and bending moments. We shall 
now take a look at the specific relations between shear forces, moments, stresses and 
strains in uniform, homogeneous beams. Consider the uniform, homogeneous cantilever 
shown in Fig. 10.10(a); the cross-section is symmetric about a vertical plane and a pure 

couple is applied by a force pair at the tip. The adopted sign convention is defined by Fig. 
10.10(b). No transverse force is applied, so that no vertical (or complementary 
horizontal) shear stresses or strains can exist. The bending moment is the same at all 
cross-sections, and therefore the deformation must take the form of pure rotation of the 
cross-sections: the beam deforms into a circular arc. The longitudinal strains and stresses 
are created by differential rotation of adjacent cross-sections, as shown in the figure. 
Simple static beam theory based upon the assumption that 'plane sections remain plane' 
(also known as Euler-Bernoulli beam theory) shows that the moment of the couple is 
related to the curvature of the beam by 

M = - E 1 0 Z w / O x  2 = E I / R  (10.5) 

where w is transverse displacement of the beam cross-section centroid, R is the radius of 
curvature and I is the second moment  o f  area about the neutral axis about which rotation 
takes place. (I is sometimes mistakenly called the 'moment of inertia' of the cross-section 
which is the second moment of mass, not area.) 

We now replace the force pair by a single transverse force (Fig. 10.11 (a)). The bending 
moment now increases with distance from the tip: so therefore does the differential 
rotation of cross-section planes and the associated longitudinal strains and stresses. 
Figure 10.11 (b) shows an elemental slice of beam in which the longitudinal stress varies 
with axial position, producing a net axial force on the outboard section of beam. Static 
equilibrium requires another axial force to counterbalance it. This is provided by the 
shear stress Zyx acting on the inner face of the outboard section and, by N3LM, in 
opposition on the remainder on the section. So, we draw the very important conclusion 
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Fig. 10.10 (a) Uniform cantilever under couple excitation; (b) sign convention. 

that local shear stresses are generated in beams in proportion to the local axial gradient 
of bending moment. 

Standard textbooks on solid mechanics show that rotational equilibrium of an 
element subject to shear stress on one surface requires that this shear stress is always 
accompanied by complementary shear stress of the same magnitude operating on the 
orthogonal face, as shown in Fig. 10.12. Integration of the complementary transverse 
shear stress over a cross-section of the beam shows that the resulting shear force is 
related to the axial gradient of the curvature of the beam by 

S = E1 03w/Ox 3 (10.6) 

Equations (10.5) and (10.6) are consistent. Consideration of the rotational equilibrium 
of a short element of a beam shows that S = - OM/Ox. 

A non-uniform distribution of shear stress, and therefore of shear strain, over the 
depth of a beam is incompatible with the assumption of 'plane sections remaining plane'. 
In many cases of homogeneous beams of practical interest to mechanical engineers, at 
frequencies up to about 1 kHz, the contribution of shear strain to transverse displace- 
ment may be neglected. However, beams in buildings and ships can be very deep and this 
assumption leads to serious error. Neither may shear distortion be neglected in cases of 
sandwich beams of which the cores have low shear moduli. Further information will be 
found in Structure-borne Sound  (Cremer et al., 1988- see Bibliography). 
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Fig. 10.11 (a) Uniform cantilever under transverse force excitation. (b) Balance between axial 
shear and longitudinal direct forces. 

Fig. 10.12 Transverse complementary shear stress distribution. Reproduced with permission from 
Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 
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Fig. 10.13 Transverse forces on an element of a beam carrying a bending wave. Reproduced with 
permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 

10.5.3 The beam bending wave equation 

Reference to Fig. 10.13 shows that the net transverse force on a beam element equals 
S -  [S + (OS/Ox)6x] = - (OS/Ox)5x. The equation of transverse motion of an element 
of uniform beam of mass per unit length m is therefore 

(m 5x) 02w/Ot 2 = -- (OS/Ox) bx  

or, from Eq. (10.6), 

m 02w/Ot 2 + E I  O4w/Ox 4 =  0 (10.7) 

This is the beam bending wave equation, which is valid if the contribution of shear 
strain to potential energy, and of rotary inertia of the beam to kinetic energy, are 
negligible. A simple rule for beams of rectangular cross-section is that these contribu- 
tions may be neglected provided that the wavelength given by the pure bending theory is 
at least six times the beam depth. This criterion is not conservative for beams of non- 
rectangular cross-section. 

10.5.4 Harmonic solutions of the bending wave equation 

Substitution of the complex exponential expression for a simple harmonic progressive 
wave into Eq. (10.7) yields 

E1 k 4 - ooZm = 0 ( 1 0 . 8 )  

The four roots are k -  _+~o 1/2 (m/El) TM and k = _ j09 I/2 (m/El) TM. The complete 
solution is 
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w(x, t) = [A exp ( -  jkbX ) -+- JB exp (-- kbX ) -+- C exp (jkbX) -+- JD exp (kbX)] exp (jolt) 
(10.9) 

where the bending wavenumber 

kb -- co 1/2 (m/E1) 1/4 (1 0.10) 

The first and third terms on the right-hand side of Eq. (10.9) represent waves 
propagating in the positive- and negative-x directions with phase speed 

Cb = o9/kb = (-0 1/2 (EI/m) TM (10.11) 

Their group speed Cgb, given by Oo9/Okb, is twice the phase speed. The second and fourth 
terms represent non-propagating, or 'evanescent', fields. Their amplitudes vary expo- 
nentially with distance at a rate that increases with frequency. Their phase speeds are 
imaginary and they do not transport energy. 

As previously mentioned, the bending wave phase speed is frequency dependent and 
bending waves are therefore dispersive. Non-harmonic waveforms do not propagate 
faithfully, as illustrated by Fig. A3.1. Euler-Bernouilli beam theory should not be used to 
model problems of  impulsive excitation of  beams by local impact, because the higher 
wavenumber components will not be properly represented. The dispersive nature of 
bending waves produces natural frequencies of beams that are not harmonically related. 
(This may be detected by listening carefully to the non-harmonic sound made by striking 
a bar that is suspended vertically by a string.) The spacing between successive 
frequencies increases with frequency, so that the modal density decreases with frequency. 

At frequencies beyond those for which the simple bending theory is valid, the 
'bending' wave involves progressively greater shear distortion, and at very high 
frequency it transforms into a transverse shear wave, as indicated by Fig. 10.14. 

10.6 The bending wave in thin uniform homogeneous plates 

The equation of plane bending waves in a thin, uniform, homogeneous flat plate is 
derived by means of a simple modification of the beam bending wave equation. The 
bending stiffness term E1 and mass per unit length are replaced by the bending stiffness 
per unit width D = Eh3/12(1 - v 2) and mass per unit area m = ph, where h is the plate 
thickness. The physical basis of the criterion for 'thinness' is kbh < 1. The stiffness per 
unit width is slightly greater than that of a strip cut from the plate because of the 
constraint on lateral strain applied by the body of the plate. If the plate is not 
homogeneous, the bending stiffness per unit width may be denoted simply by D. 

The bending wave phase speed 

C b -" 09 1/2 (D/m) 1/4 ( 1 0 . 1 2 )  

and the bending wavenumber 

k b  = (-0 1/2 (m/D) 1/4 (10.13) 

both of which, being frequency dependent, indicate dispersive wave behaviour. 
Simple modification of the beam equation is not sufficient to describe general (non- 

plane) two-dimensional bending wave fields. Unlike the case of a beam, the stresses in a 
plate depend upon strains in both in-plane directions. Also, moments are not associated 
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Fig. 10.14 Dispersion curves for various types of wave in a bar/beam. Reproduced with 
permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 

exclusively with bending deformation: twisting deformation generates torsional 
moments. Shear forces are functions of both bending and twisting moments. The full 
derivation of the plate bending wave equation, which is presented in Structure-borne 
Sound (Cremer et al., 1988 - see Bibliography), is beyond the scope of this book. 

For a uniform, thin, isotropic plate having a median plane lying in the x - y  plane, the 
bending wave equation in rectangular Cartesian coordinates is 

D[O4w/Ox 4 -k- 204w/OxZOy 2 -F 04w/Oy 4] + mOZw/Ot 2 = 0 (10.14) 

where the bending stiffness per unit width D of isotropic plates is independent of the 
direction of the axis about which bending takes place. Substitution of the complex 
exponential expression for a harmonic plane wave into Eq. (10.14) yields the solution for 
plane waves propagating in the direction n = cos 0 i + sin 0 j 

w(r, t) = [.4 exp (--jkb.r) + /~ exp ( -  kb.r) + C exp (jkb.r) + /) exp (kb.r)] exp (jcot) 
(10.15) 

in which the wavenumber vector kb -- kb n and r - xi + y]. Both propagating and non- 
propagating components are present. The vector notation is explained in Section 3.9.6. 

10.7 Transverse plane waves in flat plates 

Transverse waves in solids result from shear stresses associated with shear strain, as 
illustrated by Fig. 10.2. The shear modulus G of an elastic solid is defined as the ratio of 
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shear stress z to shear strain 7- The shear modulus is related to Young's modulus by 
G = El2 (1 + v). The equation of transverse motion of an element having unit thickness 
in the z direction is 

p 6x 6y 02rl/Ot 2 = (OZxy/OX) 6X 6y (10.16) 

in which r/is the transverse displacement in the y direction and the stress-strain relation 
is 

Zxy = G7 = G Oq/Ox (10.17) 

Hence the transverse wave equation is 

(G/p) 02~/OX 2 - -  02tl/Ot 2 = 0 (l 0.18) 

which, for time-harmonic fields, becomes 

(G/p) oz~/ox 2 + (_D2~--0 (10.19) 

The kinematic form of the wave is shown in Fig. 10.2(b). The phase speed is 

Cs = (G/p) 1/2 (10.20) 

which indicates that the wave is non-dispersive. In a homogeneous, isotropic, elastic 
solid, Cs is about 60% of the speed of quasi-longitudinal waves. 

10.8 Dispersion curves, wavenumber vector diagrams and 
modal density 

The transmission of wave energy across interfaces between different structural compo- 
nents, or between structures and fluids, depends crucially upon the relative wave 
impedances of the connected media: these, in turn, are functions of wavenumber. The 
solutions of the harmonic forms of the homogeneous equations that govern the various 
forms of structure-borne wave described above are represented in Fig. 10.14 in the form 
of a dispersion diagram, in which the wavenumber of each type of freely propagating 
wave is plotted as a function of frequency. This form of presentation is extremely 
valuable in providing insight into wave coupling phenomena. For example, the 
intersection of a vertical line with each curve indicates the similarity, or otherwise, of 
the free wavenumber of each type of wave at that frequency. Point C represents a 
vibroacoustic phenomenon termed 'coincidence' between bending waves in plates and 
acoustic waves in fluids. The associated frequency is termed the 'lowest coincidence 
frequency', or 'critical frequency', which is an important reference frequency in 
vibroacoustic analysis. The phase and group speeds of the various waves may be 
determined from the relations C p h  - -  ~o/k and Cg - -  &o/Ok, as indicated in the figure. 

Alternative forms of dispersion diagram in terms of the variation of phase speed, or 
wavelength, with frequency could be constructed. These would be far less useful than the 
conventional form of Fig. 10.14 because the wavenumber is the magnitude of the 
associated wavenumber vector that indicates wave propagation direction. When a 
structure-borne wave is incident upon a plane interface, it is the component of the 
wavenumber vector parallel to the interface (known as the 'trace' wavenumber) that 
determines the coupling process: the receiving structure 'knows' nothing of the 
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Fig. 10.16 Illustration of coincidence between bending waves in a plate and a stiffening beam. 

component normal to the interface. Consequently, in dealing with waves in two or three 
dimensions, it is useful to construct a vectorial extension of Fig. 10.14. 

We have seen in Section 10.6 that plane bending waves can travel in any direction in 
the median plane. According to Eq. (10.13), the constant frequency locus of the plane 
bending wavenumber kb is a circle of radius that varies with frequency as o~ ~/2. Constant 
frequency loci are plotted in the corresponding wavenumber vector diagram presented in 
Fig. 10.15. The possibility of coincident interaction between bending waves in a thin 
plate and in a thicker beam connected to it may be identified by the construction shown 
in Fig 10.16, in which the beam bending wavenumber at the frequency of interest is 
obtained from Eq. (10.10). Plate bending waves propagating at the coincidence angle 
indicated by the diagram will maximally couple and share energy with the beam bending 
waves, and vice versa. Since the boundary wavenumber in both components varies as 
co 1/2, coincidence is possible at all frequencies at the same angle. The constant 
frequency loci of bending waves in orthotropic plates, such as corrugated sheets, in 
which the bending stiffness varies with direction, are not circular but elliptical in form. 
Examples of the loci of the flexural waves of thin circular cylindrical shells are 
presented in Sound and Structural Vibration (Fahy, 1987 - see Bibliography). 
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Fig. 10.17 Use of dispersion curves to indicate the possibility of dangerous coincidences between 
sound waves generated by a rocket exhaust and the flexural waves in the payload bay shell. 
Reproduced with permission from Pinder, J. N. and Fahy, F. J. (1993) 'A method for assessing the 
noise reduction provided by cylinders'. Proceedings o f  the Institute o f  Acoustics 15(3): 195-205. 

We have already met the two-dimensional acoustic wavenumber vector diagram in 
relation to waveguides (Fig. 8.21) and the three-dimensional version for rectangular 
enclosures (Fig. 9.11). These may be combined with two-dimensional diagrams for plates 
and curved shells to reveal any undesirable coincidence conditions. Figure 10.17 shows a 
combined dispersion diagram for flexural waves in the shell of a rocket launcher satellite 
bay and sound waves travelling upwards from the rocket exhaust plume; potentially 
damaging coincidence conditions are indicated. 

In addition to their use as indicators of wave coincidence, wavenumber vector 
diagrams may be used to estimate the distributions of high-order modal natural 
frequencies, as already demonstrated in Section 9.5. The densities of natural frequencies 
of high-order structural modes are rather insensitive to variations of boundary condi- 
tions. This is because a single wave reflection from any form of boundary produces a 
phase difference that is limited to the range -t-~z. At frequencies where the average 
distance travelled by a wave between reflections greatly exceeds a wavelength (as is 
necessarily the case for high-order modes) the spatial phase change during free 
propagation is many times 2~z. Consequently the boundary phase change is small 
compared with the overall phase change during a modal 'round trip' and has 
proportionally little effect on natural frequencies. It is therefore reasonable to assume a 
phase change of zero, in which case modal wavenumbers of one-dimensional systems of 
length l must satisfy k = n~/l ,  where n is a positive integer. Wavenumber vector 
components of two-dimensional systems of orthogonal dimensions a and b must satisfy 
k 2 = k 2 + k 2 = (p~z/a) 2 + (q~z/b) 2. These values may be used to create a modal lattice, as 
illustrated in Fig. 10.18 for bending waves in a rectangular flat plate of dimensions a and 
b. Each modal wavenumber vector joins the associated modal point to the origin. 

An estimate of the asymptotic modal density of plate bending modes may now be 
made in the same manner as that used for acoustic enclosure modes in the previous 
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Fig. 10.18 Use of the wavenumber lattice to estimate modal density. 

chapter. Figure 10.18 shows two wavenumber loci corresponding to frequencies ~o and 
co + &o. The differential radius is given by bkb = (Okb/&O)6Co which equals (~(_D/Cg b. The 
area of the annular segment is therefore nkb bo)/2Cgb. The wavenumber 'area' per mode is 
n2/ab, giving the average number of resonance frequencies in the segment as 6N - ab(m/ 
D)l/Zbo)/4n. The asymptotic modal density n(co) is therefore ~/-3ab/2nhc/, which is 
independent of frequency. A generalized form of this procedure yields the following 
expression for asymptotic modal density of two-dimensional systems, in which k and Cg 
vary with angle of wave propagation: 

[ n12 
n(co) = ON/am = (A/n 2) [(k(O)/cg(O)] dO (10.21) 

J0  

where A is the area of the system and 0 = tan-1 (ky/kx). 

10.9 Structure-borne wave energy and energy flux 

10.9.1 Quasi-longitudinal waves 

The kinetic energy per unit length of a quasi-longitudinal wave travelling in a rod of 
cross-sectional area S and density p is 

e~: = �89 (o{/at) 2 (10.22) 

where ~ is the axial particle displacement. The potential energy per unit length is equal to 
the work done per unit length by forces applied by contiguous elements in straining 
the element. According to the convention defined by Fig. 10.1, the work done by the 
direct stresses on an element of unstrained length 6x is 

I s { - ~  + [~ + (a~/ax) axl[~ + (O~lax) ax]} 
2 

To second order, this is 1S~(Oa/Ox)6x + �89 The first term represents the 
work done in element displacement without strain and does not contribute to elastic 
potential energy. Therefore 

ep = �89 (a{/ax) = lSE(O~/Ox) 2 (10.23) 
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where ~rxx is the axial direct stress. The relation between stress gradient and element 
displacement is given by Newton's Second Law of Motion as 

S(O~rxx/OX ) ~ x  -- --  p S  ~ x  (O2~/Ot 2) (10 .24)  

The solution of the wave equation for the particle displacement in a wave propagating 
in the positive-x direction takes the functional form ~(x, t) = f ( c t  - x),  as with a plane 
sound wave. The strain is given by ex = O~/Ox and the stress therefore given by 
~rxx = E(O~/Ox). The particle velocity is given by O~/Ot. Therefore the stress and velocity 
are related by 

axx = E (O~/Ot)/c/' = (Ep) 1/2 (O~/Ot) (10.25) 

The quantity (Ep) ~/2 is the characteristic specific mechanical impedance of the wave. In 
fluids, the bulk modulus po c2 is equivalent to E and the characteristic specific acoustic 
impedance equals (p2c2)1/2, in agreement with Eq. (3.29). 

Using Eq. (10.25) to express both forms of energy in terms of particle velocity 
or stress, we find that they are equal. Therefore the total energy per unit length is given 
by 

e ' =  S E  (O~/Ox) 2 =  pS(O~/Ot) 2 =  Sa2x /E  (10.26) 

The energy flux per unit cross-sectional area (intensity) is given by the product of the 
particle velocity and associated stress. Using Eq. (10.25), this becomes 

I Crxx (Ep) -1 /2  2 ,, = o = axx/pCz (10.27) 

analogous to pZ/poc for sound waves. The group speed, defined as the ratio of intensity to 
specific energy density e'/S,  equals the phase speed c/' because the wave is non-dispersive. 

10.9.2 Bending waves in beams 

Because bending waves are dispersive, it is very awkward to develop expressions for 
energy and intensity in the time domain. Consequently, we shall base the following 
analysis on the general form of the expression for transverse displacement in a harmonic 
wave travelling in the positive-x direction 

w(x, t) = A exp [j(cot --  kbx)] (10.28) 

The kinetic energy of transverse motion per unit length is 

e~,= �89 m (Ow/Ot) 2 --- �89 m [Re {jcoA exp [j(~ot - kbx)]}] 2 

-- �89 2 [a sin (o~t -- kbx)  + b cos (~ot - kbx)] 2 (10.29) 

where A - a + jb.  (Note carefully that (Ow/Ot) 2 ~ Re {[j~oA exp [j(~ot - kbx)]]2}). The 
kinetic energy density associated with axial particle velocities (or rotational motion) is 
comparatively negligible in the frequency range where the assumptions of the simple 
bending theory are valid. 

The potential energy has two components. One is associated with moments and 
rotational displacements of section planes, which involves axial stresses and strains; the 
other is associated with shear forces and associated shear deformation of elements. The 
former far outweighs the latter in the frequency range over which simple bending theory 
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applies. The potential energy of a length of bar 6x associated with a small rotational 
displacement under the action bending moments, as shown in Fig. 10.19, is given by 

gp -- 1M O w / O x - - I [ M  -t- (OM/Ox) 6x) ]  [Ow/Ox + (02w/Ox2) (~x]  ( 1 0 . 3 0 )  

To second order Ep =-�89 (OM/Ox)(Ow/Ox)]6x. The second term means 
rotation without strain. Thus the elastic potential energy per unit length is 

ep = - � 8 9  (OZw/Ox 2) = 1EI(OZw/Ox2) 2 (10.31) 

Substitution of the expression for time-harmonic displacement from Eq. (10.28) gives 

e'p = �89 k~, [a cos (cot - kbx) -- b sin (cot - kbx)] 2 (10.32) 

In freely propagating bending waves, for which k~,--coZm/EI, the sum of the two 
energies per unit length is independent of space and time and the time-average elastic 
potential and kinetic energies are equal. The total time-average energy per unit length is 

e' = �89 4 (a 2 + b 2) = �89 k41,4 2 (10.33) 

The energy flux has two contributions: one from the shear force acting through 
transverse displacement, and one from the bending moment acting through section 
rotation. Recalling that the shear force is given by S = EIO3w/Ox 3, the rate at which 
work is done by the shear force is given by 

Ws = EI(O3w/Ox3)(Ow/Ot) = Elcok~, [asin(cot-  kbx) + bcos(co t -  kbx] 2 (10.34) 

and that by the moment is 

m m = [-- E1 (02co/Ox 2] [O/Ot ( -  Ow/Ox)] 
- Elcok 3 [a cos (cot - kx)  + b sin (cot - kx)] 2 (10.3 5) 

The sum of these powers is independent of space and time. The total time-average power 
flux of freely propagating bending waves is 

W = Elcok~ AI 2 (10.36) 

The group speed is given by the ratio of time-average energy flux to time-average energy 
per unit length as  Cg b -- 2co/kb = 2Cb. 
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10.9.3 Bending waves in plates 

The general expressions of the potential energy and intensity of a bending wave field in a 
plate are complicated by the contribution of the twisting moments. However, the 
expressions for the energies per unit area and energy flux per unit width of plane bending 
waves in a plate are the same as those for a beam with the mass per unit length replaced 
by the mass per unit area, and the bending stiffness E1 replaced by the bending stiffness 
per unit width Eh3/12(1-v2). The group speed is again twice the phase speed. 

The fact that the time-average kinetic and potential energies per unit area are equal 
may be exploited in experimental estimates of total energy per unit area. In the cases of 
travelling bending waves, or reverberant, quasi-diffuse, bending wave fields, the spatial 
distribution of time-average kinetic energy density may be estimated from measurements 
of surface vibration using accelerometers or laser systems, and the result is simply 
doubled. As with sound fields in enclosures, the estimates are not correct near 
boundaries where evanescent bending fields predominate. This method may also be 
applied to fields dominated by resonant bending wave modes, which behave like simple 
oscillators in that their time-average kinetic and potential energies are equal. 

Direct experimental methods of estimating bending wave energy flux have been 
developed, but these require measurements of surface motion at multiple points. They 
are subject to significant errors, especially near boundaries, localized excitation points 
and other discontinuities, where evanescent fields are present. 

10.10 Mechanical impedances of infinite, uniform rods, beams 
and plates 

The dependence of the mechanical impedances of infinitely extended (non-modal), 
uniform, structural elements on the geometric and material parameters is of great 
practical importance because these impedances are representative of the frequency- 
average impedances of bounded (modal) elements of the same cross-sectional form and 
material. This correspondence is widely exploited in the analysis of the response of 
complex structures to broadband excitation. Knowledge of the mechanical impedances 
of structural elements is central to the problems of evaluating the power injected by 
localized excitation mechanisms, and to the analysis of vibrational transmission between 
structural components, which depends crucially on the relative impedances of the 
connected systems. This is a very large area of study because of the diversity of wave 
types and forms of excitation and kinematic constraints that may exist in practical 
situations. Consequently, a few relatively simple examples will be analysed in order to 
demonstrate the principles of modelling and analysis. A more complete treatment is 
presented in Structure-borne Sound (Cremer et al., 1988- see Bibliography). 

10.10.1 Impedance of quasi-longitudinal waves in rods 

The characteristic mechanical impedance associated with quasi-longitudinal progressive 
waves in uniform rods is given by Eq. (10.25) as force/particle velocity = S(Ep) 1/2, which 
is frequency independent. 
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10.10.2 Impedances of beams in bending 

The impedances associated with bending waves in beams vary with the forms of the 
input and output, together with any applied kinematic constraints. Before dealing with 
specific cases, it is helpful first to record some general expressions for the spatial 
derivatives of the displacement of bending wave components travelling in the x- 
direction. These are evaluated at x = 0, which is assumed as the point where the 
impedances are defined. Differentiation of the first two terms on the right-hand side of 
Eq. (10.9), followed by equating x to zero, yields 

(~)o = ? + g 

(Off:/OX)o = - kb ( jA  + g ) 

and 

(a2~/ax2)o = - k~ ( ~ i -  ~) 

(10.37a) 

(10.37b) 

(10.37c) 

(O3v~lOx3)o = k~ ( j A -  B) (10.37d) 

We consider first the impedance(s) at the end of a semi-infinite beam. We may define 
two forms of input - transverse force and couple; and two forms of output - transverse 
velocity and rotational velocity. Hence, there are four impedances. Consider first Fig. 
10.20(a). The shear force amplitude is given by Eqs (10.6) and (10.37d) as 

S= E1 k~(jA - B) (10.38) 

The bending moment, which is proportional to  02W/OX 2, is zero; therefore A =/~. The 
transverse harmonic velocity amplitude is derived from Eq. (10.37a) as 

jco(~)0 = jo~ (A +/1) (10.39) 

giving the mechanical impedance as 

Zs = EIk~ (1 + j)/2~o (10.40a) 

In terms of the geometry and physical properties of the beam material 

Z s = �89 (E/) 1/4 m 3/4 (1 + j) (10.40b) 

In Fig. (10.20b), half the shear force acts upon each half of the beam and the 
rotational displacement is zero. Hence 

jA + / 1 =  0 (10.41) 

and 

�89 EIk~, ( jA  - B) (10.42) 

giving /~ = - S / 4 k ~ E I  and A - - j S / 4 k ~ E I .  The complex amplitude of transverse 
velocity is given by 

(O~/Ot)o = flo (A + B) = - jo~S (1 + j ) /4k~EI (10.43) 

The mechanical impedance is 

Zs = 2EIk~ (1 + j)/~o (10.44) 

which is four times that at the end of the semi-infinite beam. 
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Fig. 10.20 (a) Semi-infinite beam subjected to a transverse (shear) force at its end. (b) Infinite beam 
subjected to transverse (shear) force. (c) Semi-infinite beam subjected to a couple at its end. (d) 
Infinite beam subjected to a couple. 

The shear force at the end of the infinite beam excited by a pure couple, shown in Fig. 
10.20(c), is zero. Hence, from Eq. (10.37d), 

( j , ~ - / ~ )  = 0 (10.45) 

giving ,~ = - j /~ .  The couple is 3~r = E l k  2 (,~ - ~) ,  giving the impedance as 

Z M  = ~17l/jw(O~/Ox) = Elkb(1 - j ) / 2 w  (10.46a) 

In terms of the beam geometry and material properties it is 

Z M  = l w - 1 / 2  (E/)3/4 ml/4 (1 - - j )  (10.46b) 

In the case illustrated by Fig. 10.20(d) half the couple is applied to each half of the beam 
and the transverse displacement is zero. The impedance may be shown to be f o u r  times 
that at the end of the semi-infinite beam. 

The impedances are profoundly altered by imposing kinematic constraints at the point 
of reference. For example, a condition of zero transverse displacement is imposed on the 
semi-infinite beam in the form of a simple support at x = 0, as illustrated by Fig. 10.21. 
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c .  
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Fig. 10.21 Semi-infinite beam simply supported at its end where a couple is applied. 

The shear impedance becomes infinite and the couple impedance becomes twice that of 
the semi-infinite, free beam. 

The two forms of impedance analysed above are known as 'direct impedances' 
because they involve two quantities, the product of which is the power input. In this 
simple case there are two other impedances to be determined, namely those relating 
couple to transverse velocity and shear to rotational velocity. These are known as 'cross 
impedances': no power input is associated with them. Derivation of the algebraic 
expressions is left to the reader. 

The direct force impedance expressed by Eq. (10.40b) is proportional to 0)1/2 and the 
direct couple impedance expressed by Eq. (10.46b)is proportional to 0)-1/2. The time- 
average power inputs are given in terms of dynamic inputs as 

Ws = �89 ~5~Re{1/Zr 

Wm = 1 ]1~ 2 R e  { 1//1~i}; 

and in terms of kinematic inputs as 

Wv=�89  *} 

Wo __ 1 0)2 ]0 2 Re (Z~a} 

where ~ = j0)~ and 0 = ag,/ax. 
The conclusion is that, as frequency increases, the power input per unit couple 

increases and the power input per unit force decreases; whereas the power input per 
imposed unit rotational velocity decreases while the power input per unit imposed 
transverse velocity increases. It is clear that accurate classification of a source as 
essentially kinematic or dynamic, together with an appreciation of the various depen- 
dencies on beam properties, are vital for the appropriate choice of structural modifica- 
tion for the purpose of structure-borne sound control. Bending stiffness has the greater 
influence on couple impedance and mass per unit length has the greater influence on 
force impedance. 

10.10.3 Impedances of thin, uniform, flat plates in bending 

Bending waves generated in an infinitely extended flat plate by a concentrated transverse 
force spread out cylindrically from that point. Consequently, to derive an expression for 
the transverse velocity of a thin plate at the point of application of such a force, it 
is appropriate to express the plate bending wave equation (10.14) in cylindrical 
coordinates. The detailed analysis is too complicated to be included here. The result is 
remarkably simple in form and nature [10.2]: 

Zs = 8(mD) 1/2 (10.47) 
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where m is the mass per unit area and D is the bending stiffness per unit area of the plate, 
which equals Eh3/12(1 - v 2) for a homogeneous plate. The impedance is purely resistive, 
which is quite remarkable considering that there is an evanescent, non-propagating near 
field around the point of excitation. Note that the impedance increases as the square of 
plate thickness, but varies weakly with density and elastic modulus. It is also possible to 
derive an expression for the direct couple impedance of an infinite plate that is 
proportional to the bending stiffness per unit width and inversely proportional to 
frequency. 

10.10.4 Impedance and modal density 

It is a remarkable fact that there are very simple relationships between the real parts of the 
force impedances of infinitely ex tended  beams, plates and circular cylindrical shells and 
the asymptotic bending wave modal densities of the corresponding bounded structures. 
For example, the modal density of a beam in bending may be determined by the 
application of a one-dimensional lattice diagram as explained in Section 10.8. The result is 

n(o0) = l o 3 - 1 / 2  m TM L/rc(E1) 1/4 (10.48) 

The product of the real part of force impedance of an infinite beam (Eq. (10.44)) and 
modal density is M b / g  , where M b is the total mass of the beam. In the case of flat plates, 
the product equals Mp/~Z. These, and similar relations for cylindrical shells, have been 
exploited to estimate modal densities of uniform structures from measurements of point 
impedance. Such relations indicate that dynamic sources inject power in proportion to 
modal density, whereas kinematic sources inject power in inverse proportion to modal 
density. 

10.11 Wave energy transmission through junctions between 
structural components 

When structure-borne waves are incident upon impedance discontinuities they are 
partially reflected and partially transmitted. They may also be scattered into different 
wave types, which greatly complicates the modelling and analysis process and precludes 
the presentation herein of a comprehensive treatment of the general problem. For 
example, consider a bending wave incident upon a right-angle bend in a bar. We shall 
therefore restrict our attention to one simple case in which wave transformation does not 
occur. 

Consider the system shown in Fig. 10.22, which consists of two beams of the same 
material but different bending stiffness joined at a point that is simply supported. A 
bending wave travelling in beam 1, having a transverse displacement amplitude A, is 
incident upon the junction. Reflected and transmitted waves of displacement amplitude 
expressed respectively a s  W1 = /~exp [j(cot + klx)] + (Texp [jcot + klX] and W2 = 

15 exp [j(cot - kzx)] +/~exp [joot - k2x], are generated. The suffices 'b' have been 
omitted for typographical convenience. The boundary conditions at the junction x = 0 
are as follows" 

Continuity of displacement: 

+ / ~ + ( 7 = 1 5 + E = 0  (10.49) 
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Fig. 10.22 Coupled beams of different bending stiffness. 

Continuity of slope: 

k, ( - j A  + j/1 + ~ = k2 ( - j / ) -  ~ (10.50) 

Zero sum of bending moments: 

(ED, k~ 2 ( - A  - / ~  + C) = (E/)2 k 2 ( - / )  + ~ (10.51) 

The solution for the ratio of amplitudes of transmitted to incident travelling waves is 

D / A  = (2j/(j  - 1))/(a TM + a -  l/z) (10.52) 

where a = (EI)I/(EI)2. 
The ratio of transmitted- to incident-wave powers is given by Eq. (10.36) as 

-" 9~ - 1 / 4  /)/AI 2 = 2 / ( ~  3/4 + 2 + ~ - 3 / 4 )  (10.53) 

which is reciprocal in a. 
In the special case of identical beams this power transmission coefficient takes the 

value of 0.5 (or - 3  dB). The support prevents transmission of power by the shear force, 
which accounts for half the power in a travelling wave. In the absence of the support, the 
condition of zero displacement at the junction would be replaced by that of continuity of 
shear force. 

With the appropriate form of bending stiffness, this model serves to illustrate the 
power transmission coefficient of bending waves that are normally incident upon a 
straight junction between two plates of different thickness. The variation of power 
transmission coefficient with thickness ratio h is shown in Fig. 10.23 [10.3]. The effect of a 
discontinuity of thickness on the transmission of quasi-longitudinal waves is seen to be 
far less than on the transmission of bending waves. This is because the impedance per 
unit width of the former is linearly proportional to thickness, whereas the shear and 
moment impedances of the latter are proportional to h 3/2 and h 5/2, respectively. Even 
so, the thickness ratio has to be either far greater than, or far less than, unity to produce a 
substantial reduction of power transmission. 

10.12 Impedance, mobility and vibration isolation 

The classical models of vibration basedupon lumped element models are irrelevant to most 
of the audio-frequency range. Except in the frequency range below about 100 Hz, it is not 
practicable to design and select vibration isolation systems on the basis of deterministic 
modelling and prediction of vibration modes and natural frequencies. Small deviations 
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Fig. 10.23 Wave power transmission coefficients: (a) quasi-longitudinal waves; (b) bending waves 
incident upon a thickness discontinuity. Reproduced with permission of John Wiley & Sons, Inc., 
from V~r, I. L. (1992) Chapter 9 in Noise and Vibration Control Engineering (L. L. Beranek and I. L. 
V6r, eds). John Wiley & Sons, New York. Copyright �9 1992. (After Cremer et al., 1988 - see 
Bibliography.) 

of the physical systems from the ideal models introduce progressively increasing 
discrepancies between the predicted and observed behaviour as mode order increases. 
Consequently, 'high-frequency' vibration isolation theory and practice is based upon 
estimates of the frequency-average impedances (or mobilities) of the components 
involved. As we have learned, these correspond rather closely with those of the 
equivalent infinitely extended structural components, which may therefore be employed 
in an analysis. An example is presented in Fig. 10.24. 

The general problem is illustrated by Fig. 10.25. It is assumed that there is only a single 
degree offreedom at each connection, so that mechanical mobility Y, which is the inverse 
of mechanical impedance Z, may be used. Note that this simple inversion may not be 
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Fig. 10.24 Measured mobility of a 6 m x 4 m x 200 mm thick concrete floor: ~ real part; 
....... imaginary part; . . . .  theoretical infinite plate mobility (real); + predicted resonance 
frequencies. Courtesy of the Building Research Establishment, Garston, UK. 
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Excitation ~ '4~ Free surface 
~ v e l o c i t y  

Fig. 10.25 Schematic of high-frequency vibration isolation by means of a resilient lumped element. 
Reproduced with permission from Fahy, F. J. (1998) Chapter 5 in Fundamentals of Noise and 
Vibration. E & F N Spon, London. 

used in cases where both forces and couples are active, as with the beam bending wave 
impedances presented above. Mobility is generally more convenient than impedance in 
structure-borne sound analysis. The forces on each end of the massless isolator are equal. 

Let vf be the velocity amplitude of the free surface (without isolator), and let vt and Vr 
be the velocity amplitudes due to the isolator force F. 

~ f -  ~ r - -  ~ f - / ~ Y s  (10.54)  

where Ys and YR are the mobilities of the source and receiver at the point of isolator 
connection. 

~t -- F Y R  (10.55)  

/~ -- [(~f - ~r) -- ~t]/YI (10 .56a)  

Substituting from Eqs (10.54) and (10.55), 

/~ = ( v f -  FYR)/YI- fi'Ys/YI. 
P[1 + YR/Y~ + Ys/YI] = ~flY~ 

~t/~f -- 

From Eqs (10.55) and (10.57) 

If YI = 0 (rigid connection), then 

E m 

Isolator effectiveness E is defined as 

r~ + rR + rS 

YR+Ys 

(Vt/Vf)Y, = 0 

@t/Vf)isolator 

Yi 
1+ 

r R + r s  

(10.56b) 

(10.57) 

(10.58) 

(10.59) 

(10.60) 

The time-average power transmitted into the receiver per unit of mean square free 
surface velocity of the source is 

m 

Wt/v~ = IYR + YI + Ysl-2Re{YR} (10.61) 

For the isolator to be effective, Y~ >> YR + Ys; therefore decreasing Re { YR} is effective 
in decreasing transmitted power. This may be achieved by adding a mass M to the 
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Fig. 10.26 Damped spring element. Reproduced with permission from Fahy, F. J. (1998) Chapter 
5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 

receiver at the attachment point of the isolator, provided that c0M >> Im {ZR}, where 
ZR is the impedance of the receiver at this point. 

The simplest model of a single-degree-of-freedom, resilient, vibration isolation 
element is the damped spring shown in Fig. 10.26. Its differential mobility is 

Y =  1/[K/jo~ + C] = [C + jK/o)]/[(K/oo) 2 + C 2] (10.62) 

The mobility is stiffness controlled at low frequency and damping controlled at high 
frequency. Ideally, both stiffness and damping should therefore be low, but it may be 
necessary to incorporate substantial damping to control undesirable high-frequency 
resonances in the body of an isolator that can make it almost rigid. 

As a simple example of the application of these various expressions we consider the 
vibration of a lumped mass representing an electronic instrument package mounted on 
a uniform honeycomb sandwich plate representing the instrument platform of a space 
satellite. At launch, flexural waves are induced in the platform by vibration transmitted 
up the launcher from the launch thrusters. The resulting motion of the package could 
jeopardize its integrity. The ratio_of mean square package velocity v 2 to space-average 
mean square normal velocity v 2 of the platform (excluding the area immediately 
around the package where it is affected by the presence of the package) is given by 
Eq. (10.59) as 

vT/v ~ = [1 + coZM2/64mD] -1 (10.63) 

M is the package mass and D and m are, respectively, the bending stiffness per unit width 
and the mass per unit area of the platform. The conclusion from this result is that the 
mass and/or stiffness of the platform should be reduced as far as possible, and/or the 
package mass increased. The latter is not an option because satellite weight is at a 
premium. The crucial factor overlooked by this simplistic model is that the response of 
the platform may be increased by reducing its mass and stiffness. However, if it is 
exposed to essentially kinematic excitation by the supporting structure, this may not be 
the effect. 

A good example of the inadequacy of the simple model of a rigid body mounted upon 
damped springs for estimating high-frequency vibration isolation is presented in Fig. 
10.27. 

10.13 Structure-borne sound generated by impact 

Impact between the hard surfaces of machinery components is a common form of 
industrial noise. It is subjectively unpleasant and potentially damaging because any 
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Fig. 10.27 Comparison of the measured performance of a vibration isolation system with that 
based upon the simplistic lumped element model. Reproduced with permission from Granhfill, A. 
and Kihlman, T. (1980) 'The use of mechanical impedance data in predicting isolation efficiency'. 
Noise Control Engineering 14(2): 88-93. 

acoustic event that takes place over a short time necessarily has a substantial proportion 
of its energy in the most sensitive range of the auditory system. The mechanisms of 
impact noise generation are two-fold. The impulsive accelerations of the surfaces of 
impacting bodies produce unsteady forces in the fluid with which they are in contact and 
hence constitute Category 2 sources. (In the case of two identical free bodies, such as 
colliding snooker balls, the accelerations are equal and opposite and the net force on the 
fluid is zero, thus producing a Category 3 source.) Subsequent propagation of 
vibrational waves into structures connected to the impact zone creates reverberant 
vibrational fields that radiate sound. 

Common experience tells us that the force of impact between bodies in relative motion 
depends upon the dynamic properties of both. If the duration of impact is short 
compared with the time of travel of any resulting vibrational waves to reflective features 
and back to the point of impact, the impact force is controlled purely by the local 
properties of a body. For the purpose of studying the effect of variation of the time 
history of impact force on the response and sound radiation of structures, it is sufficient 
to model an impact force in generic form. A very brief impact may be modelled in terms 
of a delta function as F(t) = 16(0, in which I = f F ( t ) d t  is the impulse applied to the 
structure. The Fourier transform of F(t) is L Consequently, the Fourier transform of the 
velocity at the point of impact is 

v(o~) - I/Zm(cO) (10.64) 

where Zm(CO) is the mechanical impedance at the point of impact. (See Appendix 2 for 
the definition of Fourier transforms. Note" linear response to strong mechanical impact 
is rare.) 
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Once the velocity spectrum at the point of impact is known, the frequency domain 
response of the whole structure and radiated sound field may be determined from 
suitable structural and acoustic models. The time histories of response and radiation 
may then be obtained by inverse Fourier transform. However, there exist a number of 
traps for the unwary. First, if the vibration is expressed in terms of modal superposition, 
it requires a very large number of modes to predict the time history of response and 
radiation correctly, especially where participating waves are dispersive. A simple 
acoustic example suffices to illustrate this point. Consider the response of air in a room 
to a handclap. At an elapsed time of 3 ms, the outgoing wave is concentrated in a thin 
shell at a radius of about 1 m around the source. Everywhere else the air is undisturbed. 
A modal solution would have to incorporate a sufficient number of modes to create 
silence everywhere except within the pulse shell. Of course, the modal solution is entirely 
inappropriate to model a system in a state where no reflections, interference effects, 
modes or natural frequencies have yet come into action. 

The second pitfall is that the Euler-Bernouilli model of bending waves neglects shear 
distortion and rotary inertia, both of which become important above a frequency where 
the bending wavelength is about six times the plate thickness. The group speed of 
uncorrected bending waves increases as the square root of frequency, whereas that of 
corrected bending waves tends to a constant value (see Fig. 10.14). Clearly, models of 
impact excitation of plates that use the uncorrected bending wave model will predict a 
premature onset of modal response to an impact of very short duration. 

In cases of industrial manufacturing processes that depend upon very high peak 
impact forces, such as drop forging or punch pressing, it is difficult to alter the impact 
force-time history without compromising the process. However, where it is possible, the 
simplest remedy is to spread the force out in time so that the impulse remains the same 
but the peak force is reduced, as illustrated by Fig. 10.28. The associated spectra show 
that the force of longer duration has less spectral energy in the higher frequency range 
which will generally reduce the dB(A) sound level. This strategy is exemplified by the use 
of soft floor coverings to reduce footfall noise in buildings and the use of slanted punch 
tips in punch pressing. However, it is generally not practicable to reduce the excitation of 
the low-order modes of floors by the use of soft floor coverings alone, because the level of 
the low-frequency spectrum depends only upon the impulse of the impact force, which 
equals the change of vertical momentum of the walker. 

Force ~ ~ ~ ~ B  FA 

!-- ! Time 

oo oo F I= [o FA dt= So B dt 

IS(f) l 2 

-F rB'- 

Fig. 10.28 Force-time history and squared amplitude spectrum. Reproduced with permission 
from Fahy, F. J. (1998) Chapter 5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 
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10.14 Sound radiat ion by v ibrat ing f lat  plates 

10.14.1 The critical frequency and radiation cancellation 
Vibrating plates and shells constitute a large proportion of all sound radiators, and 
would therefore be expected to appear in Chapter 6. Analysis of the radiation behaviour 
of such sources has been delayed until this point in the book because it requires an 
understanding of structural wave behaviour. The effectiveness of sound radiation by 
vibrating plates and shells is principally controlled by two phenomena. The first is the 
'cancellation' phenomenon explained in Chapter 6, whereby the close proximity of 
surface regions of opposite volume displacement reduces the effectiveness of compres- 
sion of the local fluid by each, and therefore inhibits radiation into the far field. The 
phenomenon is explicitly analysed in Section 6.7.1 in terms of a pair of identical 
harmonic monopoles of opposite phase, in which the effect is shown to be a function of 
the non-dimensional spatial separation distance kd. Significant cancellation occurs only 
in the range kd << ~z, in which the sources are separated by much less than half an 
acoustic wavelength and form a compact dipole. Analysis of the sound field radiated by 
a pair of anti-phase dipoles in close proximity (a compact quadrupole source) reveals 
even more effective cancellation. If kd >> ~z the monopoles radiate independently and 
negligible cancellation occurs. 

The second controlling phenomenon is bending wave dispersion, which ensures that 
any plate or shell structure carrying bending waves will possess a 'critical frequency'f~ at 
which the acoustic and structural wavenumbers and phase speeds are equal. This 
coincidence is illustrated for uniform, isotropic flat plates by Fig. 10.29. Cancellation 
operates only below f~. (The bending stiffness of orthotropic plates, such as corrugated 
or beam-stiffened panels, varies with the in-plane azimuthal angle. Therefore the free 
bending wavenumber at any one frequency varies with wave heading: so, therefore, does 
the critical frequency.) The analysis of fluid wave impedance presented in Section 4.4.6 
shows that harmonic plane bending waves propagating freely in an infinitely extended 
flat plate generate nofarfield at frequencies belowf~: cancellation is complete. However, 
it is patently obvious that real, bounded, vibrating plates radiate sound energy at all 
frequencies. So where's the catch? 

Two factors account for the capacity of the modes of bounded plates to radiate at 
frequencies below f~. First, complete cancellation is possible only in the theoretical case 
of the unbounded plate: the boundaries of real plates locally suppress cancellation. The 
residual radiation is attributed to the edges or corners, as illustrated by Figs 10.30. and 
10.31. Second, vibrational fields are never uni-modal. The superposition of modal 
responses produces some degree of decorrelation between regions of the plate separated 
by more than one half bending wavelength, especially in the case of finite bandwidth 
excitation (see Appendix 4). Uncorrelated volume displacements do not suffer mutual 
cancellation. 

In the following analysis we shall only consider radiation by individual modes of a 
simply supported, rectangular flat plate in order to illustrate the general characteristics 
of radiation by vibrating surfaces. We shall also assume the plate to be baffled by an 
infinitely extended, rigid plane in order to simplify the analysis by allowing us easily to 
apply Rayleigh's second integral (see Section 6.4.8). 
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Fig. 10.29 Illustration of coincidence between acoustic plane waves and plate bending waves. 
Reproduced with permission from Fahy, F. J. (1998) Chapter 5 in Fundamentals of Noise and 
Vibration. E & F N Spon, London. 
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Fig. 10.30 The cancellation phenomenon in plate radiation at subcritical frequencies. Reproduced 
with permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 
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Fig. 10.31 Illustration of edge and corner radiation. Reproduced with permission from Fahy, F. J. 
(1987) Sound and Structural Vibration. Academic Press, London. 

1 0 . 1 4 . 2  A n a l y s i s  o f  m o d a l  r a d i a t i o n  

Analytical theoretical estimates of sound radiation by plane vibrating surfaces take two 
principal forms: 

1. analytical approximations of Rayleigh's second integral (Eq. (6.49)); 
2. decomposition of the vibration field by spatial Fourier transformation into wave- 

number spectra and application of the appropriate wave impedances of the fluid. 

First we summarize the analysis of rectangular plate mode radiation by Wallace [ 10.4], 
who employed the first formulation. His analysis is an approximation to the exact 
analysis by Skudrzyk [10.5]. Details may be found in the original paper and in Sound and 
Structural Vibration (Fahy, 1987-  see Bibliography). The system and coordinate axes 
are shown in Fig. 10.32. The plate is assumed to be simply supported and each mode is 
assumed to be excited harmonically over a range of frequency. A general mode shape 
expression is substituted into Eq. (6.49): 

z' t) -Jc~176 exp (/'cot) fa f b  sin (pnx/a) sin (qnz/b)exp ( - j kR)  dx dz p(x', y' (10.65) 
' ' 2 n  J 0  J 0  R 

where R 2 = (x - x') 2 + (z - z') 2 + (y,)2. The in-phase regions of plate displacement are 
illustrated as a function of mode order p,q in Fig. 10.33. 

Today, students would tend to evaluate this integral numerically by writing a small 
program to compute the far field pressure, from which the intensity and sound power can 
be determined. Crucial decisions would have to made about discretization of the plate 
and far field observation surfaces, and convergence tests would have to be devised and 
run. Wallace first made analytical approximations that produced analytical expressions, 
thus avoiding the need for discretization and convergence tests. The great advantage 
afforded by analytical expressions, albeit approximate, is that they can be readily 
interpreted in terms of parametric sensitivities, a benefit not enjoyed by those who go 
straight for numerical computation. In terms of engineering acoustics design, this benefit 
greatly outweighs the ability to converge to a very precise numerical evaluation by 
numerical computation on a model that, at best, is only a good approximation to reality. 
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Fig. 10.32 Vibrating plate system and coordinates. 
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Fig. 10.33 Illustration of the meaning of the code p, q. 

To compute the radiated power, it is most convenient to assume an observation 
surface of radius many times that of the larger plate dimension a. This allows R to be 
approximated by R ~ r - x sin 0 cos q5 - z sin 0 sin ~b, where r is the distance from the 
observation point (x', y', z') to the coordinate origin. This allows Eq. (10.65) to be 
approximated by 

p(r, O, dp, t) ~ JL~176 exp ( - jkr)  exp (jcot) 
2~zr 

(10.66) 

f0af0 x sin (prcx/a) sin (qrcz/b) expj[(~x/a) + (Bz/b)l dx dz 

where ~ - ka sin 0 cos ~b and fl = kb sin 0 sin ~b. The time-average radial intensity is given 
by/Y 2/2poc, which is 

I(r, O, dp) - 2poC]~pq[ 2 { kab ,]2 
k, rc3rpq,,] 

cosocos(  ) 
sin sin 

[ ( ~ / p ~ 1 2  _ l ] [ / V q ~ ) 2  _ 1] 
(10.67) 

where cos (~/2) is used for p odd, and sin (~/2) is used for p even; cos (///2) is used for q 
odd and sin (/3/2) is used for q even. 

The intensity is integrated over the hemisphere of radius r to give the total radiated 
power. This is normalized on the characteristic specific acoustic impedance of the fluid, 
the plate area and it space-averaged mean square normal velocity as 
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Fig. 10.34 Theoretical radiation efficiencies of low-order bending modes of a square plate. 
Reproduced with permission from Wallace, C. E. (1972) 'Radiation resistance of a rectangular 
panel'. Journal of the Acoustical Society of America 51(3): 946-952. 

8 fg/2 f g/2 (7 -- ]2 d~b rZI(r, 0, ~b) dO (10.68) 
po e ab]~pq ao a-~/2 

The coefficient ~ is termed the 'radiation efficiency' or the 'radiation ratio'. The latter 
is preferable because the value can exceed unity. The logarithmic form is termed the 
'radiation index'. A selection of radiation index curves of the modes of square plate are 
presented in Fig. 10.34. Note that these curves do not relate to individual modal 
resonance frequencies. The specific frequency to which each value of k/kb corresponds 
is determined by the bending stiffness and mass per unit area of the plate considered: 
oo = c2(m/D) 1/2 (k/kb) 2. At low values of k/kb, the 'dipole' modes where p or q is 2, 
produce zero net volume displacement: mode (2, 2) is quadrupole. These modes are 
the weakest radiators of the low-order group analysed. The curves converge at a value of 
k/kb, corresponding to a frequency just below ft. Above fc, all modes radiate 'perfectly'. 

The alternative method is to perform a spatial Fourier transform on each mode shape 
(see Appendix 3). This procedure is restricted here to a single space dimension in order to 
illustrate the form of the result and the interpretation in terms of sound radiation 
characteristics. When applied to a rectangular plate, a two-dimensional spatial 
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transform would be performed. The spatial (or wavenumber) transform of a function of 
x is defined by 

F(k) - x) exp ( - j k x )  dx (10.69) 

The inverse transform back into real space is defined by 

if? f ix)  = ~ F(k) exp (jkx) dk (10.70) 
o o  

The one-dimensional sinusoidal modal distribution of normal velocity of order p is 
introduced into Eq. (10.69). The result is 

[/(kx) - 5 r (pro~a)[(- 1)P exp (-jkxa) - 1] 
k 2 _ (Pg/a) 2 (10.71) 

in which k~ is used to distinguish it from the acoustic wavenumber k. In the special case 
kx = p~z/a, ("(kx) = - j ~ p  a/2. The form of l?(kx) is illustrated by its modulus 

I 2rcp/a 72_ ( kxa-prc)2 (10.72) IV(kx)l 2 -  I~pl 2 kZ_(prc/a)2] sin2 

shown in Fig. 10.35. The peak occurs at the principal wavenumber prc/a where 
I [ .7 (kx)  2 .-- I I~p] 2 a2/4. 

Each component of the complex wavenumber spectrum 12(kx) represents an infinitely 
extended harmonic travelling wave. Consequently, the component of the sound pressure 
field that it generates must share the x-directed wavenumber. The specific fluid wave 
impedance presented to the surface wave is given by Eq. (4.31) as 

z(kx, k) = poc [1 - (kx/k)2] -1/2 (10.73) 

The complex amplitude of the surface pressure wavenumber component is therefore 

P(kx) = IT(kx) z(kx, k) (10.74) 

Sound power is generated only by those wavenumber components of surface normal 
velocity for which kx < k. There are no 'cross' contributions from velocity and pressure 

3- 

Average value= --~2A~ 

A/- 

-p't~/a 0 prda 

Fig. 10.35 Modulus squared of the plate velocity wavenumber spectrum. 
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components of different wavenumber because the harmonic spatial distributions are 
orthogonal over the infinite interval of kx. Consequently, the time-average product of 
surface pressure and normal velocity, integrated over the panel length, may be expressed 
as an integral over kx of �89 lT(kx) 2 Re {z(kx,k)}. The result is 

Wrad p~ [ ~(kx)12 
- ~ k (k -2 ~ x )  i/2 dkx (10.75) 

in which the integration interval extends only from - k  to k because components having 
kx outside this interval generate only a near field and do not contribute to sound power. 
Substitution of I I?(kx) 2 from Eq. (10.74) into Eq. (10.75) gives the sound power per unit 
width of plate. The integral requires the application of a special mathematical technique 
to deal with the disappearance of the denominator at the limits. For k/kb >> 1, the 
radiation ratio is unity. 

For values o f f  << fc, which corresponds to a value of k/kb << 1 in Fig. 10.34, the 
result may be shown to be 

mrad -- (pock 17p[2/2) (a/pro) 2 (10.76) 

which corresponds to a radiation ratio of 

~r = 2ka/(prc) 2 (10.77a) 

Extension of this analysis to include radiation by all resonant, subcritical, one-dimen- 
sional modes gives 

a ~ 2/kca (10.77b) 

where kc is the bending wavenumber at the critical frequency. Further extension to 
radiation by the resonant, subcritical, modes of a rectangular plate of area S and 
peripheral length L gives 

cr ~ (2L/~zkcS) (k/kc) 1/2 

which confirms the effect on a of the size of the plate. 

10.14.3 Physical interpretations and practical implications 

In terms of the purpose of this book, the physical interpretation of the results of this 
analysis is of greater interest than the result. Figure 10.36 juxtaposes the mode shapes of 
two 'plates' of the same thickness, of equal principal wavenumber p~z/a and the same 
natural frequency con, with their corresponding wavenumber spectra. The average 
squared magnitudes of the spectra well below the peak at kx = p~z/a are proportional to 
(a/pro) 2 and not to any other function of plate length. The hatched area represents the 
contribution of the radiating wavenumber components to the integrand of Eq. (10.75) at 
the modal natural frequency. The interpretation is that both plates radiate the same total 
power at the natural frequency of the mode. Consequently, the shorter plate is a more 
'efficient' resonant radiator, as indicated by Eq. (10.77). If the shorter plate were to be 
made of thicker material, the modal natural frequency would increase in linear 
proportion, the hatched area would lengthen and the resonant radiation ratio would 
increase correspondingly. Note that the wavenumber spectra of all modes except the 
fundamental take the form shown in Figs 10.35 and 10.36. The spectrum of the 
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Fig. 10.36 Illustration of the effect of radiator size on the proportion of power radiating 
wavenumber components. Reproduced with permission from Fahy, F. J. (1987) Sound and 
Structural Vibration. Academic Press, London. 

fundamental mode, which is the most effective generator of volume displacement, peaks 
at k~ = 0. It radiates like a single monopole at frequencies for which k << p~z/a and its 
radiation ratio far exceeds that of any other low-order mode. 

The lessons to be learned from this analysis are that smaller plates are more efficient 
resonant radiators than larger plates of the same material, and that increasing plate 
stiffness increases the resonant modal radiation ratios. In this respect, the lightweight, 
stiff, honeycomb sandwich panels used in aerospace structures are particularly good 
radiators. Since the sound power radiated by a given mode vibrating at a given 
amplitude at a frequency well belowfc is independent of the separation distance between 
the edges, we must conclude that it is the discontinuity of motion at the edges that is 
principally responsible for the radiation of sound energy. This conclusion is consistent 

Fig. 10.37 Theoretical radiation efficiencies of rectangular plates. Reproduced with permission 
from Bijl, L. A. (1977) Measurements of vibrations complementary to sound measurement. 
CONCA WE Report No. 8/77. The Oil Companies International Study Group for the Conserva- 
tion of Clean Air and Water in Europe. 
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(a) 140 mm thick concrete 
(b) diesel engine block 
(c) 13 mm plasterboard on frame 
(d) steel pipe: 1.3 mm thick: 

360 mm radius 
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Fig. 10.38 Radiation efficiencies of various structures. Reproduced with permission from Cremer, 
L., Heckl, M. and Ungar, E. E. (1988) Structure-borne Sound, 2nd English edn. Springer-Verlag, 
Heidelberg. 
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Fig. 10.39 Radiation efficiencies of infinitely long tubes in uniform transverse vibration. Repro- 
duced with permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, 
London. 
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with the explanation based upon lack of edge cancellation advanced above in terms of 
the modal model. 

Wavenumber decomposition of surface vibration provides a powerful vehicle of 
insight into the influence of structural characteristics on sound radiation, principally 
because it lends itself to graphical display of the important features of the problem, 
which facilitates interpretation in physical terms. For example, any structural feature 
that disturbs the pure sinusoidal distribution of modal normal displacement removes 
'energy' from the principal spectral peak and redistributes it in both directions. In modal 
terms, cancellation effectiveness in the inner regions of the mode is reduced. Conse- 
quently, it increases the radiation ratio at subcritical frequencies and smoothes out the 
peak at f~. The attachment of stiffeners to an otherwise uniform plate or shell increases 
the radiation ratio by this mechanism. It must not be forgotten, however, that the 
attachment of stiffeners, especially via viscoelastic layers, will usually reduce the mean 
square velocity response of a structure. Any increase in radiation ratio may well be offset 
by a reduction in response, which would reduce the radiated sound power. An excellent 
exposition of the wavenumber decomposition approach to computing sound radiation is 
available in Fourier Acoustics (Williams, 1999 - see Bibliography). 

Thin-walled, circular cylindrical shells, are generally more effective radiators than the 
equivalent (unwrapped) plane structure because the constraint of circumferential 
continuity generates membrane stresses in association with flexural vibration, which 
greatly increases the phase speed relative to the flat plate value. Modes of low 
circumferential order are formed from flexural waves having supersonic wave speeds. 
Consequently they radiate very efficiently and radiation ratios below fc are higher than 
those of the equivalent flat plate. Readers will find more details of circular shell radiation 
in Sound and Structural Vibration (Fahy, 1987) and Sound, Structures and their 
Interaction (Junger and Feit, 1986), both listed in the Bibliography. 

Examples of radiation ratios of various forms of structure are presented in Figs 10.37- 
10.39. These are modal-average values derived by assuming that all modes are excited to 
the same energies. 

Radiation ratios are relevant only to structures that are fairly uniform and not heavily 
damped. The spatial distributions of mean square normal surface velocity of such 
structures are fairly uniform and not overly sensitive to the form of excitation. Highly 
irregular and/or heavily damped structures are not suitable cases for characterization in 
terms of radiation ratio. 

Quest ions  

10.1 Derive Eq. (10.53) by applying Eqs (10.36) and (10.52). 
10.2 Derive expressions for the modal densities of quasi-longitudinal waves in rods and 

bending waves in beams. [Hint: You may find it helpful to draw horizontal lines on 
the respective dispersion curve diagrams (k versus 09) at values of k corresponding 
to nrt/L, where L is the length of the structure. The intersections with the dispersion 
curve indicate natural frequencies of the rod and the simply supported beam.] 

10.3 Derive an expression for the critical (lowest coincidence) frequency for the coupling 
of torsional waves in a beam of symmetric cross-section and bending waves in a 
plate to which the beam is welded along its length. [Hint: The phase speed of 
torsional waves in a symmetric beam is equal to  (GJ/Ip) 1/2, where GJis the torsional 
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stiffness and Ip is the polar second moment of inertia per unit length of the cross- 
section of the beam.] 

10.4 Show that evanescent bending fields in beams do not transport vibrational energy. 
[Hint: Consider Re {S[jcow]*} and Re {M[jo~(Ow/Ox]*}]. 

10.5 By superimposing the slopes at a small distance d from the end of a semi-infinite, 
uniform beam caused by a positive shear force at x = 0 and an equal and opposite 
shear force at x = 2d, show that the associated ratio of couple to rotational velocity 
at x = d equals the tip moment impedance ZM given by Eq. (10.46(a)), on 
condition that M = - 2 S d  and kbd << 1. 

10.6 Derive expressions for the cross-impedances S/(jo~Ow/Ox) and M/(j~ow) at the tip 
of a semi-infinite, uniform beam. 

10.7 A copper water pipe that feeds a cistern in an apartment is rigidly attached to a 
party wall and the noise is disturbing the neighbours. You are called in to advise on 
the stiffness of a resilient vibration isolator sufficient to reduce the noise by 40 dB at 
1 kHz. The properties of the pipe are as follows: outside diameter = 20 mm; wall 
thickness - 1 mm. The properties of the party wall are as follows: thickness - 
200 mm; material density = 1750 kgm-3 ;  Young's modulus = 2 x 10 l~ N m  -2. 
Calculate the required isolator stiffness, neglecting damping. [Hint: Base your 
calculations on the impedances (or mobilities) of infinitely extended pipes and 
walls.] Do moment impedances matter? 

10.8 It is required to reduce by 30 dB the acceleration in the 500 Hz octave band induced 
by ground-borne vibrations caused by passing traffic in a bench on which silicon 
chips are manufactured. In a first attempt to get a feel for the problem, the bench is 
modelled as a lumped mass and the vibration isolator that it is planned to install 
between the table and the floor is modelled as a simple damped spring. The table 
weighs 2 kN and the suspended floor supporting the table is modelled as a uniform 
concrete plate of 350 mm thickness, 1900 kgm -3 and Young's modulus 
2.6 x 101~ -2. Determine the magnitude of the mobility of each of four 
vibration isolators that is planned to install under the four corner legs of the 
bench. If the damping of the suspension is negligible, determine the stiffness of each 
isolator. Do you think this model is reliable? If not, give reasons. 

10.9 An upper level floor of a concrete building has a thickness of 300 mm and surface 
dimensions of 5 m x 3 m. Its mechanical properties correspond to those attributed 
to dense concrete in Table 10.1. It had a frequency-independent dissipation loss 
factor r /of  0.01. The floor is subjected to vertical, broad band, vibrational forces 
generated by the four identical feet of an industrial machine which it supports. 
Each mean square force in the 500 Hz, 1/3 octave band is 10 N 2. Estimate the 
space-average mean square vibration velocity of the floor in this band. [Hint: 
equate the estimated mechanical input power to that dissipated by the floor (given 
by rlo~M(v2), where M is the total mass of the floor and (v 2) is the space-average 
mean square normal vibration velocity of its surface). What assumption about the 
input forces is a pre-requisite for an estimate to be possible?] 

Also estimate the sound power radiated by one side of the floor in the 500 Hz 
band, together with the equivalent sound power level. 



11 
Transmission of Sound through 

Partitions 

11.1 Practical aspects of sound transmission through 
partitions 

There are two main methods of inhibiting the transmission of sound energy from one 
region of fluid to another. In the first, sound energy is absorbed in transit by materials 
that are specially chosen to accept energy efficiently from waves in the contiguous fluid, 
and then efficiently to dissipate it into heat. Systems that utilize this principle include 
room wall sound absorbers, absorbent duct liners, and splitter attenuators in ventilation 
systems. Alternatively, sound in transit may be reflected by means of introducing a large 
change of acoustic impedance into the transmission path. Examples include internal 
combustion engine exhaust expansion chambers, in which the changes of cross-section 
are effective; hydraulic line silencers, in which the wave in the oil encounters an 
acoustically 'soft' pipe section surrounded by pressurized gas; and partitions of solid 
sheets such as room walls and industrial noise control enclosures. Partition of adjacent 
fluid regions may, of course, not be total, in which case we use the terms 'barrier' and 
'screen'. 

The design and construction of effective partitions is a central element in the 
practice of noise control by engineers and architects, and an awareness of the basic 
physical principles and of good design practice is important to a wider group, 
including local authority planners, environmental health officers, buildings and works 
officers, and industrial management. In this chapter the basic principles of the subject 
are illustrated by analyses of sound transmission through some simple idealizations of 
uniform single- and double-leaf partition constructions. A review of some of the more 
important extensions of these analyses to account more completely for features of 
practical systems is accompanied by a brief presentation of a range of typical 
experimental data. The concluding section presents a very simple model of a noise 
control enclosure. 

11.2 Transmission of normally incident plane waves through 
an unbounded partition 

The idealized system is shown in Fig. 11.1. A uniform, unbounded, non-flexible partition 
of mass per unit area m is mounted upon a viscously damped, elastic suspension, having 
stiffness and damping coefficients per unit area of s and r, respectively. This represents an 
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Fig. 11.1 Plane, unbounded, uniform partition insonified by a normally incident plane wave. 
Reproduced with permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic 
Press, London. 

approximation to the fundamental mode of a large panel. The partition separates fluids 
of different characteristic specific acoustic impedances, plcl and p2c2. A plane sound 
wave of frequency o~ is incident upon the partition from the region x < 0. The incident 
pressure field is written as 

pi(x, t) = ~z~ 1 exp [ j (oot-  klx)] (11.1) 

where kl = o~/cl. The pressure field of the wave reflected from the partition is written 

pr(X, t) = /11 exp [j(cot + klx)] (11.2) 

The coefficients -41 and/~1 are linked by the normal particle velocity at the left-hand 
surface of the partition, which moves with a normal velocity equal to jco~. Hence 

A1 - B1 = jo~plcl ~ (11.3) 

The mechanical impedance of an in vacuo structure may be combined with the fluid- 
loading impedance associated with structural motion to form the total effective 
impedance of a 'fluid-loaded structure' as presented to mechanically applied forces. We 
may enquire whether such a concept is relevant to acoustically applied forces. 

The acoustic pressure field radiated in the negative-x direction by a displacement ~, 
whatever the cause of partition motion, is 

pr(X,  t) = C 1 exp [j(~ot + klX)] (11.4) 
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where C 1  = --j(DplCl ~ and kl = cO/Cl. The corresponding wave radiated in the positive-x 
direction is 

pr + (X, t) = t22 exp [j(cot-  k2x)] (11.5) 

where (22 = jo~p2c2 ~ and k2 = co/c2. These fields may be termed the 'radiated fields'. 
According to Eqs (11.1)-(11.3), the total pressure field on the left-hand side of the 

partition is 

p - ( x ,  t) = A 1 exp [j(cot -- klX)] + (A1 --jcoplCl ~) exp [j(cot + klX)] 

= 2A1 cos klX exp (jcot) -jcoplCl ~ exp [j(cot + klx)] (11.6) 

Equation (11.6) may be rewritten, using Eq. (11.4), as 

p - ( x ,  t) = 2A1 cos klX exp (jcot) + (21 exp [j(cot + klX)] (11.7) 

Now, the first term on the right-hand side of Eq. (11.7) represents the standing 
interference field created by the incidence upon and reflection from a completely 
immobile partition; we may term this the 'blocked pressure field'. The second term 
represents the pressure field generated by partition motion. Hence the total field on the 
incident side equals the sum of the blocked field and the radiated field; the total field on 
the right-hand side is simply the radiated field represented by Eq. (11.5). 

The equation of motion of the partition is 

m'~ + r~ + s~ = p(x = 0 - ,  t) - p(x = 0+, t) (11.8) 

where x = 0 -  and x = 0 + refer to the left- and right-hand faces of the partition. 
Substitution from Eqs (11.5) and (11.6) gives 

(-o~2m + joor + s) ~ = 2A1 -jcoplCl ~ -jcop2c2 ~ (11.9) 

The fluid-loading (radiation) pressure terms on the right-hand side of this equation may 
be incorporated into the term on the left-hand side, which represents the in vacuo 
partition properties, to give 

[--co2m + jco(r + plCl + p2c2) + s]~ = 2A1 (11.10) 

The fluid-loading terms represent radiation damping to be added to mechanical 
damping. If we express the left-hand side in terms of the partition velocity 5 = jco~, 
instead of the displacement ~, we can rewrite this equation as 

[ j (com- s/co) + (r + plCl -t- p2C2)] V = 2A1 (11.11) 

or 

(Zp + Z0~ = 2A 1 (11.12) 

where Zp and zf are the specific partition (in vacuo) and fluid-loading impedances, 
respectively. The forcing term 2A1 on the right-hand side is, of course, the blocked 
surface pressure field. Equation (11.12) proves that we may treat the problem as one of 
the response of a fluid-loaded structure to the surface pressure distribution of a blocked 
incident field. In fact, such a decomposition of the total field, which leads to this concept, 
is valid for any elastic structure immersed in a fluid. However, in most practical cases the 
analysis is far more complicated than in this simple one-dimensional idealization. 

Having obtained an expression for the velocity of the partition in terms of the 
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amplitude of the incident pressure wave, we can now write an expression for C2, the 
transmitted wave amplitude. Using Eqs (11.5) and (11.12), 

C2 -- P2C2 ~ -- 2 f t l p z c z / ( Z p  n t- z f )  

2~il (11.13) 

j(com - s / c o ) / p z c  2 n t- ( r / p z c  2 -Jr- P lCl /pzc2  + 1) 

The transmission coefficient z is defined as the ratio of transmitted to incident 
intensities: 

lC212/2p2c2 4n 

z -- 1~ll2/2PlC 1 -- [(com -- s/co)/P2C2] 2 + (coomq/P2C 2 n t- n + 1) 2 (11.14) 

where n = plc l /p2c2,  and r has been replaced by co0mq, where r/is the in vacuo loss factor. 
The logarthmic index of sound transmission is the 'sound reduction index' (also known 
as 'transmission loss'), defined by 

R = 10 lOgl0 (I/z) dB 

The transmission coefficient clearly has a maximum value at the undamped natural 
frequency of the partition. Three special cases may be identified" 

(1) co << coo - -  (s /m) 1/2, well below the in vacuo natural frequency" 

4n 4n 

(S/copZC2) 2 + (Sq/COopzC2 + n + 1) 2 (S/COpZC2) 2 -}- (n -+- 1) 2 
(11.15) 

because r/is normally much less than unity. Now, S/cop2c2--(coO~co) (coom/p2c2) and 
coom/pzc2 is normally much greater than unity for typical structures at audio frequencies 
in gases, but not necessarily in liquids. If the fluid on both sides is air, Eq. (11.15) can, 
under this frequency condition, generally be reduced to 

z ~ (2pocco/s) 2 (11.16) 

The equivalent sound reduction index is 

R = 20 lOglo s - 20 loglo f -  20 loglo (4npoc) dB (11.17) 

where f -  co/2rc Hz. R is seen to be determined primarily by the elastic stiffness of the 
mounting and is insensitive to mass and damping. It decreases with frequency by 6 dB 
per octave. 

If the fluid impedance ratio n is very large, or if the mass per unit area of the partition 
is very low (e.g. thin plastic sheet), Eq. (11.17) is not valid. If n >> (co0/co) (coom/p2c2), 
which means Plr >2> coZm/co, then 

z ~ 4 / n  (11.18) 

which is independent of the mechanical properties of the partition. For example, if a thin 
wall separates air and water, z ~ 1.1 x 10-3, or R ~ 29.5 dB. 

(2) co >> coo, well above the natural frequency: 

4n 
z ~  

(com/pzC2) 2 -+- (n + 1) 2 
(11.19) 
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because q < 1 (Eq. (11.14)). If the fluid on both sides is air, then normally 
ogm/p2c2 > >  1 and 

r ~ (2poc/com) 2 (11.20) 

Correspondingly, 

or, in air, 

R = 20 loglo m + 20 l o g l o f -  20 loglo (poc/rc) dB 

R ~ 20 loglo (mJ) - 42 dB (11.21) 

R is seen to be determined primarily by mass per unit area, and is largely independent 
of damping and stiffness; it increases with frequency at 6 dB per octave and by 6 dB per 
doubling of mass. Equation (11.21) is known as the 'normal incidence mass law'. 

Very lightweight films at low frequencies may not behave according to Eq. (11.21) 
because com/pzc2 may not be much greater than unity. If n >> com/pzc2, or tom << p lCl, 
then �9 is given by Eq. (11.18). 

(3) co = COo, the natural frequency: 

4n 

[rl(P2C2/coom) -1 q- (n n t- 1)] 2 

If the fluid on both sides of the partition is the same, and if r/ << poc/com, then 

r ~ l  

If r/ >> poc/ogm, then 

(11.22) 

(11.23) 

"c "~ (2poc/rlcoom) 2 (11.24) 

The corresponding sound reduction indices are 

R - 0 dB (11.25) 

and 

R = 20 loglofo + 20 loglo m + 20 lOglo r / -  20 lOglo (poc/rc) dB (11.26) 

This differs from the mass law value at f = fo by 

20 lOglo (r/) dB 

Equations (11.23) and (11.25) indicate total transmission at resonance when radiation 
damping exceeds mechanical damping. Equation (11.26) shows that the mass, stiffness, 
and damping all influence transmission at resonance, provided that the mechanical 
damping exceeds the radiation damping. If n < 1, then rl(p2c2/coom ) -  1 must be compar- 
able with unity for mechanical damping to have any effect. This explains why attempts to 
reduce transmission between air and water by damping a partition are ineffective. 

It is tempting to use this model to evaluate the transmission characteristics of bounded 
flexible panels vibrating in their fundamental modes of vibration, in which the phase of 
the displacement is uniform over the whole surface. Examples include windows and the 
panels of enclosures. Unfortunately, at fundamental natural frequencies typical of 
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glazing panels (10-30 Hz), the acoustic wavelength is so large compared with the typical 
aperture dimension that the transmission is controlled as much by aperture diffraction as 
by the window dynamics; the partition acts like a piston of small ka  in a baffle and 
therefore does not radiate (transmit) effectively. The same stricture applies to the 
transmission characteristics of acoustic louvres at low frequencies; at low audio 
frequencies a simple hole in the wall has a reasonable transmission loss (see Chapter 
12). In these cases it is the insertion loss (difference between received sound pressure level 
without and with the insertion of the particular item) that is significant, not the 
transmission loss. 

The results of the aforegoing analysis suggest that in cases where the characteristic 
acoustic impedance of one medium is much greater than the other (e.g. air/water) the 
mechanical properties of a partition have little influence on the transmission, which is 
controlled simply by the ratio of the impedances. It should also be noted that all the 
expressions for z are reciprocal in n, so that z is independent of the direction of the 
normally incident plane wave. 

11.3 Transmission of obliquely incident plane waves through 
an unbounded flexible partition 

Having established the principle of applying the blocked surface pressure as the forcing 
field on a fluid-loaded structure, we may now apply it to the case of an unbounded, thin, 
uniform, elastic plate upon which acoustic plane waves of frequency co are incident at an 
arbitrary angle q51. The model is shown in Fig. 11.2. 

The component of the incident wavenumber vector k directed parallel to the partition 
plane (sometimes called the trace wavenumber) is kz = kl  sin ~bl. The blocked pressure 
at the partition surface is 

Pbl(X = 0 - ,  Z, t) = 2A1 exp [j(cot -- k sin ~1 Z)] (11.27) 

By analogy with Eq. (11.12) 

2A 1 = (Zwp + Zwf)V (11.28) 

in which Zwp and Zwf are, respectively, the plate bending and fluid specific wave 
impedances corresponding to co and k sin q51. 

The specific fluid wave impedance is given by Eq. (4.31) as 

Zwf . . . .  plCl(1 sin 2 ~1) -1/2 + p2C2 [1 (k l  sin ~)1/k2)2] -1/2 Zwfl + Zwf2 (11.29) 

and the partition bending wave impedance is obtained by forcing the bending wave 
equation (10.14) with a harmonic travelling force field as explained in Section 7.6.3: 

Zwp = -( j /co)(Dk 4 sin 4 q51 - mco 2) + D k  4 sin 4 ~bl r//co (11.30) 

in which structural damping is introduced by assuming a complex bending stiffness 
D' - D(1 +jr/). 

Note that the component of wave impedance Zwr2 produced by the fluid to the right of 
the partition is only real if 

sin qS1 < k2/k l  = r163 (11.31) 

Hence energy transmission is limited to a range of 051 satisfying this condition. For 
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Fig. 11.2 Plane, unbounded, uniform, flexible partition insonified by a plane wave at oblique 
incidence. Reproduced with permission from Fahy, F. J. (1987) Sound and Structural Vibration. 
Academic Press, London. 

instance, irrespective of the properties of a partition, plane-wave energy cannot be 
transmitted by a uniform partition from air into water at angles of incidence greater than 
13.7 ~ The transmitted pressure coefficient C2 is related to the partition normal velocity by 

C2 = Zwf2~ (11.32) 

Equations (11.28) and (11.32) yield 

~ 2A 1Zwf2 
C2 - (11.33) 

2wfl + 2wf2 "1- 2wp 

The intensity transmission coefficient z is given by 

IC212/2P2C2 
z - (11.34) 

IAll2/2plCl 

However, this is not generally the ratio of sound power transmitted per unit area of 
partition to sound power incident per unit area because of refraction when Cl :~c2. 
Reference to Fig. 11.2 will reveal that the widths of corresponding 'beams' on the two 
sides are in the ratio 

COS ~I/COS ~2 -- (1 -- sin 2 ~1)1/2/(1 -- sin 2 ~2) 1/2 

= (1 - sin 2 ~bl)l/2/[1 - (c2 sin ~)1/r 1/2 (11.35) 
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The sound power transmission coefficient is therefore given by 

Zp = plc_____!] 1 - (c2 sin dpl/Cl)2 (11.36) 
]Zwfl + Zwf2 + Zwpl 2 LP2c2.] 1 - sin 2 t~l 

This rather complicated expression reduces to a much simpler form when the fluids on 
the two sides are the same. Then ~1 -- r  -- r  and 

2 
Zwf 

Zp = z = (11.37) 
Zwf q- Zwp 

where Zwf = Zwfl + Zwf2 - 2Zwn = 2Zwf2. The explicit form of Eq. (11.37) is 

_ (2P0C sec (~)2 ( 1 1 . 3 8 a )  
[2p0c sec q~ -t- (O/co)rlk 4 sin 4 qS] 2 -t- [o~m - (D/o~)k 4 sin 4 q~]2 

To investigate the relative influences of partition mass, stiffness and damping, it is 
helpful to consider the conditions under which the incident wave is coincident with the 
flexural wave in the partition. The wavenumber of the wave induced in the partition by 
the incident field is, as we have seen, equal to the trace wavenumber kz = k sin ~b. 
Equation (10.13) gives the free flexural wavenumber in a plate as k~, = coZm/D. Hence 
Eq. (11.38a) may be rewritten as 

(2poc/o~m) 2 see 2 q~ 
z - (11.38b) 

[(2poc/com ) sec ~b + (k/kb)4rl sin 4 ~]2 nt - [1 - (k/kb) 4 sin 4 t~] 2 

The coincidence condition is 

k sin ~b - kb = (o92m/O) TM (11.39) 

which corresponds to the disappearance of the reactive contribution to the denominator  
of Eqs (11.38). Rewriting Eq. (11.39) as 

(_Oco -- (m/D) 1/2 (c/sin (~)2 (11.40) 

shows that for a given angle of incidence ~b there is a unique coincidence frequency COco, 
and vice versa. However, since sin ~b cannot exceed unity, there is a lower limiting 
frequency for the coincidence phenomenon given by 

O)c = c2(m/D) 1/2 (11.41) 

where co~ is known as the 'critical frequency', or lowest coincidence frequency. Equation 
(11.41) can therefore be rewritten as 

COco = ogdsin 2 ~b (11.42a) 

o r  

sin ~bco = (COc/CO) 1/2 (11.42b) 

where ~bco is the coincidence angle for frequency co. These relationships are illustrated 
graphically in Fig. 11.3. The nature of coincidence is demonstrated by Fig. 11.4. 

It is clear from Eq. (11.41) that lightweight, stiff partitions, such as honeycomb 
sandwiches, tend to exhibit lower critical frequencies than homogeneous partitions of 
similar weight but of lower stiffness. Critical frequencies of homogeneous partitions can 
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Fig. 11.3 Illustration of the variation of coincidence frequency with incidence angle. Reproduced 
with permission from Fahy, F. J. (1998) Fundamentals of No&e and Vibration. E & FN Spon. 

be raised by making a series of parallel grooves in the material, but this is not usually 
acceptable because of static stiffness reduction. 

In the case of uniform homogeneous flat plates of material density Ps, Eq. (11.41) can 
be written as 

0 3  c ~ -  c 2 ( p s h ) l / 2  [(Eh3/12(1 - 1:2)]-1/2 

or 

fc -- C2/1.8 hcl' Hz (11.43) 

where h is the plate thickness and cl, the phase speed of quasi-longitudinal waves in the 
plate. Thus the product hf~ is a function only of the material properties of the fluid and 
solid media. This product is tabulated for a range of common materials in air at 20~ in 
Table 11.1. As an example, the critical frequency of 6-mm thick steel plate in air is 
2060 Hz. In water, the values would be greater by a factor of approximately 19 than 
those for the same plate in air. Hence, in marine applications, frequencies greater than fc 
are rarely of practical importance. 

Returning to the transmission coefficient Eq. (11.38), it is now clear that the influence 
of the coincidence phenomenon, which corresponds to the disappearance of the reactive 
term in the denominator, will affect the value of ~ at all frequencies in the range 
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coc ~< co ~< oe. It is instructive to examine the variation of z with angle of incidence for a 
fixed frequency. 

Consider first the range of frequency below the critical frequency of the partition. The 
ratio of the trace wavenumber of the exciting field to the free flexural wavenumber is 
given by 

kz k sin q5 
k---b = (coZm/D) 1/4 (11.44a) 

which from Eq. (11.40) may be written as 

kz/kb = (CO/COc) 1/2 sin ~b (11.44b) 

The physical interpretation of the fact that for co < coc this ratio is necessarily less than 
unity is that the phase speed of free bending waves is less than the trace wave speed of the 
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Table 11.1 Product of Plate Thickness and Critical 
Frequency in Air (20~ a 

Material hfc (m s- l)  

Steel 12.4 
Aluminium 12.0 
Brass 17.8 
Copper 16.3 
Glass 12.7 
Perspex 27.7 
Clipboard 23 b 
Plywood 20 b 
Asbestos cement 17 b 
Concrete 

dense 19 b 
porous 33 b 
light 34 b 

a TO obtain values in water, multiply by 18.9. 
b Variations of up to • 10% possible. 
Reproduced from Sound and Structural Vibration (Fahy, 
1987) - see Bibliography. 

incident field at all angles of incidence. The influence of this condition on transmission is 
seen in the dominance of the inertia term com over the stiffness term (D/co)k 4 sin 4 ~b in the 
denominator  of Eq. (11.38a). Clearly, the mechanical damping term, which is r/times the 
stiffness term, is also negligible compared with the inertia term. Hence the transmission 
coefficient at frequencies well below the critical frequency is, to a good approximation, 

z(~b) = 1/[1 +(com cos dp/2poc) 2] (11.45) 

Provided that com cos 4~ >> 2poc, which is normally true except for ~b ~ ~z/2, the 
corresponding sound reduction index is given by 

R(~b) - 20 logl0 (com cos ~p/2poc) dB (11.46) 

Comparison with the normal incidence mass law (Eq. (11.21)) shows that 

R(0) - R(~) ~ - 20 log10 (cos ~b) dB (11.47) 

and hence the difference increases as the angle of incidence approached ~z/2 (grazing). 
Now the condition kz/kb < 1, although always true when co < coc, is not restricted to 

this frequency range (see Fig. 11.3). Reference to Eq. (11.42a) shows that Eq. (11.44b) 
may be written as 

kz/k b = (CO/(Dco) 1/2 

Thus the conclusions drawn above concerning the dominance of the inertia term apply 
for a given angle of incidence, not just for co << COc, but for co << coc/sin 2 ~b. 

As co approaches coco, the magnitude of the stiffness term in the transmission 
expression approaches that of the inertia term; a maximum in the transmission 
coefficient occurs at co = coco, and 

z = 1/(1 + qcocom cos dp/2poc) 2 (11.48) 



326 Foundations of Engineering Acoustics 

Comparison of this expression with that for purely mass controlled transmission at the 
same frequency (Eq. (11.45)) shows that the difference between the corresponding sound 
reduction indices is at least 20 log10 r/dB. If r/ > 2poc/O~com cos 4~, the transmission of 
sound energy in the vicinity of coincidence is controlled by mechanical damping and 
mass per unit area. 

At frequencies above ~Oco, the stiffness term dominates in the transmission expression 
and 

~ 1/[1 + (Dk 4 sin 4 ~ cos flp/2poc~) 2] (11.49) 

In most cases of sound transmission in air, the stiffness term greatly exceeds unity and 
hence the sound reduction index for a given 4~ increases at approximately 18 dB per 
doubling of frequency; the damping exerts no influence in this range. The form of 
variation of R with frequency for constant 4~ is shown in Fig. 11.5. 

Elucidation of this rather complicated behaviour is obtained by considering transmis- 
sion over the whole range of angle of incidence at fixed frequency. Below the critical 
frequency, transmission at all angles is, of course, mass controlled. At any frequency 
above the critical frequency, Eq. (11.42b) determines the coincidence angle. If sin 4~ is 
less than sin ~bco, i.e. 4~ < 4~co, Eq. (11.38) shows that the inertia term dominates; if 
4~ > qSco then stiffness dominates. At ~b- 4~co damping is in control, provided it is 
sufficiently large to exceed acoustic radiation damping. This behaviour is illustrated by 
Fig. 11.6. 

In practice, sound waves are usually incident upon a partition from many angles 
simultaneously, e.g., the wall of a room or a window exposed to traffic noise. The 
appropriate transmission coefficient can in principle be derived from Eq. (11.38) by 
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Fig. 11.5 Variation of sound reduction index with frequency as a function of incidence angle. 
Reproduced with permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic 
Press, London. 
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weighting according to the directional distribution of incident intensity and integrating 
over angle of incidence. In practice the directional distribution of incident intensity is 
rarely known, and therefore an idealized diffuse field model is usually assumed, in which 
uncorrelated plane waves are incident from all directions with equal probability and with 
random phase. The appropriate weighting leads to the following expression for the 
diffuse field transmission coefficient: 

f0 ~/2 "C(~)) sin ~b cos ~b d4~ 

f 
rc/2 

- z(~b) sin 2~b d~b (11.50) 
J 0  

"Cd ~ re/2 

f sin ~b cos ~b d~b 
J 0  

The cos 05 term arises from the variation with ~b of the plane-wave intensity component 
normal to the partition, and the sin 4) term relates the total acoustic power carried by the 
incident waves to their angle of incidence. The general expression for ~: is not amenable 
to analytic integration, but the restricted expression in Eq. (11.45) may be evaluated for 
frequencies well below the critical frequency. The result, in terms of sound reduction 
index, is 

Rd = R(0) -- 10 lOgl0 [0.23 R(0)] dB (11.51) 

It is generally found that experimental results do not agree very well with Eq. (11.51), 
tending to higher values more in accord with an empirical expression 

R f - R ( 0 ) - 5  dB or R f ~ 2 0 1 o g 1 0 ( m f ) - 4 7  dB (11.52) 

which is called the 'field incidence mass law'. This formula is closely approximated by 
using Eq. (11.45) in the integrand of Eq. (11.50) and performing the integration from 0 to 
78 ~ . Theories of sound transmission through panels of finite area, not suitable for 
presentation here, provide evidence to support the omission of waves at close to grazing 
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Fig. 11.7 Sound reduction indices of unbounded partitions at subcritical frequencies. Reproduced 
with permission from Fahy, F. J. (1987) Sound and Structural Vibration�9 Academic Press, London. 

incidence in the case of a bounded panel. Curves of R(0), Rd, and Rf for subcritical 
frequencies are compared in Fig. 11.7. 

An expression for diffuse-field sound reduction index at frequencies above the critical 
frequency was derived by Cremer [11.1]" 

R,i = R(0) + 10 log10 ( f / f~ -  1) + 10 lOgl0 q -  2 dB (11.53) 

The dominant influence of coincidence transmission is seen in the presence of the loss 
factor term. The general form of the theoretical diffuse incidence sound reduction index 
curve for infinite partitions is shown in Fig. 11.8. Deviations from this curve are 
observed in experimental results obtained on bounded panels. An example of a 
measured sound reduction index curve that exhibits a distinct coincidence dip is 
presented in Fig. 11.9. The dip is deep because the damping of glazing is generally fairly 
small unless special edge treatment is applied. 

11.4 Transmission of diffuse sound through a bounded 
partit ion in a baffle 

The two main factors that can cause the diffuse-field transmission performance of a real, 
bounded panel in a rigid baffle to differ significantly from the theoretical performance of 
an unbounded partition are (1) the existence of standing-wave modes and associated 
resonance frequencies, and (2) diffraction by the aperture in the baffle that contains the 
panel. 

As we have seen in Chapter 10, the radiation efficiency of modes of bounded plates 
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vibrating at frequencies below the critical frequency is very much influenced by the 
presence of the boundaries, but is generally less than unity. It can be shown that the 
response of a mode to acoustic excitation is proportional to its radiation efficiency 
(Sound and Structural Vibration (Fahy, 1 9 8 7 ) -  see Bibliography). The radiation 
efficiency of an infinite partition, excited by plane waves obliquely incident at angle 4~, 
is a - sec ~b, which generally exceeds unity, and the response is mass controlled below 
the critical frequency. Therefore, in comparing the transmission coefficients at subcri- 
tical frequencies of bounded and unbounded partitions of the same thickness and 
material, it would seem that the relatively low values of the radiation ratios of the 
bounded-plate modes would be offset by the enhanced response produced by modal 
resonance, which is absent in the infinite partition. However, it transpires from analyses 
too involved to be presented here, that resonant 'amplification' is generally insufficient to 
make up for the low values of modal radiation efficiencies associated with model 
resonance frequencies, except in very lightly damped structures. 

It is an experimentally observed fact that the subcritical transmission coefficients of 
many simple homogeneous partitions, as measured when they are inserted between 
reverberation rooms, approximate reasonably closely to that given by the infinite- 
partition field incidence formula, Eq. (11.52). It is clear, therefore, that a model based 
upon transmission by the mechanism of excitation and radiation of modes at resonance 
is not adequate. Further convincing evidence for the dominance of a non-resonant 
transmission mechanism is provided by the observation that the subcritical sound 
reduction indices of many partitions is not significantly altered by an increase in their 
total damping. One may infer from this that a form of response and radiation that is not 
sensitive to the action of damping mechanisms is responsible for the major part of the 
sound transmission process in such cases. 

We may visualize the response of a bounded plate as comprising two components: (1) 
the infinite-plate component, which is 'forced' to travel at the trace wave speed c/sin ~ of 
the incident wave; and (2) the waves caused by the incidence of this forced wave on the 
actual boundaries. The latter waves, which are free bending waves travelling at their 
natural, or free, wave speeds, are multiply reflected by the various boundaries. Those 
components having frequencies equal to the natural frequencies of the bounded-plate 
modes interfere constructively to create resonant motion in these modes. We may, at 
least qualitatively, consider the transmission processes associated with free- and forced- 
wave components to coexist independently, one controlled by damping and one not. At 
subcritical frequencies, the forced-wave process tends to transmit more energy than the 
free-wave process, in agreement with experimental results. 

An explanation of the dominance at subcritical frequency of non-resonant transmis- 
sion mechanisms is based upon the fact that the radiation efficiency of a given mode 
which has a subcritical natural frequency, increases with the frequency of modal 
vibration (see Fig. 10.34). It transpires from detailed analysis that the greatest contribu- 
tion of a mode to sound energy transmission occurs at frequencies far above its 
resonance frequency, in which case its response is mass controlled. 

11.5 Double - lea f  part i t ions 

Theoretical and experimental analyses of sound transmission through single-leaf parti- 
tions show that the sound reduction index at a given frequency generally increases by 
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5-6 dB per doubling of mass, provided that no significant flanking or coincidence- 
controlled transmission occurs. In practice, it is often necessary not only for structures to 
have low weight, but also to provide high transmission loss: examples include the walls 
of aircraft fuselages, partition walls in tall buildings, and movable walls between 
television studios. This requirement can clearly not be met by single-leaf partitions. 

The most common solution to this problem is to employ constructions comprising two 
parallel leaves separated by an air space or cavity. It would be most convenient if the 
sound reduction index of the combination were to equal the sum of those of the two 
leaves when used as single-leaf partitions. Unfortunately, the air in the cavity dynami- 
cally couples the two leaves, with the result that the sound reduction index of the 
combination may fall below this ideal value, sometimes by a large amount. In the 
following sections, various idealized models are theoretically analysed in order to 
illustrate the general sound transmission characteristics of double-leaf partitions and 
the dependence of these characteristics on the physical parameters of the systems. 

It is clear from even a superficial review of the available literature that theoretical 
analysis of the sound transmission behaviour of double-leaf partitions is far less well 
developed than that of single-leaf partitions, and that consequently greater reliance must 
be placed upon empirical information. The reason is not hard to find; the complexity of 
construction and the correspondingly larger number of parameters, some of which are 
difficult to evaluate, militate against the refinement of theoretical treatments. In 
particular, it is difficult to include the effects of mechanical connections between leaves, 
and of non-uniformly distributed mechanical damping mechanisms, in mathematical 
models: but see Ref. [10.1]. The following analyses are offered, therefore, more as 
vehicles for the discussion of the general physical mechanisms involved, than as means of 
accurate quantitative assessment of the performance of practical structures. 

11.6 Transmission of normally incident plane waves through 
an unbounded double-leaf partition 

The idealized model is shown in Fig. 11.10. Uniform, non-flexible partitions of mass per 
unit area ml and m2, separated by a distance d, are mounted upon viscously damped, 
elastic suspensions, having stiffness and damping coefficients per unit area of Sl, s2 and 
rl, r2, respectively. It is assumed initially that the fluid in the cavity behaves isentropi- 
cally, without energy dissipation, and that the pressure-density relationship is adiabatic, 
as in the free air outside. A plane wave of frequency o0 is incident normallyupon leaf 1. 

The cavity wave coefficients ,4 and/~ are related to the leaf displacements {1 a n d  ~2 and 
cavity pressures fi2 and fi3 as follows: 

y2= ~ i + 9  
fi3 = ,4 exp ( - j k d )  + B exp (jkd) 

j03~ 1 - - ( A -  j~)/po C 

j ~ 2  = [A exp ( - j k d )  - B exp (jkd)]/poc 

(11.54) 
(11.55) 
(11.56) 
(11.57) 

The equations of motion of the leaves are 

joo~l Zl = fil --/~2 

jco~2 Z 2 = fi3 - - /Yl  

(11.58) 
(11.59) 
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Fig. 11.10 Plane, unbounded, uniform double partition insonified by a normally incident plane 
wave. 

in which 

Zl =jooml + rl - j s l / o~  = ml(jo~ + ~11c01) - j s l / o~  (11.60) 

z2 = joom2 + r2 - -  j S 2 / ( D  - -  m2(j(-o + / ' / 2 0 ) 2 )  - -  j s2/ ( .O ( 1 1 . 6 1 )  

where ql and/72 are the respective mechanical loss factors, and co~ and LO 2 the in vacuo 
natural frequencies of the two leaves. The pressure/ql is related to the pressure/~i of the 
incident wave by 

fil = 2fii - joopoc-~ 1 (11.62) 

and the transmitted wave pressure fit is given by 

lYt = jcopoc~2 (11.63) 

Let us assume first that the cavity width is very small compared with an acoustic 
wavelength, in which case kd  << 1. Equations (11.54) and (11.55) indicate that, in this 
case,/~3 ~/~2 = P~: in other words, we may assume that the cavity pressure is uniform. 
Equations (11.56) and (11.57) may be combined to give 

(pocZ/d) (~ l - -  ~2) --/~c (11.64) 

which indicates that the air acts as a spring of stiffness s = pocZ/d. Equations (11.58)- 
(11.64) may be combined to yield the leaf displacement ratio 

~1/~2 = [j(-o(z2 + pOC) + pocZ/d]/(pocZ/d) (11.65) 
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and the pressure amplitude transmission coefficient 

fit = _ 2j(poc)2 / kd  (11.66) 

pi [Z2 + po c - jpoc/kd][z l  + po c - j p o c / k d ]  + (Poc/kd) 2 

Comparison of the terms in square brackets in the denominator of Eq. (11.66) with Eqs 
(11.60) and (11.61) shows that the impedance of each leaf is combined with an acoustic 
radiation (damping) term poc and an acoustic stiffness term -jpoc/kd. Now the 
mechanical stiffness sl of leaf 1 may be equated to o~2ml, where o~ is the in vacuo, 
undamped resonance frequency of leaf 1 on its mounting. Hence the ratio of mechanical 
to acoustic stiffness is 

s1/o)l o~lmlkld 
= ~  = (11.67) 

61 poc/kl d Po c 

The same form of relationship can be written for leaf 2. If the model is considered to 
represent an approximation to normal incidence sound transmission through a bounded 
panel, o~ and (_0 2 can be taken as the fundamental, in vacuo, natural frequencies of each 
panel. The products o~lml and o~2m 2 are proportional to the square of the ratios of the 
panel thicknesses to the typical panel dimension, and it turns out that for many 
lightweight double-leaf partitions of practical dimensions 6~ is less than unity, so that 
the acoustic stiffness predominates. 

If acoustic damping, mechanical damping, and stiffness are neglected, the maximum 
transmission coefficient ~ = /~t//~ 2 occurs at a frequency such that 

(--(_D2ml + poc2/d) ( -092m2 + p o c 2 / d ) =  (poc2/d) 2 

The solution is 

000--[ (P0~)(ml~m22)l 1/2 (11.68) 

This is termed the 'mass-air-mass resonance frequency', which is seen to decrease with 
increase of the leaf separation d. This frequency is a minimum when ml = m2: we shall 
symbolize it by O~0m. 

At low frequencies, such that kd << 1, the transmission behaviour may be classified as 
follows: 

(1) Frequencies below the mass-air-mass resonance frequency, ~o < co0. In this case, 
o~2mzml < (ml -t- m2) (pocZ/d), the damping terms have negligible influence, and Eq. 
(11.66) becomes 

fft/fii ~ -- 2jPoc/og(ml + m2) (11.69) 

Hence 

"C ~ (2poc/ogmt) 2 

and 

R-- R(0, rot) dB (11.70) 
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where mt = ml + m2. Comparison with Eq. (11.20) shows that the partition behaves like 
a single-leaf partition having a mass equal to the sum of the masses of the two leaves: 
damping has negligible effect. 

(2) Frequencies close to the mass-air-mass resonance frequency, 09 ~ og0. In this case, 
the pressure transmission coefficient is 

fft/ffi ~ --2pOc/(rllo91m2 + q2ogzml -k- Kpoc) (11.71) 

where the factor K equals (ml/m2) + (mz/ml). This result suggests that, if mechanical 
damping is low, it is preferable to minimize transmission at resonance. This can be done 
by maximizing K by making ml/m2 or mz/ml >> 1: in these cases o90 > og0m. However, 
later analysis shows that benefit near 09o is gained at the expense of performance at 
higher frequencies. In the special case of leaves of equal mass m, in vacuo fundamental 
natural frequency o9', and loss factor q, 

_ 2 
/3t ~ -- (1 1.72) 
fii 2rl(mog'/PoC ) + 2 

If, in addition, the mechanical damping is sufficiently large to make r/much greater than 
poc/og'm, which is generally greater than poC/ogom, then 

/~t//~i ~ -- 2poc/2mog'r I (11.73) 

The sound reduction index is hence 

R = R(0, mt, 09') + 20 log10 r/ dB (11.74) 

where R(0, mt, o9') is based upon the total mass and the in vacuo fundamental natural 
frequency of the leaves: the transmission is damping controlled. If r/ << poc/og'm, then r 
is close to unity and virtually all the incident sound energy is transmitted. As already 
stated, the transmission peak caused by resonance is made less severe by using leaves of 
different weight. 

(3) Frequencies above the mass-air-mass resonance frequency, o9 > o90. In this case, 
o92m2 ml > (ml + m2) (pocZ/d) and 

P~t ,~ 2j(poc)2/kd 
fii 092m 1 m2 

Substitution from Eq. (11.68) for pocZ/d yields 

P t ~  2jPoC (O90] 2 

/3i o9(ml + m2) ", 09 / 

Hence 

(11.75) 

R ~ R(0, mt) + 40 log10 (co/~o0) dB (11.76a) 

which may also be expressed as 

R = R(0, ml)  + R(0, m2) + 20 log10 (2kd) dB (11.76b) 

where R(0, mt) is based upon the total mass of the partition. The sound reduction index 
therefore rises at 18 dB/octave from the value it would have at the resonance frequency if 
simply controlled by total mass. The great improvement over the performance below the 
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resonance frequency, as indicated by the term 40 log10 (~o/o~0), is typical of transmission 
through inertial layers coupled by a resilient layer. The physical explanation is that, 
above the system resonance frequency, leaf 2 acts as a mass driven through a spring by 
the motion of leaf 1. This is a classical vibration isolation system. 

The behaviour of the system at higher frequencies, for which it may not be assumed 
that k d  << 1, may be analysed by solving Eqs (11.54)-(11.63) for arbitrary kd. The 
general solution for the ratio of transmitted to incident pressure is 

Pt 2jpZ c 2 sin k d  
D I I Pi ZlZ 2 sin 2 k d  + p2c2 (11.77) 

where z' = z + poC(1 - j cot kd) .  Note that Eq. (11.77) reduces to Eq. (11.66) if k d  << 1. 
The variation of this ratio with frequency is complicated; it varies between minima, 
which correspond to acoustic anti-resonances of the cavity, when k d  = (2n - 1)~z/2, and 
maxima at resonances, when k d  = nz ,  n being any non-zero positive integer. At the anti- 
resonance frequencies the ratio takes the approximate form 

f i t = _  2j p ~ c______~ 2 (11.78a) 
/~i ~02m 1 m2 

which gives 

R ~ R(0, ml) -t- R(0, m2) -t- 6 dB (11.78b) 

which, unlike the case at COo, is maximized by making m l = m2. This is greater than the 
sum of the mass-controlled sound reduction indices of the two leaves considered as single 
partitions. At the resonance frequencies, the solution is indeterminate in the absence of 
energy losses in the cavity, and the displacements of the two leaves are predicted to be 
equal. 

An alternative approach to the solution is to consider the acoustic impedance imposed 
on the first leaf by the combination of the fluid in the cavity and second leaf. The general 
expression for the specific acoustic impedance ratio of a column of fluid of length d 
terminated by a specific acoustic impedance ratio z j  is (Eq. (4.22)) 

At resonance, tan k d  = 0 and 

, z' a + j t a n k d  (11 79) 
z~ = 1 + jz '  d tan k d  

z6 -- zh (11.80) 

Hence the loading on leaf 1 is the same as if leaf 2 were directly attached to it. The 
corresponding sound reduction index is 

R = R(0, mt) dB (11.81) 

which is that given by a single leaf of mass m t = m 1 + m2. The general variation of the 
normal incidence sound reduction index with frequency is shown in Fig. 11.11. The 
asymptotic frequency-average value of R is approximately equal to the sum of R(0, ml) 
and R(0, m2), which increases at 12 dB/octave. If this line is extrapolated to low 
frequencies it will intersect the line given by Eq. (11.76) at a frequency given by k d  = 1/2 
which corresponds approximately to one-sixth of the lowest cavity acoustic resonance 
frequency. 
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Fig. 11.11 Illustration of the theoretical effect on normal incidence sound reduction index of 
varying leaf mass ratios, while keeping the total mass constant. Reproduced with permission from 
Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 

11.7 The effect of cavity absorption 

Sound-absorbing materials are placed in the cavities of double leaf constructions in 
buildings and between the outer skins and inner trim sheets of vehicles. Their principal 
function is to suppress acoustic resonances of the cavities that would otherwise strongly 
couple the cover sheets. The three types of sound-absorbent material most commonly 
used for this purpose are glass wool, mineral wool and porous plastic foam. The first two 
bring the advantage that they transfer very little mechanical vibration across the cavity. 
Plastic foam may seem very flexible, but its mechanical loss factor is low and it can 
transmit vibration rather effectively, particularly in the lower part of the audio-frequency 
range. 

As explained in Chapter 7, the acoustic properties of a porous/fibrous material that 
has an effectively rigid skeleton may be characterized by three principal parameters. 
These are the flow resistivity ~, the porosity h and the structure factor s. The complex 
wavenumber is given by Eq. (7.9b) as k ' -  ~ - j ~  ~ ~o(hp'/tr 1/2, in which the complex 
density p ' =  ( spoh-  j~/o~) and the bulk modulus • = Kpoc 2, where K lies in the range 
0.7-1.0. Approximate expressions for ~ and/~ are given by Eqs (7.11) and (7.12) as 

,,~ �89 (K/s) -1/2 and /~ ~ (~o/c) (s/K) 1/2, w h i c h  we shall use in the following 
example. 

Equations (11.55)-(11.57) must be modified as follows: 

P3 = A exp ( - j k ' d )  + B exp (jk'd) 

jo, , =  )/Zc 

jco~2 = [A exp ( - j k ' d )  - B exp (jk'd)]/zc 

(11.55a) 

(11.56a) 

(11.57a) 
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where Zc is the complex characteristic specific acoustic impedance of the absorbent 
material. According to Eq. (7.13) the equivalent ratio may be approximated by 

Zc = Zc/poc ~, (Ks!h2)  ]/2 - j(~r/2copo) ( K / s )  ]/2 (11.82) 

The solution for the ratio of complex amplitudes of transmitted and incident pressures is 

P~t = 2Zc (11.83) 
t l l / ! ! ! Pi j [ z z z  1 + z 2 + z 1 + (Zc) 2] sin (k'd) + z c [z 2 + z 1 + 2] cos (k!d) 

in which Zc = Zc/poc, z~ = z l / p o c  and z~ = z2/poc.  This reduces to Eq. (11.77) where 
Zc = poc and k ' =  k. It is not straightforward to discern the effect of the absorber 
parameters on sound transmission by means of parametric approximations (as we did 
the untreated cavity). Hence the results of a numerical study are presented in Fig. 11.12. 
The absorbent has little effect on the mass-air-mass resonance dip, but raises the 
average sound reduction index in the mid-frequency range which are controlled by cavity 
resonances. 
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Fig. 11.12 Theoretical normal incidence sound reduction index of a double partition as a function 
of the properties of the cavity absorbent, ml = m2 = 3 kg m -2" d = 0.2 m; s = h = K = 1 
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11.8 Transmission of obliquely incident plane waves through 
an unbounded double-leaf partition 

So far, only normally incident sound has been considered. When a plane wave is incident 
at an oblique angle 4~ upon leaf 1 it sets up a bending wave travelling in the plane of the 
leaf with trace wavenumber kz = k sin 4). Provided that the leaves and cavity are 
unbounded and uniform, waves travelling with the same wavenumber component 
parallel to the plane of leaf 1 are set up in the fluid in the cavity, in leaf 2, and in the 
fluid external to the partition, as shown in Fig. 11.13. In satisfaction of the acoustic wave 
equation, and in the absence of cavity absorption, the wavenumber vector components 
of the cavity wave in the direction normal to the planes of the leaves have magnitudes 
given by 

kx = k(1 - sin 2 ( ] ) )1 /2  ___ k cos ~b 

Hence the pressure wave system in the cavity takes the form 

lY(X, z) = [A exp ( - j k x x )  + B exp (jkxx)] exp ( - j k z z )  (11.84a) 

and the corresponding particle velocity normal to the planes of the leaves is 

fix(X, z) - cos 0 [~ exp ( - j k x x )  - [~ exp (jkxx)] exp ( - j k z z )  
PO c 

(11.84b) 

The physical interpretation of Eqs (11.84a and b) is that the acoustic impedance of the 
cavity is increased by a factor sec 4~ compared with the normal incidence value. The fluid- 
loading (radiation) impedance produced by the fluid external to the partition is increased 
by the same factor to poc sec ~b. 

( 
Reflecte~d 

s;n Incident k q) 
. . . . . . . .  - - - -  - "  " "  " "  

q 

~~_~ (liP' / Pt .... ___~ransmitted 

Fig. 11.13 Plane, unbounded, uniform, flexible double partition insonified by a plane wave at 
oblique incidence. Reproduced with permission from Fahy, F. J. (1987) Sound and Structural 
Vibration. Academic Press, London. 
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The relevant impedances of the leaves are the wave impedances corresponding to a 
progressive bending wave ofwavenumber k sin 05, as given by Eq. (11.30) with ~bl = ~b. It 
is assumed in the following analysis that the fluids inside the cavity and outside the 
partition are the same, so that no refraction occurs. We have already seen, in the analysis 
of single-leaf transmission, that at frequencies well below the critical frequency of a leaf 
the inertial component of wave impedance greatly exceeds the stiffness component, and 
therefore in this frequency range the latter may be neglected. Equations (11.54)-(11.57) 
become 

/~2 = A + /~ (11.85) 

/q3 = A exp ( - j k d  cos ~b) +/Y exp ( j kd  cos 05) (11.86) 

jCO~l = (A - B)/(poc sec ~b) (11.87) 

jCO~2 = [A exp ( - j k d  cos ~b) - / Y  exp ( j kd  cos c/))]/(poc see qS) (11.88) 

Equations (11.60)-( 11.63) become 

and 

z1 = jCOml + rl (11.89) 

z~2 = jCOm2 + r2 (11.90) 

/31 - -  2/~i - -  jCOpoc sec q5~1 (11.91) 

1St = jCOpoc s e c  ~ 2  (11.92) 

The general solution for the ratio of transmitted to incident pressures is 

Pt 2jp2c 2 see 2 ~b sin (kd cos qS) 

Pi Z'lZ' 2 sin 2 (kdcos ~b) + p2c2 see q5 

where z' = z + poc sec 0511 - j  cot (kd cos qS)]. 
When kd  cos ~b << 1, Eq. (11.93) reduces to 

/)t 

~i 2jp~c 2 see 2 4 / (kdcos  4) 

(11.93) 

[zl + po c sec qb - j p o c / ( k d c o s  2 ~b)] [Z2 -1- po c sec ~ - j p o c / ( k d c o s  2 ~b)] 2 -+- [poc/(kdcos 2 ~))]2 
(11.94) 

Comparison with the equivalent normal-incidence, low-frequency result, Eq. (11.66), 
shows that the effective stiffness of the cavity has increased by a factor sec 2 ~b. Hence the 
oblique-incidence mass-air-mass resonance frequency is greater than the normal- 
incidence value by a factor sec ~b. 

The low-frequency transmission behaviour may be classified as follows: 

(1) Frequencies below the oblique incidence mass-air-mass resonance frequency, 
co < COo sec ~b. The pressure transmission coefficient is 

fit/fii ~ -- 2jpoC/CO(ml + m2) cos ~ (11.95) 

which is the same as the oblique-incidence expression for a single leaf of mass mt. Hence 

R(~b) = R(~b, rot) dB (11.96) 
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(2) Frequencies close to the oblique-incidence mass-air-mass resonance frequency, 
co ~ coo sec ~b. In this case, we must take mechanical damping of the leaves into 
account. The result is 

/Yt//qi ~ - 2poc sec q~/(r/lcolm 2 -t- r/2co2ml -t- KpoC sec ~b) (11.97) 

where K = (ml/m2) + (m2/ml), as in the normal-incidence case. The influence of 
mechanical damping, in comparison with that of different leaf weights, is seen to 
decrease with increasing angle of incidence. It is seen that mass-air-mass resonance can 
take place at all frequencies above coo, the frequency increasing with qS. 

(3) Frequencies above the oblique-incidence mass-air-mass resonance frequency, 

and 

co > coo sec ~b. In this case leaf inertia dominates and the result takes the same form 
as for normal incidence: 

or, alternatively, 

Pt~ 2jPoC (.O)0 sec ~b) 2 
/}--~' co(ml -t- m2) cos q~ co (11.98) 

R(r ~ R(r mt) + 40 loglo [(co/coo) cos r dB (11.99) 

The behaviour at higher frequencies, for which it may not be assumed that kd << 1, 
may be analysed by solving Eq. (11.93) for arbitrary kd. As in the normal-incidence case, 
transmission maxima produced by acoustic resonance of the cavity alternate with 
transmission minima caused by anti-resonance. These frequencies are higher than the 
corresponding values for normal incidence by the factor sec r At the anti-resonance 
frequencies given by kdcos 4)= ( 2 n -  1)re/2, the pressure transmission coefficient 
minimum is 

and 

fit//Yi ~ 2jpgc2/co2mlm:2 COS2 ~b (11.101) 

R(qb) = R(qb, ml) + R(r m2) + 6 dB (11.102) 

Because the anti-resonance frequencies increase in proportion to sec qS, the sound 
reduction index maxima for any particular value of n are actually independent of angle 
of incidence and are given by Eq. (11.78). 

At the resonance frequencies, given by (_O n = (nTzc/d) cos ~2 the panels move as one 
and the sound reduction index minimum corresponds to Eq. (11.46): 

R(r = R(r mt) dB (11.103) 

The value is the same for all angles of incidence because (_O n COS ~ is a constant. This 
conclusion is extremely important because at every frequency above the lowest cavity 
resonance frequency co = rcc/d, there is an angle of incidence for which resonant 
transmission occurs; the same is true of mass-air-mass resonance above coo. Hence, in 
a diffuse field, acoustic resonance phenomena effectively control the maximum achieved 
sound reduction index. It is therefore vital to suppress these resonances by inserting 

R(r ~ R(r ml) + R(r m2) + 20 loglo (2 kd cos qS) dB (11.100) 
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absorbent material into the cavity and/or by dividing up the cavity to suppress lateral 
wave motion. 

Of course, the individual leaves of a double-leaf partition, exhibit coincidence effects 
in response to the imposed sound fields. Mathematically, the leaf impedance terms in the 
foregoing equations for obliquely incident sound would be modified to include the 
bending stiffness and appropriate damping terms. A complete analysis of this problem is 
extremely complex, because the combined leaf-cavity fluid system is a waveguide that 
carries waves involving coupled motion of the two media. However, it is intuitively 
obvious that coincidence effects in partitions consisting of nominally identical leaves are 
likely to be rather more severe in a frequency range around the critical frequency than 
those in partitions having dissimilar leaves: empirical data shows this to be the case. 
Where the two leaves are effectively decoupled by cavity absorbent, the decrease in 
sound reduction index below the mass-controlled value, caused by coincidence effects in 
the two leaves, can be approximated by the arithmetic sum of the individual coincidence 
dips in R of the two leaves when tested in isolation [11.2]. As with single-leaf coincidence, 
mechanical damping of the leaves largely controls the severity of coincidence effects. A 
generalized form of oblique incidence sound reduction index for a double-leaf partition 
that does not contain absorbent is presented in Fig. 11.14. Note that the maxima and 
minima are independent of ~b. 

The general analysis of transmission of obliquely incident plane sound waves through 
an infinite double-leaf partition containing absorbent material is complicated by the 
refraction effects caused by the difference of phase velocities of waves in the free air and 
in the absorbent: it is too involved to be of value in this book. However, if the cavity is 
filled with absorbent material of substantial flow resistivity, wave motion parallel to the 
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Fig. 11.14 General form of the oblique incidence sound reduction index of a double partition with 
no cavity absorbent. Reproduced with permission from Fahy, F. J. (1987) Sound and Structural 
Vibration. Academic Press, London. 
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Fig. 11.15 Performance of a mechanically isolated double-leaf partition. Adapted from Sharp, B. 
(1978) Noise Control Engineering 11, 53-63. 

leaves is strongly inhibited and the behaviour approximates to that for normal incidence. 
This occurs because the phase change undergone by the acoustic wave during its return 
journey across the cavity relative to that undergone by the leaf between transmission and 
return points equals 2/fld cos ~b, but the attenuation of the pressure amplitude equals 
2/exp ( - a d  sec ~b), which increases with angle of incidence. The insertion into a cavity of 
sheets of absorbent material considerably thinner than the cavity width can produce 
substantial improvements in the performance of a lightweight double-leaf partition. The 
mechanism is probably the attenuation of waves in the cavity having relatively large 
wavenumber vector components parallel to the leaves (caused by highly oblique 
incidence). However, such minimal treatment does not significantly reduce the adverse 
influence of the mass-air-mass resonance phenomenon. In the case of double glazing, 
absorption can only be provided in the reveals at the edges of the cavity, which does little 
to influence mass-air-mass resonance effects. Figure 11.15 shows some diffuse incidence 
performance curves of a double-leaf partition of which the leaves are not mechanically 
coupled. Note the substitution of Rf in Eqs (11.70), (11.76) and (11.78). The effect of 
absorbent on double partitions in which the leaves are connected by timber studs is 
illustrated by Fig. 11.16. 

11.9 Close-fitting enclosures 

A common method of reducing sound radiation from machinery or industrial plant is 
partially or fully to cover the radiating surfaces with a sheet of impervious material; such 
covering is sometimes known as cladding, especially in the case of pipework. The cavity 
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Fig. 11.16 Measured sound reduction indices of double partitions. Reproduced with permission 
from Northwood, T. D. (1970) 'Transmission loss of plasterboard walls'. NRC Building Research 
Note No. 66. National Research Council of Canada, Ottawa. 

formed between the surface and its enclosure is usually relatively shallow compared with 
an acoustic wavelength over a substantial fraction of the audio-frequency range, and it 
normally contains sound-absorbent material. Theoretical predictions of the perfor- 
mance of such enclosures have not been conspicuously successful to date, and designers 
still rely heavily on empirical data. The reasons are three-fold: (1) the enclosure and 
source surfaces are strongly coupled by the intervening fluid, so that the radiation 
impedance of the source is affected by the dynamic behaviour of the enclosure; (2) the 
geometries of sources are often such that the cavity wavefields are very complex in form 
and difficult to model deterministically; and (3) the dimensions of the cavities are not 
sufficiently large for statistical models of the cavity sound fields to be applied with 
confidence. 

In view of the lack of reliable theoretical treatments of the problem, we shall confine 
our attention to a simple one-dimensional model that exhibits some but not all of the 
mechanisms that operate in practical cases. The major difference between this model and 
that of a double partition is that the motion of the primary source surface is assumed to 
be inexorable, i.e., unaffected by the presence of the enclosure. This assumption is 
reasonable because the internal impedance of a machinery structure is generally much 
greater than that of its enclosure. 

The model is shown in Fig. 11.17. The complex amplitude of pressure at the surface of 
the source is given by 

p~0 = ~ / +  B (11.104) 
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Fig. 11.17 Idealized model of a uniformly vibrating surface and close cover. Reproduced with 
permission from Fahy, F. J. (1987) Sound and Structural Vibration. Academic Press, London. 

and the associated particle velocity is given by 

poczTo = A - /Y  (11.105) 

The pressure in the cavity that drives the panel is 

/~l = A exp ( - j k l )  + B exp (jkl) (11.106) 

and the associated particle velocity, which equals the panel velocity, is given by 

poc~ = A exp ( - j k l )  - B exp (jkl) (11.107) 

Let the specific impedance of the panel that represents the enclosure be represented by 

Zp = j(com -- s/co) + r (11.108) 

to which must be added in series the radiation impedance, which we assume to be equal 
to poc; we denote the total impedance by zt. The equation of motion of the panel is hence 

ztY =/ql (11.109) 

Substituting for/Y from Eq. (11.105) and using Eq. (11.106), Eq. (11.109) becomes 

ztY = 2A cos kl - poCt2o exp (jkl) (11.11 O) 
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Equations (11.105) and (11.107) allow us to obtain a second equation relating A and Y: 

pocY = - 2jA s in  kl + pocgo exp ( jkl)  

Hence we can eliminate A in order to relate Y and ~70: 

Zt V + PoC{Io exp (jkl) 
2cosk/  

of which the solution is 

fi0 

poc(to exp ( jkl)  - poc~ 

2j sin kl 

cos kl + j(zt/Po c) sin kl 

(11.111) 

(11.112) 

(11.113) 

The ratio of sound power radiated by the panel enclosure to that radiated in the absence 
of the enclosure is  

E - -- cos kl - + sin 2 kl 1 + (11.114) 
W po c 

The insertion loss (IL) is actually a logarithmic measure of the difference of sound 
pressure levels with and without the enclosure. In this one-dimensional case 

IL = 10 lOgl0 (W/We) dB 

It may immediately be seen that the insertion loss is zero whenever sin kl = O, 
irrespective of the mechanical damping of the enclosure. This occurs at frequencies 
when the cavity width is equal to an integer number of half-wavelengths. The impedance 
at the source surface then equals the impedance of the panel plus the radiation 
impedance, and the panel velocity equals the source surface velocity. This situation is 
similar to that of the double partition at normal incidence, when the impedances of the 
two partitions simply add. The difference here is that, according to our assumption, the 
source surface motion is inexorable, which is equivalent to assuming that the load 
impedance is very much less than the internal impedance of the source. Hence the panel 
velocity ~ equals the source velocity ~70, and the presence of the panel has no effect. 

The normalised power W e / W  takes maximum values when 

tan kl - P~ (11.115) 
mco - s/co 

In practice the lowest frequency at which this occurs is normally such that kl << 1 and 
tan kl ~ kl. Hence 

co2 ~ pocZ/ml + co2 (11.116) 

where co2 = s/m. The fluid cavity bulk stiffness poc2/l is added to the mechanical stiffness, 
as in the case of mass-air-mass resonance of the double partition. In this case the 
insertion loss becomes 

IL = 20 log10 (1 + r/poc) + 10 lOgl0 (pol/m + kZl 2) dB (11.117) 

where k0 = COo~C, and kol << 1 because kl << 1. 
It is clearly beneficial to make the in vacuo natural frequency of the panel as high as 

possible because the second term will normally be negative. The specific panel damping 
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factor r/poc may be written as rlo~om/poc, and damping is therefore only significant if 
r/>> poc/coom. 

If the mechanical damping is rather low, the minimum insertion loss is normally 
negative; more power is radiated from the enclosure at this resonance frequency than 
from the unenclosed source! How can this be? It has nothing to do with the surface area 
of the enclosure in comparison with that of the source, because they are equal. The 
answer is revealed by recalling that the basic expression for acoustic power radiation per 
unit area from a harmonically vibrating surface is W = �89 ~7 2 Re (zr), where Z r is the fluid 
impedance seen by the surface. Since the source vibration is inexorable, the real part of 
the impedance presented by the fluid plus enclosure must, in this case, exceed that for the 
unbounded fluid. Reference to Eq. (11.79) indicates that Re (Zr) for the source is 
maximized when Eq. (11.115) is satisfied. The resonant behaviour of the enclosure/ 
airspace combination creates high acoustic pressures in the air space. However, not all 
this power is radiated from the enclosure; some is dissipated by enclosure motion, which 
is why the enclosure damping is an important factor in controlling the minimum 
insertion loss. 

Equation (11.117) clearly indicates that a combination of high stiffness, high damping, 
and low mass is required for good low-frequency enclosure performance. These 
requirements are very different from those for good performance of a single-leaf 
partition at frequencies below the critical frequency, although the maxima in insertion 
loss correspond to the normal incidence sound reduction index for a panel of twice the 
mass per unit area. The mechanical stiffness of the enclosure is only significant, however, 
if it exceeds the acoustic stiffness of the fluid, i.e. ~oZm > poc2/l. Although increasing the 
cavity width I will reduce the severity of this insertion loss minimum, it decreases the 
frequencies of standing-wave resonance in the cavity, and therefore may not always be 
beneficial, at least in theory. 

Higher-frequency minima in insertion loss occur whenever Eq. (11.115) is satisfied, 
but the values of these minima are greater than that at the lowest resonance frequency, as 
can be shown by substituting the corresponding values of sin kl in Eq. (11.114). Let 
tan kl = a, then 

sin 2 kl = a2/(1 + cX 2) 

Assuming that these higher resonances occur well above the in vacuo natural frequency 
of the enclosure, then e ~ poc/~om and the insertion loss minima are given by 

IL = 20 log10 (poc/~om) - 10 log10 [1 + (poc/com) 2] + 20 lOgl0 (1 + r/poc) dB 
(11.118) 

which can be negative. In fact, the frequencies at which the minima occur are very close 
to those at which sin kl and therefore IL are zero. The presence of sound-absorbent 
material in the cavity will improve the insertion loss at these higher resonances but is not 
likely to be very effective at the lowest resonance frequency given by Eq. (11.116). A 
theoretical insertion loss curve is shown in Fig. 11.18. 

The foregoing analysis is based upon a very simplistic model of a source and 
enclosure. A number of attempts have been made to develop more realistic models, 
particularly with respect to the three-dimensional nature of acoustic fields in real 
enclosure cavities: unfortunately none has been conspicuously successful. 

The insertion loss of an enclosure is severely degraded by non-resilient connection to 
the vibrating source. Holes in an enclosure are usually necessary and also degrade 
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Fig. 11.18 Generalized theoretical insertion loss of a close cover. 

insertion loss. However, isolated holes only effectively transmit sound having wave- 
lengths smaller than the peripheral length of the hole (see Chapter 12). 

11.10 A simple model of a noise control enclosure 

Free-standing enclosures are widely used to control noise from machinery and plant. 
The following simple analysis is based upon the assumption of the existence of a diffuse 
field in an enclosure. Figure 11.19 represents an enclosure constructed from an imperme- 
able outer sheet lined with an absorbent layer. It is assumed that the source is located so 
that the reverberant field dominates at the walls, which is increasingly unlikely as the 
absorption coefficient of the lining is increased. We assume that the damping in the outer 
sheet is included in the absorption coefficient and that the mass of the absorbent layer is 
added to the mass of this sheet. 

Wall transmission coefficient "~d Wall area Sw (excluding SA) (including �9 of absorbent)\ 
J \ 

~ ' ~ \ ~ ~ X - ~ ~ - \ ~  _._ Aperture are a 
i ~  source .~ S A (1: = 1) 

W[_~ ~ Absorber ad 

Fig. 11.19 Simple model of a free-standing noise control enclosure. Reproduced with permission 
from Fahy, F. J. (1998) Chapter 5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 
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Assuming a diffuse field 

The power balance is given by 

I = (pZ)/4poc (11.119) 

W ~ I[Sw(~Z d + "Cd) -n t- SA] (11.120) 

assuming that "CA - -  1 and that the diffuse field absorbent coefficient (z d is unaffected by 
wall vibration. 

The power transmitted through the aperture is given by 

W A - S A  I =  WSA/[gw(o~d -Jr- "Cd) -+- SA] (11.121) 

The power transmitted through the wall is given by 

Ww = I'cdSw = WSw'Cd/[Sw(O~d + ~d) + SA] (11.122) 

The total power transmitted per unit source power is given by 

W T / W  = (Sa  + "cdgW)/[gw(ctd + "Cd) + Sa] (11.123) 

With no absorbent or damping 

W T / W  = 1 

Hence the sound power insertion loss is given by 

IL - 10 lOgl0 (W/WT)  = 10 1Ogl0 {[(Sw/SA) (~d -+- "Cd) + 1]/[(Sw/SA) "Cd -t-- 1]} dB 
(11.124) 

Normally ed >> Zd (except at low frequencies) and Sw >> SA. Therefore 

IL ~ 10 lOgl0 {[(Sw/SA)ed]/[(Sw/SA)Zd + 1]} dB (11.125) 

Clearly ed should be maximized and SA/Sw and Zd should be minimized. This equation is 
not correct for zero absorption coefficient- why? In Chapter 12 it is shown that ZA < 1 at 
frequencies for which the acoustic wavelength exceeds the aperture dimensions. 

Close-fitting covers and pipe wrapping (lagging) provide little insertion loss below 
about 300 Hz because of strong acoustic coupling between the underlying vibrating 
surface and the impermeable cover sheet. Typical examples are shown in Fig. 11.20. 

11.11 Measurement of sound reduction index (transmission 
loss) 

A partition to be tested is placed between two mechanically and acoustically isolated 
reverberation rooms, as illustrated by Fig. 11.21. A broadband noise source generates an 
approximation to a diffuse field in the source room 1, and estimates are made of the 
space-average mean square sound pressure (and equivalent sound pressure level) in both 
rooms by means of either a fixed array of microphones or a continuous spatial sweep. 
Measurements are made in 1/3 octave bands, as specified by International Standard 
ISO 140-3. 

The sound power incident upon a partition of area S is given by Wi = ((p~)/4poc)S, of 
which a proportion Wt = r Wi is transmitted into room 2, where it generates an 



11. Transmission of Sound through Partitions 349 

Fig. 11.20 Examples of the insertion loss of various forms of pipe lagging. Adapted from Applied 
Acoustics, volume 13, T. E. Smith, J. Rae and P. Lawson, 'Pipe lagging- an effective means of 
control?', pp. 393-404, copyright (1980), with permission from Elsevier Science. 

Fig. 11.21 Schematic of an airborne sound transmission suite. Reproduced with permission from 
Fahy, F. J. (1998) Chapter 5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 
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approximation to a diffuse field having a space-average mean square sound pressure 
given by (pZ)/(p2) = S'r,/A2 from which 

R = 10 lOgl0 (l/T) = Lp2 - L p l  --[- 10 loglo (S/A2) dB (11.126) 

The absorption of room 2 is determined from reverberation time measurements as 
described in Section 7.12.2. 

A new standard for the determination of sound reduction index using direct 
measurements of transmitted intensity is in preparation [5.3]. 

Quest ions 

11.1 To provide a reflective canopy for musicians performing in a community hall, it is 
proposed to stretch a canopy made of heavy duty plastic sheet over the stage. 
Estimate the thickness of the sheet necessary to reflect 90% of the sound energy of 
sound waves that strike the sheet at normal incidence at a frequency of 250 Hz. 
Assume that the density of the plastic is 1015 kg m -  3. 

11.2 Will the structural damping of the sheet described in the previous question affect 
the reflection coefficient? 

11.3 One wall of a large factory building faces a parallel row of houses at a distance of 
100 m across a concrete yard. The factory wall has a ventilation fan mounted in an 
aperture near the base of this wall. The area of the aperture is 0.5 m 2. The space- 
average reverberant mean square pressure inside the factory is 87 dB(A). Estimate 
the sound level at the facade of the nearest house. Indicate the principal sources of 
uncertainty in your estimate. 

11.4 For reasons of hygiene it is necessary to stretch a thin sheet of polythene sheet over 
a mineral wool wall absorber that is installed in hospitals. Assuming that the sheet 
is stretched flat at a distance of 2 mm from the surface of the mineral wool slab, 
estimate the effect at 100 Hz and 1 kHz of the presence of the cover sheet on the 
absorption coefficient of the absorber. The normal specific acoustic impedance 
ratio of the uncovered mineral wool surface is Zn = 1 . 6 -  500j/f  and the thickness 
and density of the plastic sheet are 0.3 mm and 980 kg m -  3. [Hint: Consider the air 
between the cover sheet and the absorber as an air spring and use the impedance 
combination principles presented in Chapter 4.] 

11.5 The hull of a destroyer is constructed from 8-mm thick plate steel. Determine the 
frequency at which the inertia of the plate and the disparity of impedance of the 
water and air have equal influences of the transmission of normally incident sound 
from the air inside the submerged part of the ship into the water (or vice versa). 
Take the speed of sound in sea water to be 1460 m s-1. How does the relative 
influence vary with angle of incidence? 

11.6 Estimate the critical frequency of 8-m thick steel plate submerged in water. Why is 
it impossible for bending waves at this frequency to travel at the speed of sound in 
the water? 

11.7 Estimate the critical frequencies in air of a 5-mm thick plywood sheet, a 6-mm thick 
sheet of glass, a 1-mm thick sheet of Perspex (Plexiglas), and a sandwich panel 
comprising a 25-mm thick core of polystyrene covered on both faces by 0.7-mm 
thick aluminium sheet. The density of the polystyrene may be taken as 20 kg m-3.  
Assume that the polystyrene sheet offers negligible resistance to bending. 
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11.8 The plane, uniformly vibrating surface of a machine is covered by a layer of mineral 
wool, which itself is covered by a thin sheet of metal. Employ a one-dimensional 
model of the system to derive an expression for the ratio of complex amplitudes of 
cover sheet and machine surface velocities, in terms of complex wavenumber and 
characteristic specific acoustic impedance of the mineral wool. Assume that the 
machine vibrates inexorably. How does the insertion loss of the covering material 
relate to this ratio? 



12 
Reflection, Scattering, Diffraction 

and Refraction 

12.1 Introduction 

Sound waves propagating in fluid media rarely travel very far before meeting some 
region of which the state of the medium, and/or its dynamic properties, differ from those 
that support the incident wave. The difference may be very large, as in the case of air in a 
room enclosed by concrete wall, or rather small, as in the case of a bladderless fish in the 
ocean. The accommodation that must occur at the interface results in the generation of a 
secondary wave field in the medium that supports the incident wave. This is super- 
imposed upon the original incident field and creates interference and modification of the 
pressure and intensity distributions. The processes of secondary wave field generation 
are broadly classified as 'reflection', 'scattering' and 'diffraction'. The alteration of the 
direction of wave propagation by incidence upon a different medium, or by non- 
uniformity of a supporting medium, is termed 'refraction'. 

We are familiar with optical reflection, refraction and scattering as exemplified by 
mirrors, the false apparent depth of swimming pools and frosted glass respectively. 
Optical diffraction is a more rarely encountered phenomenon. Whereas it is simple to 
categorize visible objects or features in terms of their scale relative to an average 
wavelength of light, we cannot do the same for sound waves. This is because the 
frequencies of visible light cover less than an octave while the audio-frequency range 
covers ten octaves. For example, a human head is small compared with a wavelength in 
air at 100 Hz, but large at 8000 Hz. Consequently, it is necessary to consider acoustic 
interaction with specific objects or features in three broad wavelength (frequency) ranges; 
'long', 'commensurate' and 'short'. In the commensurate range, where the scale of objects 
and features are of the same order as acoustic wavelengths, spatially complex secondary 
sound fields are generated that vary in form rapidly with change of frequency. Optical 
examples will be used to provide qualitative analogies of certain acoustic phenomena, but 
readers should be alert to their limitations in terms of the foregoing categorization. 

The most easily understood example of acoustic interaction between sound in a fluid 
and a solid object is that of the reflection of a plane wave from a very large, rigid, plane 
surface. The generation of a secondary wave plane that, together with the incident wave, 
satisfies the condition of zero normal particle velocity, is described as 'reflection' (bending 
back). The term reflection, in this specific sense, applies not only to plane surfaces but also 
to those of surface dimensions and radii of curvature that are large compared with a 
wavelength. Provided that the surface is acoustically smooth, acoustic reflection is then 
analogous to optical reflection from a curved mirror, except for diffraction from any 
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distinct edges. Fields reflected from such surfaces are spatially coherent and retain an 
ordered content of information about the incident field. The 'specular' component of a 
reflected field is that which corresponds to optical reflection in a mirror. 

In contrast to a pure specular image, the image of one's face in the bottom of a 
regularly scoured stainless steel saucepan or sink is not distinct or sharp. Some of the 
light is reflected specularly to generate an indistinct image, but most is scattered in a 
multitude of directions by surface irregularities of the order of a wavelength in size, 
producing the fuzzy appearance of the surface. This is called 'diffuse scattering', and 
sometimes 'diffuse reflection'. 

Optical images seen in pristine metal cooking foil are distorted more by large-scale 
deviations from planeness than by scattering by very small surface irregularities. If the 
foil is lightly scrunched, many more-or-less coherent images are produced by reflections 
from individual planar facets that are very many wavelengths in dimension. Analogous 
behaviour is exhibited by sound upon encountering an irregularly faceted solid surface 
such as a rock face. Lower-frequency wavefronts will be reflected largely intact, but some 
weak scattering will also occur. The wavefronts of sound having wavelengths commen- 
surate with the scale of the surface irregularity will be fragmented and the sound energy 
will be scattered in many directions. Very short wavelength sound will be reflected more 
or less specularly by the larger facets. 

Sound is also scattered by interaction with surfaces of non-uniform impedance. This 
effect is exploited in the design of multi-purpose auditoria in which patches of absorbent 
material (typically about 1 m 2 in area) are distributed over hard walls to control 
excessive reverberation and to promote diffusion. The phenomenon of edge diffraction 
(explained below) increases the effective absorption area of each patch. 

The incidence of sound in a fluid upon discrete disparate bodies that are small 
compared with a wavelength does not produce reflection in the sense defined above. 
Instead, a generally weak secondary scattered field is generated; a small proportion of the 
incident energy is redirected so as to spread out in all directions around the scatterer. The 
shorter the wavelength the stronger the scattering, provided that the wavelength remains 
large compared with the scattering body. This is why the sky is blue, as explained by 
John Tyndall and analysed by Lord Rayleigh in the nineteenth century. Resonant 
scatterers such as fish swim-bladders, bubbles and Helmholtz resonators actually scatter 
a large proportion of the incident sound energy, even at low frequencies, as explained 
later in this chapter. The small irregularities in the previously mentioned scratched 
stainless steel surface are similarly behaving as individual scatterers, but, of course, the 
light can only be back scattered. As a result, the surface has a similar appearance from all 
observer positions, although residual specular reflection of any concentrated light 
sources present will intrude to some extent. 

Arrays of regularly spaced, small, discrete bodies produce directional scattering that is 
classified as 'diffraction' because the scattered field is ordered, unlike that reflected by 
randomly distributed scatterers. The form of the diffracted field is a function of the 
geometry of the array and the ratio of wavelength to spacing. X-ray diffraction analysis 
of the structures of materials is based upon this principle. Impulsive sound scattered by 
railings comprising parallel bars or surfaces having periodic, non-plane profiles, is 
tonally coloured because components of different frequencies are scattered into different 
distinct directions. 

Many solid bodies possess sharp edges and corners, such as those of box-like 
loudspeaker cabinets. The process by which such an impedance discontinuity produces 
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a secondary field that interferes with the incident field to produce a systematic 
deformation of the wavefronts is termed 'diffraction'. The discontinuity acts as a 
secondary source, not because it generates sound, but because the diffracted field spreads 
out from it, as it does from an active source. Examples of wave diffraction are shown in 
Figs 2.9 and 2.10. Diffraction around the breakwater model shown in Fig. 2.10 is not 
strictly analogous to acoustic diffraction around the edge of a screen because it is the 
longer acoustic wavelengths that invade the 'shadow' zone more strongly. Diffraction 
also accounts for the fact that sound transmitted through an aperture that is small 
compared with a wavelength spreads out more or less omnidirectionally. 

Both scattering and diffraction are caused by the disruption of incident wavefronts by 
the presence of impedance disparities. The secondary fields so caused are generally 
complex in form and vary greatly with wavelength. The mathematical analysis of 
scattering and diffraction involves advanced techniques with which the reader will 
probably not be familiar. Therefore only a few simple cases are analysed mathematically, 
and much of the exposition is qualitative. 

Wavefronts are distorted when passing through regions in which the speed of sound or 
the flow speed varies with position. Where the spatial variations are 'slow' on the scale of 
a wavelength, the wavefronts remain intact but their shapes and headings vary as they 
propagate. This phenomenon is known as 'refraction'. In cases where the sound speed or 
flow speed varies on a scale comparable with, or smaller than, a wavelength and/or 
frequency, the process of fragmentation of wavefronts is termed 'scattering'. This effect 
is easily observed by listening carefully to the sound of an aircraft overflying at great 
height. The acoustic wavefronts are fragmented by the turbulent motion and tempera- 
ture non-uniformities of the atmosphere. 

Refraction by gradients of wind speed and temperature has a profound effect upon the 
propagation of sound in the atmosphere and therefore on the environmental impact of 
noise sources. Refraction of the mixing noise of turbulent jets has a significant effect 
upon the directivity of aircraft take-off noise. Refraction protects us from the sonic 
boom of high-flying supersonic aircraft. In the ocean, the dependencies on static pressure 
and temperature of sound speed in water conspire to produce complicated refraction 
patterns that are of crucial importance in the practice of sonar ranging and detection, as 
well as in the operational tactics of submarines. Ultrasound, which is used to image 
internal organs of the human body, is refracted by gradients of tissue density. An 
introduction to subject of acoustics in liquid media will be found in Fundamentals of 
Noise and Vibration (Fahy and Walker, 1998 - see Bibliography). 

Because refraction is manifested most strongly in its effects of sound propagation over 
long distances, under more or less free field conditions, geometric modelling in terms of 
rays is commonly employed. An analysis of ray propagation is presented to demonstrate 
a simple relation between the radius of curvature of rays and the local gradient of sound 
speed. The refractive effects of variations with height of atmospheric temperature and 
horizontal wind speed are briefly described. 

12.2 Scattering by a discrete body 

Imagine a source operating in a uniform, ideal fluid under completely free field 
conditions, and a volume of the fluid enclosed by a closed hypothetical surface located 
somewhere in that free field, as illustrated by Fig. 12.1 (a). The external surface integral 
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Fig. 12.1 (a) Source in free field with a K-H surface. (b) Illustration of the principle of replacement 
of the rigid surface by a vibrating boundary. 

component of the K - H  equation (6.48) must be zero because the sound field is 
completely determined by the volume integral. Consequently, when some disparate 
material is introduced into the fluid, the difference between the resulting sound field and 
the original field may be attributed to the K - H  surface integral in which the surface 
pressure and normal pressure gradient are those of the scattered field alone. In other 
words, the resulting sound field is the superposition of the incident (unscattered) field 
and a scattered field. If the K - H  equation is expressed in terms of a Green's function that 
has zero normal gradient on the scattering surface, only the normal particle acceleration 
of the scattered field on the surface needs to be known. If the scattering object is rigid, 
this acceleration is equal and opposite to that which would be present in the incident field 
on that surface in the absence of the object, as illustrated by Fig. 12.1 (b). 

We shall initially consider the process of scattering by rigid objects that are small 
compared with a wavelength. As explained above, the sum of the uninterrupted incident 
wave and that 'generated' by the presence of the object must satisfy the boundary 
condition of zero normal particle velocity on the surface of the object. Consequently, if 
we imagine the surface of the object to vibrate with a normal velocity distribution equal 
and opposite to that which would exist on that (now transparent) surface in the absence of 
the object, the external boundary condition is satisfied. The process of scattering may be 
thought of as one of virtual radiation. 

At low frequencies, when the wavelength of incident sound is much greater than the 
maximum dimension of the object, the phase variation of the incident wave over its 
(transparent) surface is rather small: and so, therefore, is that of the normal velocity of 
the virtual radiator. Consider, for example, a thin, rigid circular disc insonified by a 
normally incident, harmonic plane wave of frequency co and particle velocity u in the 
plane of the disc, as shown in Fig. 12.2. The total field is equal to the incident field plus 
that radiated by a disc which oscillates along its axis with amplitude - ~ .  Because a 
vibrating disc generates fields of equal amplitude, but opposite phase, at corresponding 
positions on either side of its equilibrium plane, sound is scattered into the regions on 
both sides of the disc (to its 'rear' as well as to its 'front'). At frequencies for which 
ka << 1, the radiated field is that of a dipole of strength equal to (8/3)j~opoa3~ (see 
Section 6.4.5). The sound pressure resulting from the superposition of the incident and 
scattered fields is, from Eqs (6.30) and (6.31a), 

/~(r, 0) =/Yi +/~s = p0c~7[exp (jkr cos 0) + (8/3)k2a3(1 - j /kr)  cos 0 e-Jk~/4~tr] (12.1) 

where r indicates distance from the centre of the disc and 0 is the angle from the axis of 
the disc on the incident side. 
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Fig. 12.2 Circular disc in an axially incident plane wave. 

The scattered power is given by Eq. (6.42). The ratio of the scattered power to that 
transported by the incident plane wave through the area of the disc in its absence is the 
scattering coefficient, given by 

as - 2Ws/poclt212 = (16/27~z2) (ka) 4 (12.2) 

The 'scattering cross-section' is the scattered power per unit incident intensity. In other 
words, it is the cross-sectional area of a virtual device that redirects all the energy 
incident upon it into the scattered field. The ratio of the scattering cross-section to the 
area of the disc, given by the right-hand side of Eq. (12.2), is very much smaller than 
unity when ka << 1, but increases rapidly with frequency. 

Because the pressure field on the axis of a vibrating piston exhibits nulls in the 
geometric near field (see Section 6.6), the total field pressure at these points in the 
'shadow' zone at the rear equals that in the unobstructed incident field, even at 
frequencies when the disc casts an otherwise quite deep shadow. 

The virtual radiator model is valid at all values of ka, but the disc ceases to 'radiate' 
like a compact dipole once ka exceeds unity. At values of ka very much greater than 
unity, the radiation field of an unbattted disc is similar to that of a baffled disc and 
approximates to a collimated plane wave confined to the projection of the area of the 
disc. Consequently, the scattered field to the rear of the disc almost completely cancels 
the incident field to produce a sharply defined shadow zone (except at the 'bright spots' 
explained above). The cancellation is incomplete because the geometric near field of the 
'radiator' is not purely plane, as revealed by Fig. 6.18. Interference between the incident 
and scattered fields produces spatial variations of mean square pressure along the axis. 

Next we consider the scattering by a rigid sphere. Unlike a disc, a sphere that is 
insonified by an incident harmonic plane wave at ka << 1 does not virtually 'radiate' 
purely like an oscillating sphere (or dipole) because the radial (outward) velocity of the 
'front' of the virtual radiator is not exactly out of phase with that of the 'rear', the phase 
of the incident wave changing by - 2 k a  over the axial diameter. As a result the virtual 
radiator can be considered to comprise a combination of a virtual pulsating sphere 
(monopole) and a virtual oscillating rigid sphere (dipole) operating in harness, as 
illustrated by Fig. 12.3. The integral of the normal component of virtual radial particle 
velocity over the surface of the sphere placed in a plane wave of particle velocity 
amplitude ~ is 

2rca 2 ~ sin 0 cos 0 exp [-jka(1 - cos 0)] dO 

which, for ka << 1, gives the volume velocity of the virtual monopole as 
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Fig. 12.3 Virtual radiators produced by the incidence of a plane wave upon a rigid sphere with 
ka << 1" (a) virtual monopole; (b) virtual dipole. 

= (4/3)~ka3t2 exp (- jka).  The equivalent amplitude of oscillatory velocity of the 
virtual dipole is given by ~7 exp ( - jka)  which, with ka << 1, is simply ~7. Substitution of 
these respective values into Eqs (6.19) and (6.41) gives the power scattered by the virtual 
monopole radiator as 

Wsm - "  2~zaZ(ka)4poc tY 2 (12.3) 

and that by the virtual dipole radiator as 

Wsd = ~aZ(ka)4poclff 2 (12.4) 

The sum gives a ratio of scattered power to that incident upon the sphere as 

Os = ~(ka) 4 (12.5) 

and a scattering cross-section 

As = 7(ka)4/l~a 2 (12.6) 

The power scattered by a sphere is approximately thirteen times that scattered by a 
disc of the same diameter placed normal to the direction of plane wave propagation. 
Scattering by a sphere is independent of the heading of the incident wave, whereas a disc 
scatters none of the energy of a plane wave that propagates in a direction parallel to its 
plane. It is therefore somewhat surprising that reflectors (acoustic 'clouds') convention- 
ally distributed within reverberation chambers to increase the diffusion of the reverber- 
ant field in the presence of large absorbent samples usually take the form of slightly 
curved, thin sheets of wood or plastic. Perhaps a 'random' distribution of spheres of 
various diameters would be more effective. However, an over-dense population of even 
small scatterers produces reverberant energy decay that does not follow the assumed 
exponential form, which invalidates the assumptions basic to the standard method of 
estimating diffuse field absorption coefficients (see Section 12.3). 

As frequency increases, the phase gradient over the surface of the spherical virtual 
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radiator progressively increases. When 2ka = 7c, the 'rear' of the virtual radiator 'moves' 
outwards in phase with outward 'movement' of the 'front'. Scattering is relatively strong 
at this frequency and its harmonics. As the frequency increases further, the phase of the 
unobstructed incident wave, and therefore of the virtual radiator, varies increasingly 
rapidly over the surface. A distinct pure tone diffraction pattern exists, and becomes 
increasingly complicated in form, having many lobal maxima interspersed with minima. 
Consequently, the diffracted field of an object insonified by a high-frequency incident 
field of even small bandwidth takes a simpler, 'smeared' form in which discrete lobal 
features are not apparent. Ultimately, when ka >> 1, each surface element 'radiates' 
independently as a plane piston having a virtual velocity equal to the local component of 
unobstructed incident field particle velocity normal to that element. The largest normal 
virtual velocities exist close to the axis on the 'front' and 'rear' surfaces of the sphere, the 
field of the rear 'piston' destructively interfering with the incident field to produce a 
shadow zone, and the front generating a strong interference pattern ahead of the sphere. 

Scattering by a rigid sphere at frequencies for which ka << 1 typifies that by any 
compact body at low frequency. In particular, the dependence of the scattered power on 
the square of the volume and the fourth power of frequency is generic. 

Scattering by discrete obstacles having finite surface impedance is analysed by 
requiring the ratio of the sum of the incident and scattered pressures on the surface to 
equal the product of the specific surface impedance and the sum of the particle velocities 
of the incident and scattered waves. For all except bodies of simple geometric form, the 
analysis requires application of the K-H integral by means of the boundary element 
method. 

12.3 Scattering by crowds of rigid bodies 

Sound waves that are incident upon a large assembly (crowd) of scatterers are said to be 
'multiply scattered'. Where the wavelength considerably exceeds one or more cross- 
sectional dimensions, each scatters only a small proportion of the energy incident upon 
it; but each receives scattered energy from many others, and the overall effect is 
substantial. The effect may be observed by clapping while standing in a copse containing 
small trees and bushes having quite thin branches. The sound reverberates for a 
considerable time, even though the space exhibits no resonant behav iour -  a good 
example of the difference between resonance and reverberance. 

The phenomenon is of practical concern in relation to noise control in offices and 
workshops. Multiple scattering by furniture, machinery, pipes and other 'fittings' 
strongly affects both sound propagation and reverberation, as mentioned in Section 
9.12. In particular, some of the noise generated by individual machinery sources is 
scattered (or reflected) back towards the source location by the surrounding fittings. As a 
result, the sound level caused by an individual source rises above its free field value in the 
vicinity of the source, but thereafter falls continuously with distance. This behaviour is 
radically different from that observed in a space occupied by single, or widely spaced, 
sources. An important implication is that the use of the Sabine reverberation time 
formula (Eq. (9.44)) to estimate the absorption of such an occupied space is incorrect 
and misleading. 

A similar phenomenon occurs in lakes and oceans. Volume scattering is caused by the 
presence of small organisms, bubbles and debris of various forms. Surface scattering 
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from a rough sea surface also causes a form of reverberation. The effect of volume 
scattering is to inhibit sound propagation, especially at the resonance frequencies of any 
resonant scatterers such as bubbles. In fact, curtains of air bubbles are employed to 
protect underwater structures from damage when underwater blasting operations are 
carried out to enlarge channels or demolish unwanted obstacles. Back scattering is used 
to detect shoals of fish by sonar. 

Analysis of the multiple scattering phenomenon reveals that the variation of sound 
energy with time following impulsive excitation does not take the exponential form 
exhibited by sound fields in empty reverberant enclosures. Instead, it varies according to 
a power law as t -n. The exponent n varies according to the spatial distribution of 
scatterers. In experiments with pistol shots in woods, Kuttruff measured n to be 1.5 
[12.1]. 

12.4 Resonant scattering 

12.4.1 Discrete scatterers 

Systems that exhibit resonant behaviour can scatter incident sound very effectively, even 
when the scattering element is small compared with a wavelength. Examples include the 
mouths of Helmholtz resonators, the open ends of pipes and tubes, structural panels and 
bubbles or sacs of gas in liquids. The origin of the scattering is the re-radiation of sound 
by the large volumetric displacements induced at resonance by the incident sound. 

The Helmholtz resonator with a neck of circular cross-section that is baffled by a rigid 
plane is taken as an example (Fig. 12.4). The volume velocity of the fluid in the neck at 
resonance is given by Eq. (4.19b) as 

0--  2/Oi/(/int -+- /a,rad) (12.7) 

in which/~i is the amplitude of the incident sound wave. If ka << 1, Eq. (6.55) gives 
Za,rad = (poC/~za2)[(ka)2/2 + (8j/3~z)ka], and the blocked pressure is uniform over the 
area of the mouth, irrespective of the form of the incident sound field. The mouth acts as 

Scattered 
wavefront 
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I ~ " - - .~  ~ wavefront  

/ 

�88 

Fig. 12.4 Baffled Helmholtz resonator insonified by a plane wave. 
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(a) (b) 

Fig. 12.5 Distribution of mean intensity in a field produced by interference between a plane 
wave that is normally incident upon a Helmholtz resonator at the resonance frequency and the 
field scattered by the resonator: the 'funnelling' effect. Vector scale 11/2 (a) Ra,rad/Rint--0.4,  
(b) Ra,rad/Rint = 0.04. Reproduced with permission from reference [5.1]. 

a baffled monopole source, re-radiating twice the sound power given by Eq. (6.19). 
Hence, 

Ws = 2 ffi 2 Re {Za,rad}/IZa,ra d + gin t 2 (12.8) 

The intensity of the incident field is/~i 2 cos ck/2poc, giving a scattering cross-section 

As = 4poe Re {Za,rad}/fZa,ra d + gin t 2 COS ~) (12.9) 

This has a maximum of 4poc sec ~b Ra,rad/Rint  + Ra,rad] 2 at resonance when the reactive 
components of Za,rad and gin  t cancel, leaving only the resistive components. If, in 
addition, Ra,rad -- Rint, then As = 2n sec ck/k 2 = 22 sec ~b/2n. Not only is this indepen- 
dent of the area of the mouth, but it is many times the area. It also tends to infinity as ~b 
tends to n/2, invalidating the definition of scattering cross-section. 

The sound power absorbed by the resonator is given by Eq. (7.55). It has maximum at 
resonance and equals the scattered power when Ra,rad = Rint. The origin of these 
remarkable phenomena lies in the effect on the mean sound intensity distribution of 
interference between the scattered, incident and blocked reflected fields, which is 
illustrated by Fig. 12.5. Sound energy is 'funnelled' in towards the resonator mouth. 
This behaviour is characteristic of all resonant acoustic absorbers and emphasizes the 
crucial dependence of their performance on the matching of internal and radiation 
impedances. It corresponds to the condition x~ = 0 and r~ = sec ~b in Eq. (7.23). This 
dependence is often overlooked in literature concerning membrane (panel) absorbers 
and their application. It is difficult to select optimum damping for resonant absorbers 
installed to control reverberant sound in enclosures because the radiation resistance of a 
monopole source varies greatly with frequency and position. References [12.2] and [12.3] 
offer further information on the performance of Helmholtz resonators in enclosures. 

12.4.2 Diffusors 

Scattering by arrays of tube-like elements of different lengths is exploited in the design of 
broadband diffusors for auditoria and sound studios [12.4, 12.5]. Cross-sections of 
various diffusors are shown in Fig. 12.6(a) and an installation is shown in Fig. 12.6(b). 
The differential time delays (phases) of the reflected sound emerging from channels of 
different lengths 'fragment' the reflected wavefront and produce a wide range of 
wavenumber components in the surface field. The lengths and locations of the channels 
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Fig. 12.6 Diffusor: (a) some typical sections; (b) example of an installation. Part (a) reproduced 
with permission from reference [12.4]; part (b) courtesy of RPG Diffusor Systems, Inc., Upper 
Marlboro, USA. 

are arranged according to various mathematical formulae in order to produce a close 
approximation to omnidirectional (diffuse) scattering, which is more or less independent 
of frequency over many octaves. Resonant scattering occurs at mid to high audio- 
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frequencies. Diffusors of this type can be converted into very efficient broadband 
absorbers simply by covering them with a sheet of flow-resistive material. 

12.5 Diffraction 

Diffraction, like scattering, redirects incident sound energy. However, the term is most 
commonly applied to the form of scattering produced by discontinuities of impedance 
presented to incident waves by features such as the edges of screens and barriers, the 
corners of solid bodies, the boundaries of apertures in partitions, and the boundaries of 
sound-absorbent materials where they meet hard supporting structures. As mentioned 
above, it is also applied to the spatially ordered form of scattering produced by periodic 
arrays of small, identical scatterers. Optical diffraction gratings are formed by scoring 
periodic arrays of parallel lines at intervals of the order of a wavelength in transparent 
sheets. Acoustical diffraction gratings are created by arrays of periodically spaced 
objects such as picket fence posts. 

The origin of diffraction by the edges of rigid bodies may be qualitatively explained by 
Huygens principle. As explained in Chapter 2, the form of a freely propagating 
wavefront at any time may be considered to be determined by the combined contri- 
butions of all the elemental spherical wavefronts 'released' while at an immediately 
preceding position. The presence of the body 'blocks' a portion of the wavefront, leaving 
the elemental spherical wavefronts released by the unblocked portion to form the 
ongoing wavefront. Those near the edge are not constrained by mutual interference to 
faithfully project the incident wavefront: instead, they interfere to 'bend' the local 
wavefront around the edge. This phenomenon is illustrated by Figs 12.7 and 12.8, which 
show diffraction by a rigid block and by a slot in a screen. 

Such illustrations of edge diffraction qualitatively explain an everyday example of 
acoustic diffraction. We are able to hold a conversation with neighbours over a high wall 
which separates our gardens, even though we cannot see them. Not only that, but we 
cannot communicate the latest neighbourhood gossip in whispers, however strong; they 
will simply not be intelligible. Diffraction is clearly wavelength sensitive. 

12.5.1 Diffraction by plane screens 

Although the mathematical modelling of diffraction by noise control screens such as 
traffic noise barriers, industrial workshop screens and open plan office dividers is of great 
practical importance, detailed mathematical analysis of the wavelength dependence of 
edge diffraction is beyond the scope of this book. Some simple examples of the 
performance of screens are presented below, but modern design requires the application 
of the boundary element method to deal with complex geometric forms. Those readers 
especially interested in the subject of the design, construction and performance of traffic 
noise barriers are directed to reference [12.6]. 

Instead of mathematical analysis, an approximate geometric analysis of an archetypal 
diffraction problem is presented. It has a tutorial value beyond that of simply providing 
insight into the specific problem to which it is here applied. The construction that forms 
the basis of the analysis is attributed by Rayleigh to the French physicist Augustin 
Fresnel, who invented the lighthouse lens, although some books associate it with 
Huygens. 
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Fig. 12.7 Diffraction of a plane wave by: (a) narrow obstacle; (b) wide obstacle (source unknown). 

Fig. 12.8 Diffraction of a plane wave by an aperture in a screen: (a) low frequency; (b) medium 
frequency; (c) high frequency (source unknown). 

Consider the wavefront of a harmonic plane wave and an observation point P at 
normal distance d, as illustrated in Fig. 12.9(a). Two spherical surfaces $1 and $2, 
centred on P, are constructed. Their intersections with the wavefront take the form of 
circles of radii rl and r2, as illustrated by Fig. 12.9(b). The complex particle velocity on 
the wavefront is uniform. Rayleigh's second integral (Eq. (6.49)) gives the contribution 
of the annular section of wavefront to the pressure at P as 

f~ r2 e-J~Rr dr (12.10) 
- J~176 R 

Since R 2 -- r 2 -t- d 2, r dr = R dR. The integral yields 

lY = poc~ exp ( - j kR1)  [1 - exp ( - jk~) ]  (12.11) 
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Fig. 12.9 Plane wavefront and spherical wavefronts radiated from a point monopole at an 
observation point: (a) section; (b) projection of half-wavelength annuli on a plane. 

where ke = 2g(R2 - R1)/2. When R2 - R1 = 2/2, ke = ~z and/~ = 2jpocg exp (-jkR1). 
The magnitude of/q is twice that of the incident field. The contributions of adjacent 
annuli corresponding to one-half wavelength increments in R cancel because the phase 
exp (-jkR1) of each differs by re. 

The integral over the whole of the infinite plane wavefront does not converge. 
However, on physical grounds it is justified to assume that the acoustic wavenumber 
has a very small imaginary component, so that contributions from increasingly large 
distances are increasingly attenuated. Evaluation of the integral of Eq. (12.11) for the 
central zone for which R1 = d and R2 = d + 2/2, gives/~ = 2poc~Tn exp (-jkd), which is 
twice the incident field value. This zone must not be cancelled by the immediately 
surrounding zone, and so on outwards, because the net result would be zero. Hence, half 
the central zone is retained and the contributions of all the other surrounding contiguous 
ha/f zones disappear by mutual cancellation, as shown in Fig. 12.10. These are known as 
'Fresnel zones'. 

Fresnel zone analysis is applicable only to cases where the normal particle velocity is 
prescribed over very large plane surfaces. Here it is employed in a qualitative manner to 
explain why diffraction by edges of plane screens appears to be caused by virtual sources 
located at the edges. We also briefly revisit the problem of sound radiation from a plane 
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Fig. 12.10 Zone cancellation. 

circular piston, previously discussed in Section 6.6. The fundamental assumption in the 
application of Fresnel zone diffraction analysis is that the particle velocity distribution of 
the incident wave over the unobstructed portion of the plane is identical to that in the 
absence of the diffracting object. This is known as the 'Kirchhoff approximation', which 
leads to fairly accurate results when the acoustic wavelength is very much smaller than 
any aperture formed by the object. Analysis of sound transmission through apertures 
presented in Section 12.5.2 reveals that this assumption is grossly in error when the 
wavelength is much greater than one or both of the principal dimensions of the cross- 
section of an aperture. 

Consider the incidence of a plane harmonic wave upon a semi-infinite, thin, rigid, 
plane screen as shown in Fig. 12.1 l(a). The particle velocity normal to the screen is zero 
on its surface. The corresponding Fresnel zones are constructed in Figs 12.11(b-d), 
together with the line of the edge of the screen when located at various distances from the 
normal projection of the observation point on the plane. When the observation point is 
well 'above' the edge of the screen, the residual uncancelled elements of volume velocity, 
of alternately opposite sign, are seen to cluster along the edge; their contribution is far 
outweighed by that of the uncancelled central zone. The edge creates scattered fields of 
equal amplitude and opposite phase on either side of the screen, as shown by Fig. 12.12. 
When the projected observation point and the edge coincide, the edge elements 
disappear, leaving half the central zone. As the observation point 'descends' further, 
the contribution of the central region decreases and the sound field in the 'shadow' zone 
is increasingly associated with the edge elements, particularly those clustered around the 
'centre' of the edge. 

When the edge coincides with the projected observation point, considerations of 
symmetry suggest that the observed pressure amplitude should be half that of the 
incident wave. In fact, the pressure slightly exceeds this value. The reason is that the 
normal particle velocity in the vicinity of the edge is somewhat affected by its presence. 
Somewhat surprisingly, the sound pressure is not. However, we cannot directly use 
Rayleigh's first integral in terms of pressure distribution over the plane because we have 
no a priori knowledge of the pressure distribution over the surface of the screen. 

As the wavelength increases, the individual Fresnel zones increase in area, as do the 
uncancelled edge elements. This is the qualitative explanation of the fact that screens 
such as traffic noise barriers are less effective against low-frequency noise, such as that of 
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Fig. 12.11 Fresnel zones and residual uncancelled regions of a plane wave incident upon a thin, 
semi-infinite screen associated with various observation points: (a) in the 'illuminated' zone above 
the edge of the screen; (b) level with the edge of the screen; (c) in the 'shadow' zone below the edge 
of the screen; and (d) at the same height as (c) but further from the screen. 
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Fig. 12.12 Theoretical form of the pressure field produced by the incidence of a plane wave upon a 
semi-infinite, thin screen. (a) Incident pressure field, amplitude 1 unit; (b) scattered pressure field; 
(c) total pressure field. Courtesy of Dr M. C. M. Wright, ISVR, University of Southampton. 
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Fig. 12.13 (a) Definition of Fresnel number. (b) Theoretical insertion loss of a thin, semi-infinite 
screen as a function of Fresnel number. 

trucks, than against the higher frequencies generated by passenger cars. Diffraction of 
incident waves other than plane waves is not amenable to such a simple explanation 
because the incident field is not uniform over the plane of the screen. 

Screens are actually more effective against the spherical wavefronts generated by 
nearby sources than against plane waves. Theoretical analysis of diffraction of the field 
of an omnidirectional point source by a semi-infinite screen shows that the non- 
dimensional parameter governing the insertion loss is the 'Fresnel number', which is 
defined by Fig. 12.13(a). Note that the path-length difference is non-dimensionalized 
by wavelength. The insertion loss of an ideal semi-infinite screen is presented in 
Fig. 12.13(b). In practice, values of insertion loss greater than about 15 dB are rarely 
attained by simple plane barriers because of the effects of ground reflection, refraction 
and scattering by wind and multiple reflections from neighbouring objects. Two 
examples of measured and theoretical data are presented in Figs 12.14 and 12.15. 
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Fig. 12.14 Theoretical and measured insertion losses of a barrier on hard ground. Barrier height 
0.3 m, length 1.22 m. Source on centreline at a distance of 1.009 m from the barrier and at a height 
of 0.033 m. Receiver on the centreline at a distance of 1.491 m from the barrier and at a height of 
0.200 m. Reproduced with permission from Lam, Y. W. and Roberts, S. C. (1993) 'A simple 
method for the accurate prediction of finite barrier insertion loss'. Journal of the Acoustical Society 
of America 93: 1445-1452. 
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Fig. 12.15 Theoretical and measured insertion losses of a barrier on grass-covered ground. Source/ 
barrier and barrier/receiver distances = 2.0 m; source and receiver both 0.12 m above the ground; 
barrier height 0.25 m. Reproduced with permission from Isei, T., Embleton, T. F. W. and Piercy, J. 
E. (1980) 'Noise reduction by barriers on finite impedance ground'. Journal of the Acoustical 
Society of America 67(1): 46-58. 
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12.5.2 Diffraction by apertures in partitions 

The insertion losses of many practical constructions are limited by leakage of sound 
through apertures. Engine noise enters cars through the gaps around foot pedal holes 
and wind and tyre noise slips through imperfect door seals. Traffic noise enters buildings 
though poorly fitted window frames and doors. Aircraft noise enters houses through the 
gaps in poorly constructed roofs and neighbour noise can pass between dwellings via 
inadequately sealed penetrations of the dividing wall. Machinery noise can escape 
through apertures in enclosures that may be unavoidable for operational reasons. It is 
clearly very important for noise control engineers to be aware of the dependence of the 
sound transmission behaviour of apertures on their geometric forms and on frequency. 

The diffraction of sound by the edges of apertures of which the principal cross- 
sectional dimensions are large compared with a wavelength is little different in nature 
from that produced by the straight edge discussed above: the Kirchhoff approximation 
applies. The directivity of the sound field transmitted through a circular aperture in a 
thin screen insonified by a normally incident plane wave at high frequencies correspond- 
ing to ka >> 1 closely resembles that of the radiation field of a rigid, circular piston 
vibrating in a rigid plane baffle, as described in Section 6.6. Application of Fresnel zone 
analysis to transmission of an obliquely incident plane wave in the same frequency range 
shows that the transmitted intensity is principally confined to a 'beam', which is 
analogous to that formed by the transmission of light incident from the same direction. 

By contrast, the diffraction of sound by an aperture that has one or both cross- 
sectional dimensions small compared with a wavelength produces quite different 
transmission behaviour. We consider first the transmission of sound energy through a 
circular hole in a rigid wall upon which a harmonic plane wave is incident (Fig. 12.16). In 
the frequency range for which ka << 1, the blocked pressure may be assumed to be 
uniform over the opening of the hole, irrespective of angle of incidence 4~. Provided that 
the hole is more than a few millimetres in diameter and not longer than about 250 mm, it 
may be assumed that viscous losses are small compared with radiation losses. It may also 
be assumed that the sound field within the hole is predominantly plane, so that the hole 

Fig. 12.16 Tubular aperture (hole) in a wall insonified by a plane wave. 
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forms a waveguide to which the two-port transfer relation given by Eqs (8.49a,b) applies. 
Thus 

/~1 P2 

in which Q1 and Q2 are the amplitudes of the volume velocities at entry and exit. The 
pressure at entry is equal to that which would exist in the absence of the hole (the blocked 
pressure) plus the pressure caused by the motion of the fluid in the hole, thus: 

Pl -- 2 p i -  01/a,rad (12.13) 

The exit pressure is given by 

fi2-- 02Za,rad (12.14) 

The radiation impedances Za,ra d may be assumed to correspond to those of a baffled 
piston given by Eq. (7.54). Elimination of Q1 yields the solution for the exit volume 
velocity in terms of the incident pressure 

0 2  -- 2ffi [ j(~a2/poc)Z2,rad -t- (poc/7~a 2) sin kL + 2Za,ra d cos kL]-1 (12.15) 

The sound power radiated from (transmitted by) the exit of the hole, is given by 

Wt -- 1 02 2 Re {Za,rad} (12.16) 

The sound power transmission coefficient r is defined as the ratio of transmitted to 
incident power. If we assume that the incident power equals the incident intensity times 
the cross-sectional area of the hole, 

Z(~))-- 2 p o c m t / l  fii 2~a2 - poClO2/ffi 2 Re {Za,rad} sec ~/7~a 2 (12.17) 

The dependence upon hole area and angle of incidence is technically correct in terms of 
the assumption concerning incident power, but misleading. It would be preferable for 
practical purposes to normalize the transmitted power on the blocked pressure. 

At frequencies where both the length and radius of the hole are much smaller than a 
wavelength, Eq. (12.15) reduces to 

0 2  '~ - -  2jOzazlYi/poc)[16ka/3~z + (ka)(L/a)]- 1 (12.18) 

which is much greater than the volume velocity of an area 7~a 2 of  the incident wave. The 
first term in the denominator represents the sum of the inertial components of the 
radiation impedance (a double end correction). The second term represents the inertia of 
the fluid in the hole, which moves as an almost rigid mass because, when kL << 1, its 
inertial impedance is far less than its elastic impedance (see Section 4.4.1). The internal 
inertia is dominant when L/a > 2. The sound power transmission coefficient for normal 
incidence is given approximately by 

r(O) ,.~ 2[(L/a) + (16/3rc)(a/L)] -2 (12.19) 

The same power is re-radiated (scattered) on the incident side of the wall because of 
almost equal volume velocities at entry and exit. When L/a << 1 the transmission 
coefficient is about 0.7. When L/a > 2, but kL << 1, ~ ~ 2(a/L) 2. In the case of the 
vanishingly thin wall, the oscillatory flow is not the same as that of a piston in a baffle 
(see Section 7.10). In this case, it is not reasonable to neglect the contribution to the 
aperture impedance of viscous forces associated with oscillatory flow around the sharp 
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edge. Mean flow through the hole significantly influences the sound transmission by 
contributing an acoustic resistance proportional to the Mach number [12.7]. These 
complications are not considered further. 

At the natural frequencies of the fluid in the hole when bounded by pressure release (or 
rigid) ends, the hole is an integer number of one-half wavelength long, kL  = nrc, and Eq. 
(12.15) reduces to 

0 2  --  ( - -  l )np~. /Za,ra  d (12.20) 

The sound power transmission coefficient is given by 

z(O) = �89 Re {Za,rad)/rca2lZa,rad 2 ~ 9rc2/128 ~ 0.7, ka << 1 (12.21) 

The volume velocities at exit and entry are equal in magnitude and the inertial 
contribution of the oscillating fluid in the hole is zero: ~ is governed by the radiation 
impedance. 

At frequencies for which kL = (2n-  1)~/2, or L = (2n-  1) 2/4, Eq. (12.15) reduces to 

Q 2  - - 2 j ( ~ a 2 1 5 i / p o c ) [ ( r c a 2 / p o c ) 2 2 2 , r a d  + l ] -  1 (12.22) 

and, with ka << 1, 

z(0) ~ 2(ka) 2 (12.23) 

So far, all the approximate values of r(0) have been less than unity. However when 
L/a > 1, certain values of kL produce minima in the modulus of the denominator of 
Eq. (12.15) and z(0) becomes greater than unity. This apparent anomaly arises from the 
same assumption that led to absorption and scattering cross-sections much greater than 
the mouth area of correctly tuned Helmholtz resonators when at resonance (see Sections 
7.11.1 and 12.4.1). Interference between the incident and re-radiated wave fields causes 
the mean intensity field to take a form in which energy is 'funnelled' in to the entry of the 
hole. 

Examples of the theoretical transmission loss of two holes of quite different length-to- 
radius values are presented in Figs 12.17(a) and (b). It is abundantly clear that the 
assumption of an 'open window' transmission loss of 0 dB which is made in many books 
on noise control and building acoustics can be totally erroneous. The transmission loss 
approaches 0 dB at values of ka much greater than unity. 

Apertures in and around structures often take the form of gaps/slits, which may be 
thin, but not necessarily short, compared with a wavelength. Everyday examples include 
gaps around poorly fitting doors and movable room dividers. The analysis is more 
complicated than that for circular holes; for further information the reader is directed to 
references [12.8] and [12.9]. An example of the transmission loss of a slit of variable 
length is shown in Fig. 12.18. A general conclusion to be drawn from all published 
theoretical and experimental results is that the transmission loss of a slit tends to differ 
little from 0 dB at frequencies above that at which the slit length equals one wavelength. 
This behaviour is exploited by manufacturers and installers of seals in vehicles, who scan 
a very high-frequency source over the seals to reveal flaws through excessive sound 
transmission. 

The foregoing exposition has largely neglected the effects of viscosity on sound 
transmission through holes and slits. It is generally small provided that the minimum 
cross-sectional dimension of the aperture exceeds a few millimetres. It is possible to 
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Fig. 12.17 Theoretical transmission loss of holes of very different ratios of length to radius (h/a): 
(a) short; (b) long. Reproduced with permission from reference [12.8]. 

reduce high-frequency sound transmission through holes and gaps by lining them with 
sound-absorbent material of high flow resistance, as for a lined duct. 

12.6 Reflection by thin, plane rigid sheets 

Reflectors in the form of sheets of material such as plywood and Perspex (Plexiglas) are 
often installed above the orchestral platform in concert halls to improve communication 
between players who are widely separated. They are also commonly installed around the 
upper side areas of the audience space to increase the perceived aural spaciousness of the 
hall by producing reflections that arrive at the listeners' ears from a lateral direction. 

When sound falls upon a reflective sheet suspended in free space, it is partly reflected 
(in a specular sense), partly scattered and partly diffracted by the edges. In the case of 
plane wave incidence on a plane, square sheet, the relative energies of these secondary 
wave field components depends upon the angle of incidence relative to the normal to the 
sheet and the ratio of the sheet side length to the acoustic wavelength. In relation to the 
effectiveness of a reflector in an auditorium, it is more relevant to consider the reception 
at a specific receiver position of the reflection of a spherically spreading wave from a 
compact source. A theoretical study of this problem [12.10] defines a lower limiting 
frequency for reflector effectiveness in terms of the specular component, which is given 
by 

fL  = [2c/(b cos O)2][alaz/(al + a2)] (12.24) 

where the various dimensions are specified in Fig. 12.19. This indicates that reflectors 
should be placed as close as possible to either the source or the receiver, and must be very 
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Fig. 12.18 Measured transmission losses of a slit-shaped aperture in a wall. Slit width - 4.5 mm, 
slit depth = 50 mm, variable length. Reproduced with permission from reference [12.9]. 

Sound source 

~ a 2  

L~stener 

Fig. 12.19 Geometry of a plane reflector in free field. Reproduced with permission from reference 
[12.10]. 
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large to be effective at low audio frequencies. For example, with distances of al = 6 m 
and a2 - 15 m and a side length of 3 m, fL -- 330 Hz at 0 ~ and 660 Hz at 45 ~ 

12.7 Refraction 

Acoustic refraction in quiescent fluids is caused by spatial non-uniformity of the sound 
speed. This may be caused by spatial non-uniformities of temperature, density, static 
pressure, or of material composition. Refraction which takes place at discrete interfaces 
between regions in which the sound speed is different, causes the heading of the 
wavefronts to alter abruptly, as is observed in the optical phenomenon of the 'bending' 
of a stick poked into water. In outdoor sound propagation it is the effects of refraction 
on propagation over many wavelengths by non-uniformities in the bottom 100 m or so 
of the atmosphere that are of interest, because they strongly influence the propagation of 
noise from sources to receivers. We shall therefore concentrate on this aspect of 
refraction, although, as mentioned in the introduction, refraction has even greater 
influence in the ocean. 

12.7.1 Refracted ray path through a uniform, weak sound speed gradient 

The gradients of mean sound speed in the a tmosphere -  and, indeed, in the o c e a n -  are 
generally so small that the change of sound speed over the distance of one audio- 
frequency wavelength is very small indeed. For the purpose of computing the distortion 
of wavefronts by refraction, it is therefore acceptable to model the wave propagation in 
terms of sound rays that are directed normally to the local wavefront, as illustrated by 
Fig. 12.20. If there exists a variation of sound speed along the wavefront, adjacent sound 
rays will propagate at different speeds and the wavefront will distort, as illustrated in the 
figure. Provided that the local radius of curvature of the wavefront is considerably larger 
than a wavelength, as it is at only modest distances from a compact source, the refraction 
process can be locally modelled in terms of the passage of plane wavefront through a 
sequence of small increments of sound speed across plane surfaces, as illustrated by Fig. 
12.21. The trace wavenumber component parallel to the plane must be equal on both 
sides, which is satisfied if 

Fig. 12.20 Wavefronts and sound rays. 
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Fig. 12.21 Snell's law for locally plane wavefronts. 

k sin 0 = (k + 6k) sin (0 + 60) (12.25) 

which to first order in the small differentials 6k and 60 gives 

6k/60 = - k cot 0 (12.26a) 

which is a form of Snell's law of refraction. In the limit of infinitesimal increments, Eq. 
(12.26a) may be written in terms of the continuous derivative of k with respect to 0. 

We now assume that the speed of sound varies uniformly with only one space 
coordinate x. This is not overly restrictive because, for the purposes of computation, a 
weakly non-uniform distribution may be divided up into a set of contiguous regions of 
linear variation. Equation (12.26a) may now be rewritten as 

dO/dx = (dO/dk) (dk/dc) (dc/dx)  = ~ tan 0/(cl + ~x) (12.26b) 

in which c(x) = c~ + e x .  Rearrangement of the equation and integration in the form 

f cot 0 dO - c~ (12.27) 
C1 -Jr- ~X 

yields 

and therefore 

In (sin 0) = In (Cl q- 0~X) q- In A (12.28) 

sin 0 = A(cl + o~x) (12.29) 

The constant of integration A = sin O1/c1, where Cl is the sound speed and 01 is the initial 
angle of ray propagation relative to the x-direction at x = 0. The relation between the 
angle of propagation at x and its initial value is 

sin 0/sin 01 = 1 + (o~/cl)x (12.30) 

Geometric proof that the ray path takes the form of the arc of a circle is somewhat 
long winded, so the construction shown in Fig. 12.22 is based upon that a priori 
assumption to provide a more concise demonstration. Note that c~ is assumed to be 
negative: if positive, the ray would curve in the opposite sense. If the circular path 
assumption is justified, then 

R sin 01 --- X n t- R sin 0 = x + R sin 01 (1 + o~X/Cl) (12.31) 

which is satisfied by 

R -- -C l /O~  sin 01 (12.32) 

This shows that the ray which sets off at an angle of n/2 suffers the greatest curvature. 
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X ~ 
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Fig. 12.22 Construction to demonstrate the circular path of a sound ray in a medium having a 
linear variation of sound speed. 

The distance travelled by the ray in the direction orthogonal to that of x is given by 

y = R ( c o s  0 - cos  0,)  (12.33) 

If we assume that the ray that we have followed is just one of many emitted by a point 
source at x = 0, each of which has a different initial propagation angle, the propagation 
angles of each will be different as they pass through any plane of constant x until they 
reach a distance x equal to -cl/c~, where Eq. (12.29) indicates that 0 = 0. Here all the 
rays will be parallel and no further refraction will occur. However, this could not occur 
in practice because sound speed never decreases linearly with distance to a value of zero. 

12.7.2 Refraction of sound in the atmosphere 

For most of the time, the speed of sound in air during the day near the ground decreases 
with height. Consequently, the paths of rays emitted by an omnidirectional source take 
the form shown diagrammatically in Figs 12.23 and 12.24. Note that the pattern is 
symmetric. It is seen that there is a shadow zone beyond which the source cannot be 
heard. The temperature at the typical cruising height of modern aircraft is of the order of 
-40~  where the speed of sound is about 305 m s -1 Refraction by the negative 
temperature gradient protects us from the sonic booms of military jets and Concorde. 

Between heights of about 10 km and 30 km the sound speed tends to increase with 
height, especially in the summer in the Northern Hemisphere. The effect is to bend sound 
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Fig. 12.23 Symmetric refraction due to a temperature lapse. Reproduced with permission from 
Berry, A. and Daigle, G. A. (1988) 'Controlled experiments on the diffraction of sound by a curved 
surface'. Journal of the Acoustical Society of America 83: 2047-2058. 
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Fig. 12.24 Asymmetric refraction pattern due to convection by a boundary layer. Reproduced 
with permission of John Wiley & Sons, Inc., from Anderson, G. S. and Kurze, U. J. (1992) Chapter 
5 in Noise and Vibration Control Engineering (L. L. Beranek and I. L. V6r, eds). John Wiley & Sons, 
New York. Copyright �9 1992. 

rays emitted by sources on the surface back down again. The phenomenon explains 
many accounts of 'anomalous' sound propagation, when very loud sounds, such as those 
of heavy gunfire, explosions and rocket launches, have been heard at distances of the 
order of 150-250 km from the source, but not at distances of between 50 and 150 km. 
Under certain conditions, a portion of the temperature-height profile fairly close to the 
ground suffers an 'inversion' where the temperature increases with height. This causes 
sound rays to bend downwards and is a crucial 'worst case' for noise control engineers in 
estimating the impact of industrial, aircraft and traffic noise on local residents. 

Refraction is also caused by convection of sound by air movement. Close to the 
ground the wind generates a boundary layer in which the ground speed is zero at ground 
level and increases non-linearly with height up to the free wind speed at heights of the 
order of 10 m. The actual boundary layer profile depends very much on the topology of 
the local terrain and is quite different in towns and open country. The refractive effect of 
the boundary layer is seen in Fig. 12.24 to be asymmetric, only creating a shadow zone 
upwind, which explains the difficulty of verbal communication in that direction. 
Refraction by the flow speed gradient across the mixing layer plays an important role 
in controlling the directivity of turbulent jets. 

Quest ions  

12.1 Derive an expression for the resonant scattering cross-section of an optimally 
tuned, unbaftled Helmholtz resonator in free space. The acoustic radiation 
impedance of the mouth may be assumed to be given by (poc/rcaZ)[(ka)2/ 
4 + 0.6jka]. The blocked pressure may be assumed to be equal to the incident 
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pressure. Compare your result with that immediately after Eq. (12.9). What  is the 
physical reason for difference? Would the presence of the body of the resonator 
substantially alter the scattering cross-section? 

12.2 The combination of a condenser microphone capsule mounted on a coaxial 
preamplifier case is modelled as a semi-infinite, rigid, circular cylinder of radius a. 
By assuming that the acoustic radiation impedance of the virtual radiator induced 
by the incidence of an axially directed plane wave on the microphone is given by the 
expression in the previous question, derive an expression for the complex 
amplitude of pressure on the microphone diaphragm in terms of that of the 
incident field, on the assumption that the diaphragm is effectively rigid. Calculate 
the ratio of the pressures with a = 6.25 mm at frequencies of 100, 1000 and 5000 
Hz. 

What do you glean from this example about validity of calibration of free field 
microphones by insertion into the cavity of a pistonphone that generates a known 
pressure on the diaphragm? How do you think the angle of incidence of a plane 
wave to the microphone axis would affect the blocked pressure on the microphone? 
Try a boundary element method analysis of the problem. If you haven't got access 
to boundary element method software, pester your professor to make it available. 
It's an essential tool for the engineering acoustician. 

12.3 A straight, circular hole in a wall is modelled as a straight tube of circular cross- 
section. Derive an expression for the ratio of the contributions made by viscosity 
and inertia to the differential impedance ( A p / Q )  of the fluid in the hole as functions 
of frequency (in the range k l  << 1) and the hole radius. Assume Poiseuille flow with 
/~ = 1.8 x 10 -5 kg m -1 s -1. [Hint: Refer to Section 7.4.2.] Determine the 
frequency at which the contributions from viscosity and inertia are equal in a hole 
of 2 mm diameter. Of what significance is your result for the acoustic modelling of 
holes in partitions? 

12.4 The temperature-height relation in the atmosphere close to the ground is given by 
T(h) /T(O)  = 1 - ~h, where h is height and ~ is 0.033 ~ per metre. Plot the paths of 
the rays emitted by an omnidirectional source located 2.0 m above the ground at 
angles to the vertical of 0 ~ 30 ~ 60 ~ and 90 ~ 

12.5 Demonstrate by means of the principle of acoustic reciprocity that the sound 
pressure in the free fluid in the plane of a semi-infinite, very thin, rigid screen that is 
insonified by a point source at any position is unaffected by the presence of the 
screen. 



Appendix 1: Complex exponential 
representation of harmonic 

functions 

A1.1 Harmonic functions of t ime 

As explained in Appendix 2, arbitrary functions of time and space may be analysed into, 
and synthesized from, infinite sums of harmonic functions. The most general expression 
of harmonic time dependence is 

f ( t )  = A cos(cot + 4~) (Al . la )  

which may be decomposed into sinusoidal and cosinusoidal components as 

f ( t )  = (A  cos qb) coscot - (A sin ~b) sin cot (Al . lb)  

These two components are in quadrature (relative phase zt/2). 
For an individual harmonic function, the phase 4~ is arbitrary because it depends upon 

an arbitrary choice of time origin, as demonstrated by setting t to zero. In cases where 
two harmonic functions of time are linked, as in the case of the harmonic excitation and 
response of a linear system, the phase is not arbitrary. It is determined by the dynamic 
properties of the system and is therefore characteristic of the system. 

For reasons of analytical convenience, together with ease of graphical representation 
and interpretation, it is universal practice to represent the expressions in Eqs (A1.1 a and 
b) in a form known as 'complex exponential representation' (CER). Thus, 

f ( t )  = A exp (jcot) (Al.2) 

in which it is implicitly understood that the real part of the complex expression 
represents the real function. 

Let .,~ --- a + jb.  Then 

f ( t )  = Re {(a + jb )  (cos cot + j sin cot)} = a cos cot - b sin cot (A1.3) 

Comparison with Eq. (Al . lb)  shows that 

a = A cos~b 

b = A sin q5 

a 2 + b2= A 2 

(A1.4a) 

(A1.4b) 

(A1.5) 

380 
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Fig. AI.1 Complex exponential representation of harmonic signals by phasors. 

and 

4) - arctan (b/a) (A1.6) 

The function A exp (joot) may be represented in the complex plane by a rotating vector 
called a 'phasor', illustrated by Fig. AI.1. The projection of the phasor on the real axis 
represents the real quantity f(t).  The time-independent vector represented by the 
complex number A is the 'complex amplitude' of the harmonically oscillating quantity. 
(In this book, a complex amplitude is signalled by the 'tilde' placed over the symbol 
representing the quantity: it has the units and dimensions of that quantity.) The time- 
independent vector A is multiplied by the unit vector e j~ rotating anti-clockwise at 
speed ~o, which is the angular frequency of the harmonic function (unit: tad s-  1). 

In fact, it would be more logical to avoid the necessity to extract the real part of the 
resulting phasor by taking the average of the sum of counter-rotating phasors of 
complex amplitudes A = a  + jb and A* = a - j  b, which, as shown in Fig. A1.2, is 
always real. This form of CER is sometimes employed in theoretical analysis and is basic 
to Fourier analysis, in which both positive and negative frequencies are used (see 
Appendix 2). However, the following sections are based upon only the positive 
frequency convention, which is more commonly taught and employed in schools of 
mechanical engineering. 

[m 

s s SS7  

Fig. A1.2 Counter-rotating phasors. 
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Fig. A1.3 Analogy between angular frequency and wavenumber. 

A1.2 Harmonic functions of space 

Plane waves that are generated by a harmonic source in a linearly responding medium 
have spatially harmonic distributions, provided that the phase speed Cph is everywhere 
constant. The distance travelled by a wavefront during one temporal period T = 2~z/co is 
one spatial period, or wavelength 2, given by fl = 2~ZCph/O~. By analogy with temporal 
angular frequency, spatial angular frequency is given by 2~z/2 = cO/Cph. This spatial 
frequency is termed 'wavenumber' and denoted by k. The analogy is illustrated by Fig. 
A1.3. 

Again by analogy with time dependence, k may be interpreted as phase change per 
unit distance in a pure travelling wave, just as co is phase change per unit time. 
Consequently, harmonic space dependence in a pure travelling, harmonic, plane wave 
may also be expressed in the CER form as 

f (x)  = .~ exp ( ___ jkx)  (A 1.7) 

the alternative signs indicating that waves may travel in both x-directions. 

A1.3 CER of travell ing harmonic plane waves 

Combination of the CER expressions in Eqs (A1.2) and (A1.7) gives the CER expression 
of travelling harmonic plane waves as 

f +  (x, t) = .~ exp [j(o~t - kx)] and f -  (x, t) =/~ exp [j(o~t + kx)] (A1.8) 

Note carefully that when the positive exponent is employed for time dependence, the 
signs of the space dependence is opposite to that of the direction of propagation. (In some 
other books and papers the negative time dependence exponent is used, and then the 
signs of the space dependence match those of direction.) The phasor representation of a 
harmonic wave travelling in the positive-x direction is shown in Fig. 3.8(c), in which 
variations in time and space are represented along two orthogonal axes. The reason for 
the term 'phase speed' is clarified by this figure: a disturbance of given phase (shown 
blocked in) propagates as a wavefront at the phase speed. 
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A1.4 Operations on harmonically varying quantities 
represented by CER 

In employing the single phasor CER to represent harmonic time dependence of real 
physical quantities, it is implicitly understood that the real part of the complex 
expression in Eq. (A1.2) is taken. Thus, the symbol Re{ } is usually omitted during 
analysis. Provided that only linear operations, such as differentiation, integration, 
summation, subtraction and division, are employed, it is necessary to take the real part 
only at the end of an analysis. This is exemplified by taking the time derivative off(t) in 
Eqs (Al.la) and (A1.2): 

and 

d 
- -  [A cos (o~t + q~)] = - coA sin (o0t + q~) 
dt 

(A1.9) 

d [Aexp (jo0t)] = jo0A exp (jolt) (Al.10a) 
dt 

Re {joo(a + jb)exp( jo~t )}  = - o o A  sin (oot + ~b) (Al.10b) 

which demonstrates the equivalence. 
However, non-linear operations such as squaring and multiplication may not be 

implemented in terms of the complex function: the real parts  must  be ex tracted  before the 
application of such operations. The real part of the square of the complex expression in 
A1.2 is not equal to the square of the real part of this expression. (Try it.) A quotient of 
harmonic functions of the same frequency expressed in CER form is independent of time 
and should be rationalized to extract the real and imaginary parts, or real amplitude and 
phase. Thus, (a + jb)/(c + jd) = (a + jb) ( c -  jd)/(c  2 + d 2) = [(ac + bd) + j ( b c -  ad)]/ 
(c 2 + d2). The phase is arctan [(bc - ad)/(ac + bd)]. 

It is often required to derive expressions for the time-average products of quantities 
represented in the CER form. This may be laboriously done by taking the products of 
the real parts and integrating over a period. However, it is much more easily 
accomplished by using the following relation. Let the two harmonic quantities be 
represented by x(t)  = Xexp (jcot) and y(t) = 1?exp (joot). 

The time average product of these quantities is given by 

[ 2rc/o0 1 
x(t)y( t )  - (co/2~z) x( t )y( t )d t  - -~ Re {XY*} (AI.11) 

a0 

In the case of time-averaged squares (mean squares) this expression becomes 

1 1 
x(t) 2 - ~ Re {,I72{'*} - ~ I~'12 (Al.12) 

Students should commit these two relations to memory. 
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A2.1 Introduction 

Frequency analysis is a generic term that embraces any theoretical, computational or 
experimental method of apportioning a function of time to individual frequencies or 
frequency bands. The basis of mathematical frequency analysis was originally laid down 
by Joseph Jean Baptiste Fourier in a paper on heat flow published in 1822. He 
demonstrated that any real function of a real independent variable (except for those 
exhibiting certain forms of discontinuity that are hardly found in nature) may be 
represented as infinite sums of sine and cosine functions of the independent variable. 
Fourier analysis is the mathematical process of determining the magnitudes of these 
'Fourier components'. The distribution of these components is represented as a Fourier 
spectrum. By means of Fourier synthesis (or inverse Fourier transformation), the 
original time function may be reconstructed from these components. For a concise, but 
most accessible, mathematical exposition of Fourier analysis, the reader is directed to 
Fourier Analysis and Generalised Functions (Lighthill, 1964- see Bibliography). 

The mathematical definitions and associated operations that form the basis of Fourier 
analysis are presented below, together with explanations of the various practical means 
by which frequency analysis may be performed and the results presented. The account is 
necessarily brief and oriented towards engineering practice. For more rigorous and 
comprehensive treatments of the subject, readers are directed to specialist texts on signal 
analysis such as those by Bendat and Piersol (1986), Newland (1993), Randall (1987) and 
Jenkins and Watts (1968) cited in the Bibliography. 

Frequency analysis may also be performed by passing a signal through a set of filters, 
which may be either analogue or digital, having centre frequencies distributed over the 
frequency range of interest. The filter bandwidths may either be fixed or proportional to 
centre frequency. 

Frequency analysis is very important in engineering acoustics for the following 
reasons: (1) bounded solid and fluid systems, in which audio-frequency waves propagate 
with little attenuation, vibrate freely at distinct characteristic (natural) frequencies, with 
which are associated characteristic spatial distributions of the field variables (natural 
modes); (2) such systems exhibit the resonance phenomenon by which they respond 
strongly to frequency components of an excitation mechanism that are equal, or close, to 
the natural frequencies; (3) the performance of noise control systems varies with 
frequency; (4) the sensitivity of the human auditory system varies with frequency; (5) 
the response of any linear system to an arbitrary time-varying input can be synthesized 
from knowledge of the Fourier spectrum of the excitation and the frequency response of 
the system. 

384 
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It is appropriate at this point to emphasize that, although analysis of signals and of the 
vibrational behaviour of systems in the frequency (spectral) domain is of crucial 
importance in the practice of engineering acoustics, vital information about the noise 
generating mechanisms and 'health' of machinery and plant is sometimes more readily 
extracted from the time histories of signals acquired from acoustic and vibration 
transducers, particularly if acoustic signals are 'slowed down' so that individual events 
can be aurally detected, distinguished and identified. 

A2.2 Categories of signal 

The term 'signal' will be used to mean any function of time. Signals fall into one of two 
principal categories, namely 'deterministic' and 'random'. Signals in the former category 
are predictable in the sense that the value at a future time may be determined from the 
current value. Random signals are, by definition, unpredictable. However, if they are 
'stationary', their time-average properties are independent of the time at which 
averaging commences. The noise of steam escaping from a leak in a high-pressure pipe 
is random and stationary. On the other hand, the noise of a gusting wind blowing 
through trees is random and non-stationary. 

Deterministic signals fall into two sub-categories, namely 'periodic' and 'non- 
periodic'. Periodic signals are characterized by the property that they repeat exactly 
over an infinite number of equal contiguous intervals of time, each of which is called a 
'period'. Consequently, they are deterministic in that the value at a future time can be 
determined from knowledge of the form of the signal within one period. Examples are 
presented in Fig. A2.1. They must, in principle, exist over infinite time. In practice, a 
signal is effectively periodic if it repeats over a very large number of periods. (The signal 
processing literature recognizes a sub-class called 'almost periodic', such as the gas 
pressure in the cylinder of an internal combustion engine running at nominally constant 
speed, which exhibits small, unpredictable, variations from periodicity.) 

Deterministic, non-periodic signals include transient signals that are zero before some 
time and after some later time, the form of which is known; the response of a simple 
linear oscillator to an impulsive input is an example (see Appendix 5). If the oscillator is 
very lightly damped, its free transient motion following disturbance is almost periodic. 

I I 

?-- 
Fig. A2.1 Examples of periodic signals. 



386 Foundations of Engineering Acoustics 

Chaotic signals may be generated by certain forms of non-linear system. They are non- 
periodic and deterministic but, in practice unpredictable, because their long-term 
behaviour is sensitive to minute variations in their initial conditions. We shall exclude 
consideration of such signals. 

A2.3 Fourier analysis of signals 

A2.3.1 The Fourier integral transform 

The basis of Fourier analysis of a non-periodic signal f ( t )  is the Fourier integral 
transform (FIT) defined by 

F F(co) - f ( t )  e -j~ dt  
o o  

(A2.1) 

which is normally complex. Note that the unit of F(co) is that off(t) times that of time - 
or alternatively, times the inverse of frequency. Its inverse is defined by 

'F f ( t )  - ~n F(co) e j~~ dco (A2.2) 
o o  

which must be real. (Alternative definitions incorporate the factor 1/2n differently: the 
differences need not concern us here.) 

These relations are formally important, but not directly usable on continuous signals, 
for which the integral of Eq. (A2.1) is not finite because it is evaluated over infinite time. 
However, it is worth presenting a mathematically non-rigorous, but, in my view, 
conceptually helpful, explanation of the operation performed on the signal by the FIT. 
By reference to the exposition of the complex exponential representation of harmonic 
signals in Appendix 1 we may interpret Eq. (A2.2) as stating that the signal fit) may be 
represented by the summation of an infinite number of phasors of complex amplitude 
F(co) rotating at all speeds o9 in the range - ~  to + ~ .  Consider just one of the infinite 
family of phasors that make up f i t )  to be multiplied by a unit phasor rotating at speed 
-co' and integrated over time, as expressed by Eq. (A2.1). The speed of rotation of the 
resultant phasor is (co - co'). Integration over many complete  cycles of rotation of this 
phasor, each of period 2hi(co - co'), produces a null result because it will have rotated 
through many complete revolutions, as illustrated by Fig. A2.2. The only residual non- 
zero result is produced by the Fourier component phasor of which co - co', because it 
does not rotate and the integral simply grows as time progresses. Hence the FIT has 
'picked out' a particular frequency component. Precise selection is achieved only over 
infinite time because a resultant phasor rotating at a speed infinitesimally different from 
zero takes an infinite time to rotate. 

Consideration of the contributions of each pair of counter-rotating phasors at 
frequencies co and -co to the integral of Eq. (A2.2) shows that, for f ( t )  to be real, 
F ( -co)  = F(co)*. The same result is obtained by considering the real and imaginary 
parts of F(co) and F ( -  co) obtained from Eq. (A2.1). 

The spectrum of Fourier components of non-periodic signals is continuous. 
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Fig. A2.2 Graphical illustration os Fourier transformation. 

A2.3.2 Fourier series analysis 

In cases of a periodic signal, all the information about the signal resides in one period T. 
The property of periodic signals that f(t + T) = f(t) may be expressed in terms of Eq. 
(A2.2) as 

f_= F(~o) e fi~ d~o - F(co) eJ~te fi~ do) (A2.3) 
OO OO 

which is satisfied only if o~ = _+ 2~zn/T. Hence the Fourier spectrum of a periodic signal is 
confined to an infinite set of discrete harmonics at frequencies that may be denoted by 
~o~. Equation (A2.2) becomes 

f ( t ) -  Z G@~ (A2.4) 
n - - - - o C  

in which the constant 1/2~ is subsumed in the process of transition from an integral to a 
s u m .  G(o3n) is equivalent to a complex amplitude as defined by Eq. (A1.2). 

Let us substitute the simple harmonic expressionf(t) = A cos (~t + ~) into Eq. (A2.1) 
to determine the equivalent value of G(o~). 

G(con) - A cos(f2t + d~)[cos (2rmt/T) - j s i n  (2rcnt/T)] dt (A2.5) 
(X) 

Through orthogonality, the integral is zero unless (2~n/7) = _+ f~, in which case it may 
be subdivided into an infinite number of integrals over period T, each of which has the 
same value. Therefore, we may restrict the transform to a single period: 



388 

and 

Foundations of Engineering Acoustics 

G(con) = A cos(~2t + 4~)[cos S2t - j s i n  S2t]dt 

= (T/2) [A cos 4~ + jA sin ~b] (A2.6a) 

G ( -  con) = (T/2) [A cos ~b - jA sin ~b] (A2.6b) 

Hence, from Eq. (A2.4), 

f(t) = 2{[A cos 4~ + jA sin 4~)] [cos (fit) + j sin (tit)] 

+ [A cos 4~ - jA sin 4~] [cos (tit) - j sin (f~t)]} 

T 
- [A cos (f~t + 4))] (A2.7) 

2 

Consequently, a factor of 2/T must be introduced into the transformation process except 
for the special case n = 0, when the factor is 1/T. 

The equations of Fourier series analysis that correspond to Eqs (A2.1) and (A2.2) are 

G(con) - -~ f(t) e -j~ dt, n r 0 (A2.8a) 

lf0  G(0) - -~ f(t) at, n - 0 (A2.8b) 

and 
c~  

f(t) - ~ G(con)e j~"t (A2.9) 
- - O 0  

with COn = 2rcn/T. The Fourier coefficients G exist only at frequencies equal to n/T (Hz). 
The spectrum of coefficients is therefore a line spectrum. The phase spectrum presents 
4~ = arctan [Im{G(con)}/Re {G(con)}] against frequency. Its form depends upon the choice 
of time origin, which is arbitrary for an individual function of time. It becomes 
meaningful when the ratio of G(o)n) for two signals having the same period is of concern, 
as with impedance and mobility. It is also meaningful when the product of two periodic 
signals is of concern, as with intensity. 

A2.3.3 Practical Fourier analysis 

It is clear that the FIT cannot be performed on continuous, non-periodic signals by a 
physical instrument because the process must be time-limited. Consequently, estimates 
are made of the Fourier spectrum by means of extracting many digitized records of a 
signal over equal periods of time (which may vary from milliseconds to tens of seconds) 
and treating each record as one period of a virtual periodic signal, as illustrated by Fig. 
A2.3. In this way a non-periodic signal is analysed into virtual harmonic components. 
The 'frequency resolution' (interval between virtual harmonic frequencies) is the inverse 
of a single record length in seconds. The upper limit of accurate spectral estimation is 
determined by the Nyquist sampling criterion as fmax-  1/2At where At is the digital 
sampling interval. 
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Fig. A2.3 A record extracted from a continuous, non-periodic signal. 

Before the series transform is applied to each record, the discontinuity that is 
introduced by cutting the continuous signal is suppressed by multiplying it by a 
window function, as illustrated by Fig. A2.3. This has a number of commonly used 
forms, of which the one most commonly applied to broadband random signals is known 
as the 'Hanning' window. Application of a window clearly biases the contribution of 
different portions of the record to the signal to be transformed. Therefore, compensation 
is made by 'overlapping' the windowed records as shown in Fig. A2.3. Overlaps of 50 or 
75% are commonly applied. A rectangular window is applied to transient signals. 

In the case of continuous, stationary signals, the real and imaginary parts of the 
spectral components derived from each record are accumulated and arithmetically 
averaged over many records to give the estimate of the magnitude of each spectral 
component, which is usually displayed in the form of the corresponding mean square 
value of the virtual harmonic signal (but see Section A2.4). As the number of records 
averaged increases, the spectral estimate of stationary signals approaches that which 
would result from averaging over infinite time. Of course there are estimation errors, 
which decrease in inverse proportion to the number of independent spectral estimates. 
This number equals the number of records analysed multiplied by (1 - s), where 100s is 
the percentage overlap. The estimation error of the relation between two non-periodic 
signals is also a function of the inter-signal coherence (see Appendix 4). In the case of 
continuous, non-stationary signals, a running average process may be employed. 

In practice, signals have to be digitized at finite intervals of time. The resulting spectra 
have components only at frequencies that are integer multiples of the inverse of the total 
record l e n g t h -  which may be extended by zeros beyond the time during which a 
transient exists to increase the frequency resolution. 

The Fourier transformation process is performed by sampling the analogue signal and 
digitizing the samples. The transformation arithmetic is then performed by means of 
applying a discrete Fourier transform (DFT) to the digital sample. Various forms of 
computationally efficient DFT algorithm have been developed under the generic name of 
Fast Fourier Transforms (FFT). Details will be found in the Bibliography entries cited 
earlier. 
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Table A2.1 Standard frequency bands (Hz) and A-weighting 

One-third octave Band limits 
Octave band centre band centre 

Band number frequency frequency Lower Upper 
A-weighting 

(dB) 

14 25 22 28 -44.7  
15 31.5 31.5 28 35 -39 .4  
16 40 35 44  - 34 .6  

17 50 44 57 - 30.2 
18 63 63 57 71 -26.2  
19 80 71 88 -22.5 

20 100 88 113 - 19.1 
21 125 125 113 141 -16.1 
22 160 141 176 - 13.4 

23 200 176 225 - 10.9 
24 250 250 225 283 -8 .6  
25 315 283 353 -6 .6  

26 400 353 440 -4 .2  
27 500 500 440 565 - 3.2 
28 630 565 707 - 1.9 

29 800 707 880 -0 .8  
30 1 000 1 000 880 1 130 0.0 
31 1 250 1 130 1 414 +0.6 

32 1 600 1 414 1 760 + 1.0 
33 2 000 2 000 1 760 2 250 + 1.2 
34 2 500 2 250 2 825 + 1.3 

35 3 150 2 825 3 530 + 1.2 
36 4 000 4 000 3 530 4 400 + 1.0 
37 5 000 4 400 5 650 + 0.5 

38 6 300 5 650 7 070 -0 .1  
39 8 000 8 000 7 070 8 800 - 1.1 
40 10 000 8 800 11 300 - 2.5 

41 12 500 11 300 14 140 -4 .3  
42 16 000 16 000 14 140 17 600 - 6.6 
43 20 000 17 600 22 500 - 9.3 

Reproduced in part from Fundamentals of Noise and Vibration (Fahy and Walker, 1998)- see 
Bibliography. 

A2.3.4 Frequency analysis by filters 

A frequency analysis filter is an analogue device or a digital process that  discriminates 

more  or less strongly against frequencies outside a range about  its centre frequency. The 

details need not  concern us here. Bandwidths  are conventionally either fixed, or 

propor t ional  to the centre frequency, such as one-third octave and one octave filters, 

which have bandwidths  of  approximately  23% and 71% of the centre band frequency, 

respectively. Their s tandard centre frequencies and bandwidths  are tabulated in Table 

A2.1. The process of filtering by cont iguous filters is illustrated by Fig. A2.4. The outputs  

of the filters are generally squared and t ime-averaged for presentation,  as illustrated by 

the figure. 
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Fig. A2.4 Frequency analysis by contiguous filters. Reproduced with permission from Fahy, F. J. 
(1998) Chapter 5 in Fundamentals of Noise and Vibration. E & F N Spon, London. 

It should be carefully noted that all filters distort the time history of signals that pass 
through them. This is principally due to large deviations of phase from the ideal zero 
value in the region of the edges of the filter. If band-limited impulse response is 
measured, the true impulse response of the system is convolved with that of the filter. 
This constitutes a serious problem when trying to measure rapidly decaying impulse 
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responses in rather narrow bands, as in the measurement of short reverberation times in 
1/3 octave bands at low audio frequencies. Deconvolution to generate the true impulse 
response may be achieved by means of appropriate digital signal processing. 

A2.4 Presentation of the results of frequency analysis 

The formats of presentation of the results of frequency analysis vary widely and can be 
the source of considerable confusion, and even of error, on the part of inexperienced 
analysers. Previous sections show that the spectra derived from any form of frequency 
analysis of continuous signals should, in principle, take the form of discrete values 
attributed to each harmonic of a periodic signal, to each virtual harmonic of a non- 
periodic signal, or to each centre frequency of a contiguous filter set. Values attributed to 
any intermediate frequencies have no validity, except as interpolated estimates in the 
case of DFT analysis. Band estimates made in 1/1 or 1/3 octaves should never be 
interpolated by a smooth curve. The frequency resolution of an analysis should always be 
stated. 

Phase spectra of individual signals are meaningful only for periodic and transient 
signals: in these cases they vary with the assumed time origin. They have no meaning for 
individual, continuous, non-periodic signals. However, as indicated above, the average 
relative phase spectrum of two continuous, non-periodic signals is meaningful. 

Most analysers and software package graphics present the results of DFT analysis as 
continuous, interpolated spectral curves, although the display buffer correctly carries 
values corresponding only to the discrete frequencies of analysis. Certain analysers and 
packages allow one to display spectra in terms of rms values of virtual harmonic 
components, as well as mean square values. This practice is potentially dangerous 
because the total mean square value (or spectral 'energy') in a band is correctly obtained 
by summing mean square spectral values in that band, not by summing rms values, which 
is incorrect. This caveat applies equally to calculations of total signal level in dB from 
individual spectral values; see Fig. A2.4 and Appendix 6. 

Spectra obtained by the use of contiguous filters may be displayed as discrete values at 
the filter centre frequencies or by horizontal lines that span the filter bandwidth at those 
values, as illustrated by Fig. A2.5. Note that the 1/3 octave band levels of broadband 
signals are, on average, approximately 5dB (10 log10(3)) less than the 1/1 octave band 
levels because three mean square values, equivalent to the three 1/3 octave band levels, 
have to be added to produce the single 1/1 octave band mean square value. Straight-line 
interpolation between points at the centre frequencies is not recommended, and best-fit 
curve interpolation is meaningless. 

A2.5 Frequency response functions 

Frequency response functions represent the relation between the Fourier spectra of 
input(s) to linear systems and resulting output(s). They are of great practical importance 
because they serve to characterize the dynamic behaviour of linear systems. Impedance 
and mobility are frequency response functions. They are formally the ratio of the 
Fourier components of output to input quantities. In practice, they are calculated from 
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Fig. A2.5 1/1 and 1/3 octave spectra of the same signal. 

estimates of these quantities and therefore, where continuous input signals are 
employed, they are strictly only available at the frequencies of the virtual harmonics. 

A2.6 Impulse response 

The impulse response of a linear system is the inverse Fourier transform of the frequency 
response function. Impulse responses may be determined experimentally by employing 
special forms of excitation signal which are classified as 'maximum length sequences'. 
Because of their particular forms, and the fact that they are deterministic and periodic, 
they afford practical advantages which often makes them more effective than other 
conventional forms of excitation signal, especially where input signal levels must be low 
and where signal-to-noise ratios are unavoidably high. Frequency responses can be 
determined from measured impulse responses by Fourier transformation. 

Questions 

A2.1 Derive an expression for the Fourier transform of an expression of decaying 
oscillation in the form f( t)  = A sin(f~t) exp(-et) :  t >~ 0; f(t)  = 0: t < 0. Plot the 
form of IF(co)J 2. [Hint: express f(t)  in terms of the difference between two complex 
exponential functions of t. Note: f2 = co is a special case.] 

A2.2 Derive expressions for the magnitudes and phases of the Fourier spectral 
coefficients of the periodic function f ( t ) -  A sin (ff2t): 0 < t <  2Tc/f~; f ( t ) =  0: 
2~z/~ < t < 4~z/f~. Plot your results up to the tenth harmonic for A = 1, 
f2 = 3000 rad s-1. How does the phase spectrum change when the time origin is 
moved to T/4? [Hint: if using CER, express f(t)  as a difference between two 
exponential functions.] 



Appendix 3: Spatial Fourier Analysis 
of Space-Dependent Variables 

A3.1 Wavenumber transform 

By analogy with Eq. (A2.1), we may define a spatial Fourier transform of an arbitrary 
function of one-dimensional space f ( x )  as 

/? F(k) - f i x )  e -jk~ dx  (A3.1) 
o o  

which may also be termed a wavenumber transform. The corresponding inverse trans- 
form is 

if  f ( x )  - ~ F(k) e jkx dk  
o o  

(A3.2) 

If the space-dependent function changes with time, so too does the transform. This is 
not helpful in representing structural vibration fields. Therefore, in the case of 
temporally stationary fields, a Fourier transform in time is first performed at a set of 
points distributed over structure in order to 'freeze' the field into an infinite number of 
temporally harmonic components. Subsequently Eq. (A3.1) may be applied to the 
spatial distributions of Fourier coefficients with each frequency. 

Each wavenumber transform component represents a harmonic travelling wave, 
provided that the associated wavenumber is real. However, both in fluids and structures, 
non-propagating, evanescent fields can exist, in which case the transform component 
represents a field of uniform phase that oscillates in time, but not in space, and decays 
exponentially with distance. 

A3.2 Wave dispersion 

In Chapter 8 it is shown that the axial phase speeds of non-plane duct modes vary with 
frequency. In Chapter 10 it is shown that the phase speed of bending waves in beams and 
plates is frequency dependent. This phenomenon is known as wave 'dispersion'. This 
name is attached because a multi-frequency disturbance, such as a short impulse 
generated at one point, will alter its form as it travels, because each frequency 
component travels at a different speed-  hence the pulse disperses or spreads out. The 
phenomenon is illustrated for harmonic disturbances by Fig. A3.1. 

An example of dispersion is presented by Fig. A3.2. It presents the acceleration-time 
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Fig. A3.1 Illustration of wave dispersion: combination of three frequency components of a 
dispersive wave at successive instants of time. Reproduced with permission from Fahy, F. J. 
(1987) Sound and Structural Vibration. Academic Press, London. 
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Fig. A3.2 Bending wave dispersion in a 12-m long steel column of square cross-section formed 
from plate steel. 
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history of the outgoing pulse generated by impact on a hollow column of rectangular 
cross-section constructed from thin plate steel (a campus sculpture), and the subsequent 
time history of returning waves. 

A demonstration of acoustic dispersion in a pipe is described in Appendix 7. 



Appendix 4: Coherence and Cross- 
Correlation 

A4.1 Background 

The terms 'coherence' and 'cross-correlation' as descriptors of the time-average relation 
between two time-dependent quantities, or signals, are used rather indiscriminately in 
much of the literature dealing with acoustic and vibrational fields. This causes confusion 
and uncertainty in the minds of readers, which has been known to cause incorrect 
expressions to appear in the literature [A4.1]. Although rigorous mathematical definition 
of these terms, and the distinction between them, depends upon knowledge of signal 
analysis beyond the elementary material presented in Appendix 2, an attempt is made in 
the following section to explain the distinction in qualitative terms. The term 'signal' 
may be taken to represent any physical quantity of concern. 

A4.2 Correlation 

The 'cross-correlation function' (also known as the 'cross co-variance function') 
quantifies the time-average relation between two time-dependent, time-stationary 
signals in the time domain: each must be reduced to zero mean prior to the operation. 
It is formed by time shifting one of the signals by r with respect to the other, and 
estimating the time-average product of the two. This average is normalized by square 
root of the product of the mean square values of the two signals, to produce the cross- 
correlation coefficient, which can take values between plus and minus unity. This 
coefficient is evaluated as a function of the time shift ~. 

As a simple example, consider the propagation of a very broadband, random, plane 
wave past two microphones separated by distance d. Provided that the signal from the 
microphone that is reached first is positively shifted with respect to the other, the cross- 
correlation coefficient will peak at a value of unity at a time delay r = d/c, and take 
values close to zero at all other time delays. As the bandwidth of the signal is reduced, the 
peak will broaden, and oscillations about zero will appear until, ultimately, with a 
harmonic signal, the coefficient will take a sinusoidal form. 

If one or both of the signals that represent the two quantities are contaminated by 
noise signals that are statistically unrelated to each other, and to both quantities, the 

397 
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maximum correlation coefficients will fall and never reach unity. Once they are swamped 
by noise, the correlation coefficient will be almost zero at all delays. 

A4.3 Coherence 

The 'coherence function' is a measure of the degree of linearity (or stability over time) of 
the relation between two time-dependent, time-stationary signals in the frequency 
domain. Its formation and significance may be understood by reference to Section 
A2.3.3. By multiplying each of the (complex) Fourier series coefficients of an individual 
record taken from one signal by each of the complex conjugate coefficients of the other at 
corresponding frequencies, a set of complex products is formed, one for each frequency. 
These describe the products of the magnitudes and the phase differences estimated for 
these two records only. If this procedure is applied to many records, the real and 
imaginary parts of the estimates at each frequency may be summed and averaged over 
the set of records, resulting in estimated mean values at each frequency, and hence a set 
of mean complex coefficients. These represent what is known as the 'cross-spectrum' of 
the pair of signals. Normalization of the squared magnitude of each of these coefficients 
by the product of the autospectra of the two signals yields the ordinary coherence function 
at each frequency. It can take values in the range from zero to unity. 

The procedure may be clarified by graphical representation in terms of a set of phasors 
that represent the complex coefficients derived from successive signal records for one 
frequency, as shown in Fig. A4.1. If the two signals are linearly related, and the signals 
are uncontaminated by noise, the set will nearly line up, the coherence will be unity and a 
reliable phase estimate will result (Fig. A4.1 (a)). If, on the other hand, there is little linear 
relationship, and/or one or both signals are contaminated by statistically unrelated 
noise, the estimate phasors will tend to spread around the 'clock' and the average will be 
small (Fig. A4.1 (c)). 

At this point, it is appropriate to issue a warning to users of FFT analysers. Estimates 
of coherence are subject to a bias error, which is often a cause of its misinterpretation as 
an indication of non-linearity or of noise contamination of the signals where, in fact, no 
such factors are present. If the two signals represent the excitation and response of a 
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Fig. A4.1 Graphical illustration of coherence: (a) perfect coherence; (b) influence of moderate 
noise; (c) swamped by noise giving very low coherence. 
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system, and the impulse response of the system does not die out within the duration of 
one record, the resulting estimate of coherence will be reduced below its true value. Since 
the record length is the inverse of the frequency resolution (separation of the virtual 
harmonics) of the analysis, increase of record length by means of the zoom function, or 
reduction of the base band, will result in increase of the coherence if the first estimate is 
biased. 

A4.4 The relation between the cross-correlation and 
coherence functions 

Mathematical analysis shows that the cross-correlation is the inverse Fourier transform 
of the cross-spectral density. Reference to Eq. (A2.2) of Appendix 2 shows that, in terms 
of estimates of cross-spectral density made at individual frequencies by FFT analysis, the 
cross-correlation function at time delay ~, evaluated in a band containing a number of 
analysis frequencies, comprises a sum over the band of the cross-spectral coefficients, 
each one being phase shifted by co,~, where co, is the associated frequency. Obviously, if 
the coherence function is well below unity at all frequencies in the band, on account of 
non-linearity or noise, the associated band-limited cross-correlation function will also be 
small. 

However, this is not the only cause of weak correlation in a band; it can be weak even 
if the coherence function is unity at all frequencies in the band. Consider a reverberant, 
multi-mode system excited by a single, band-limited, input. The input-output coherence 
function of a linear, multi-mode system, however complicated, is unity at all frequencies 
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Fig. A4.2 Zero-time-delay correlation is the integral of the cross spectral density. Note that 
negative frequency components of the cross spectrum are omitted. 
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(in the absence of noise contamination). But, the response at a point remote from the 
excitation has contributions arriving with many time delays due to multiple reflection 
(or, in other words, many modal contributions of different phase). The phase of the 
resulting cross-spectrum will vary almost randomly with frequency, as the phases of the 
many wave reflections vary almost independently. As a result, the summation of the 
phase-shifted cross-spectral components will appear 'all around the clock' and the sum 
of the vectors will tend to zero. Wave dispersion will exacerbate the loss of band 
correlation, even in rather non-reverberant systems. Consequently, the cross-correlation 
coefficient may be very small, even though the coherence is high. The effect is illustrated 
by Fig. A4.2. 

The same factors influence the cross-correlation of response between two points on a 
multi-mode system excited by broadband, or multi-frequency, excitation. As an 
example, the 500 Hz 1/3 octave band cross-correlation coefficient of acceleration on a 
typical truck diesel engine falls to near zero once the separation distance exceeds about 
350 mm. This is a vital factor in the modelling of vibrating structures in terms of sound 
radiation, because uncorrelated sources cannot influence each other. 



Appendix 5: The Simple Oscillator 

A5.1 Free vibration of the undamped mass-spring oscillator 

The equation of free vibration of earthed mass-spring system shown in Fig. 4.8 is 

MJc '+  K x  = 0 (A5.1) 

in which x represents the displacement from static equilibrium and the overdot denotes 
differentiation with respect to time. 

We assume the standard form of solution of linear, second-order differential 
equations, x = A e ~t, which yields 

)t = •  1/2 (A5.2) 

The two solutions are summed to give a harmonic oscillation 

x = .4 e ~ ~  + B e -,/~~ (A5.3) 

in which A and/~ are complex amplitudes of harmonic motion. The natural frequency is 

COo = ( K / M )  1/2 (A5.4) 

The complex amplitudes are indeterminate unless two independent specifications of the 
initial kinematic or dynamic state of the oscillator are provided. 

A5.2 Impulse response of the undamped oscillator 

It is assumed that the mass at rest in the equilibrium position is subject to an impulsive 
force at time t -- 0, of such short duration that the displacement of the mass achieved by 
the time of termination of the impulse is so small that the associated impulse of the 
spring force is negligible compared with that applied. The impulse I = f F dt changes 
the momentum of the mass by M v o  = L Consequently its initial velocity of free motion is 
Vo = I / M  and its initial displacement is assumed to be zero. These conditions give 

= j I / 2 M  coo; /~ = - j I / 2 M  coo (A5.5a,b) 

from which the motion subsequent to the application of the impulse is represented by 

x - ( I / M  coo) sin (coot) (A5.6) 

which endures for ever. 
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A5.3 The viscously damped oscillator 

A viscous damper, shown in Fig. 4.10, is inserted in parallel with the spring. Its damping 
coefficient (force per unit speed) is denoted by C. The equation of free motion becomes 

M Y  + C2 + K x  = 0 

Substitution of the assumed solution x = Ae ~t yields 

(M2 2 +  C2 + K ) x =  0 

(A5.7) 

(A5.8) 

from which the two solutions for 2 are 

/]" = --coO~ ----+ coO(~ 2 -  1) 1/2 (A5.9a) 

in which the damping ratio ~ is a non-dimensional quantity defined as ~ = C/2Mcoo. 

These solutions take two forms, depending upon the value of ~ with respect to unity. If it 
is less than unity, the solutions become 

2 = co0[-~ •  - ~2)1/2] (A5.9b) 

If it exceeds unity, they become 

/]"-- coO[--~ .or- (~2__ 1)1/2] (A5.9c) 

The distinction between the physical interpretations of Eqs (A5.9b) and (A5.9c) is of 
great practical significance. The solution for free vibration displacement given by Eq. 
(A5.9b) is 

x -- { [/l(exp[jcoo<l- ~2)1/2]1 _+_/lexp[-jcoo<l- ~2)1/2111 exp(--coo~t) (A5.10) 

which represents a decaying oscillation. Although the zero-crossing interval is constant 
throughout the transient process, the oscillation may not be described as 'simple- 
harmonic' because the Fourier transform of the time-history of displacement yields a 
spectrum of finite width, centred upon co0(1 - ~2)1/2. The greater the damping ratio, the 
wider the spectral peak (see Question A2.1). 

When ~ exceeds unity, the solution takes the form 

x -- A exp{-coo[~" -(~,2 _ 1)l/2]t ] +/}exp{-coo[t," + (~2 _ 1 ) l / 2 ] t }  

No oscillation occurs: the displacement decreases monotonically towards zero. The 
condition ~ = 1 represents the boundary between oscillatory decay and non-oscillatory 
decay. Damping for which ~ < 1 is described as 'sub-critical'; that for which ~" > 1 is 
described as 'over-critical'. 

The term Mco0 that appears in the denominator of ~ represents 'inertia force' per unit 
speed upon which C, the damping force per unit speed, is normalized. This is the reason 
why it is not useful to discuss the magnitude of damping in terms of the dimensional 
damping coefficient C. The application of a toothbrush to a ping pong ball bouncing on 
the end of an elastic band will damp its oscillation very quickly. The application of the 
same damping force to a vibrating springboard would have negligible effect. Systems of 
interest in the field of vibroacoustics rarely exhibit over-critical damping because such 
highly damped systems are unlikely to cause problems of excessive vibration or noise. 
However, the damping ratio of loudspeaker units is usually not much less than unity in 
order to suppress sound-distorting oscillations in their impulse responses at their natural 
frequencies. Since they are mass-controlled over most of their useful frequency ranges, 
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the high damping has little influence on their response at frequencies remote from 
resonance. (Try tapping a loudspeaker cone and observing its response, either visually, 
or by connecting the input terminals to an oscilloscope.) 

An alternative form of non-dimensional parameter that is commonly used in vibro- 
acoustical literature is the 'loss factor', denoted by q. Its use in vibration models is strictly 
confined to the representation of the effects of 'relaxation' in solid materials undergoing 
single frequency vibration, whereby one component of stress is linearly related to the rate 
of strain. The product of this component of stress with vibrational velocity therefore 
represents power dissipation. It is introduced into equations of motion by assuming an 
elastic modulus in the form E' = E(1 + jr/) where it is termed 'hysteretic' damping. It is 
equivalent to a frequency-dependent, viscous damping coefficient. In the case of the 
simple, viscously damped oscillator it is related to the damping ratio by r / -  2~. 

Although the loss factor is a somewhat dangerous concept, in that its use yields a non- 
causal impulse response (the oscillator responds before the impulse is applied), it is also 
widely used to express the rate of dissipation of energy by a system which is undergoing 
non-periodic, but time-stationary vibration. This can be justified on the grounds of the 
Fourier theorem. The time-average rate of dissipation of energy at resonance is C2 2 = 
r/0)0E, in which/~ is the total time-average energy stored in the system. 

A5.4 Impulse response of a viscously damped oscillator 

The effect of damping on the impulse response of an oscillator may be derived by 
applying the same initial conditions as those for the undamped version in A5.2. 

A5.5 Response of a viscously damped oscillator to harmonic 
excitation 

The equation of displacement response of a linear, viscously damped oscillator to force 
excitation applied to the mass at a single frequency is 

M2"+ C2 + Kx = F exp (j0)t) (A5.12) 

which yields the solution for the complex amplitude of displacement response per unit 
force 

97 1 
? "-- - -0)  2 M + j0)C + K (A5.13a) 

In terms of the non-dimensional frequency ratio (0)/0)o) this becomes 

1 
= = (A5.13b) 
F M0)Z[1-(0)/0)o)2+2j~(0)/0)o)] 

The magnitude and phase of this expression are 

1 
- M0)02[(1 _ (0)/o9o)2) 2 + 4(0)/0)0)2~2]1/2 (A5.14) 

)? 
/ = - arctan [2(0)/0)0)~/((0)/0)0) 2 - 1)] (A5.1 5) 

F 
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In vibroacoustics, the relation between force or pressure and resulting structural 
velocity or acoustic particle velocity are of greater physical significance than those 
involving displacement, principally because these forms constitute impedances. The 
relations between force and velocity are 

] F ] -  (o~/co0) (A5.16) 
Mo~0[(l - ((-0/(-00)2) 2 + 4(09/L00)2~2] 1/2 

/ = - arctan [(1 - (o~/oj0)2)/2(0)/~00)~] (A5.17) 
F 

These may be displayed in two forms illustrated by Figs A5.1 (a-c). 
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Fig. AS.1 Response of a viscously damped, linear oscillator to harmonic excitation: (a) magnitude; 
(b) phase; (c) complex plane. 
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A number of important conclusions may be drawn from these figures. The frequency 
of peak velocity response (velocity amplitude resonance) is very close to the undamped 
natural frequency when ~ << 1, as is most often the case. The velocity response 
amplitude at the undamped natural frequency is inversely proportional to the product 
of the mass and the half-power bandwidth (or, alternatively, to the damping coefficient). 
The power per unit force dissipated at resonance is similarly proportional. Damping has 
little influence outside a frequency band of width 2~ coo around the resonance frequency: 
this is termed the 'half-power bandwidth'. The rate of change of phase at the undamped 
natural frequency is equal to - 1/~ COo, which is inversely proportional to the half-power 
bandwidth. Although not proved here, it may be shown that the power dissipated by a 
simple viscously damped oscillator that is subject to a random force that has a flat 
spectrum over at least two half-power bandwidths around the resonance frequency is 
equal to qCO0E, where E is the time-average stored energy. Remarkably, the dissipated 
power is independent of damp&g. This surprising fact is of practical importance in the 
'fuzzy structure' theory that attributes much of the damping of a large principal 
structure such as a building or a submarine to the responses of a multitude of attached, 
resonant, ancillary structures, such as windows or service pipes. 



Appendix 6: Measures of Sound, 
Frequency Weighting and Noise 

Rating Indicators 

A6.1 Introduction 

The most commonly measured physical attribute of sound is sound pressure. Other 
important measures are of sound intensity and sound power (or radiated sound energy in 
the case of transient events). Sound particle velocity can also be measured, but apart 
from implicit measurement by sound intensity measurement equipment, it is not often 
measured outside the research laboratory. Although not necessary for the purposes of 
physical acoustics, it is conventional to define logarithmic measures of sound pressure, 
intensity and power. The definitions are presented below. 

To account approximately for the variation of the human perception of sound 
'strength' with frequency, filters of gain that approximately match this frequency 
dependence are applied to the outputs of microphones uses in sound level meters. 
(Note: the term 'strength' is employed in a qualitative sense instead of 'loudness', 'level' 
or 'intensity', which have specific technical connotations.) It is not practicable to atte- 
mpt to relate human subjective response to physical measures of sound defined in 
terms of the many numbers that quantify a sound spectrum. Application of a weighting 
curve to a sound level spectrum allows the weighted sound level to be specified by a single 
number. Table A2.1 specifies the most commonly used weighting for computing dB(A). 
Weighted sound levels are used to specify acceptable values in particular environments 
or places of human residence or activity. They also have a strong bearing on the 
likelihood of hearing damage due to exposure to noise, although there is a trade-off 
between weighted sound level and duration of exposure. 

A set of standard curves is presented that may be used either to specify acceptable 
sound levels or to assess measured octave band spectra for acceptability. 

A6.2 Pressure-time history 

The most complete form of measure of sound pressure is its time history, as illustrated by 
Fig. A6.1 (a). Pressure-time history is used directly to quantify transient events such as 
gun shots and sonic booms. It is also valuable as a basis for diagnosing the source(s) of 
noise generated by machinery, where it may be linked to mechanical events or actions, 
such as those of combustion and piston slap in internal combustion engines. The 

406 
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Fig. 16.1 (a) Pressure-time history. (b) Evaluation of mean square pressure. Reproduced with 
permission from Fahy, F. J. (1998) Chapter 5 in Fundamentals of  Noise and Vibration. E & F N 
Spon, London. 

pressure-time history of response of an acoustical system to an ideal impulse is the 
impulse response of the system, of which the inverse Fourier transform is its frequency 
response. The pressure-time history is the basis of frequency analysis of sound. 

A6.3  M e a n  square pressure 

It is commonly required to obtain a measure of the 'strength' or 'energy' of sounds that 
last for considerable periods of time. Since acoustic pressures fluctuate between positive 
and negative values, the time-average sound pressure is not useful: by definition, it is 
identically equal to zero. Consequently, sound pressure is squared and a time-averaged 
value is derived by means of the operation 

lfo  p2 _ T p2( t )d  t (16.1) 

illustrated by Fig. A6.1 (b). This quantity is known as the 'mean square pressure'. 
The value of p2 depends upon the integration interval T; but, in cases of continuous, 

time-stationary sounds, it converges to a stable value as T is increased to a value much 
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greater than the period of the lowest-frequency component present in the signal. 
Integration intervals of various durations are used to define long-term averages in cases 
of non-stationary sounds such as road traffic and aircraft noise. A non-stationary signal 
may also be characterized in terms of a sequence of 'short-time' averages. 

The square root of the mean square pressure is known as the 'root mean square (or 
'rms') sound pressure'. Use of this quantity is not recommended: rms values derived 
from analysis in different frequency bands may not be summed to give the overall rms 
value. Only mean square values may be so added, as indicated in Fig. A2.4. 

A6.4 Sound pressure level 

The human auditory system does not respond linearly to sound pressure. Like many 
other physiological systems and psychophysical perceptions, it exhibits an approxi- 
mately logarithmic response. Consequently, logarithmic equivalents of pressure and its 
mean square are defined, as follows. 

Instantaneous sound pressure: Sound pressure level is defined as 

Lp(t) = 20 log10 [p(t)/Pref] dB (A6.2) 

in which Pref--2 x 10-SPa is the 'reference sound pressure'. It corresponds very 
approximately to the threshold of normal hearing at 1 kHz. 

Mean square sound pressure: Sound pressure level is defined as 

Lp -- 10 loglo [p-2/pr2ef] dB (A6.3) 

Root mean square sound pressure: Sound pressure level is defined as 

Lp = 20 lOgl0 [Prms/Pref] dB 

The dB values obtained from Eqs (A6.3) and (A6.4) are identical. 
The common unit is the decibel (dB). 

(A6.4) 

A6.5 Sound intensity level 

Sound intensity level is defined as 

LI = 10 loglo[I/Iref] dB (A6.5) 

in which Iref -- 10--12 W m-2 is the reference sound intensity that corresponds closely to 
the sound intensity in a plane travelling wave whose mean square pressure equals 2 Pref. 

A6.6 Sound power  level 

Sound power level is defined as 

Lw* = 101Ogl0[W/Wred dB (A6.6) 

*Lw is written as Lp in International Standards. 
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in which Wrer = 10 -12  W is the reference sound power level that corresponds to the 
power passing through 1 m 2 of a plane wave of intensity Iref- 

A6.7  S t a n d a r d  r e f e r e n c e  curves  

Noise that is represented in terms of its 1/1 octave band spectrum may be assessed for 
acceptability by superimposing the spectrum on one of a number of standard curves; 
examples of these are shown in Figs A6.2(a), (b) and (c). The single dB value attributed 
to a spectrum is that of the lowest curve not exceeded by the spectrum. For the purpose 
of the assessment, the octave band spectral values are plotted at each 1/1 octave band 
centre frequency, and the points are joined by straight lines. Noise rating (NR) curves 
are generally used to assess noise in the outdoor environment, and noise criterion (NC) 
and room criterion (RC) curves are generally applied to indoor spaces. 

A number of other forms of curve are also used in practice. The three curves in Fig. 
A6.2 are presented for the purpose of illustrating the method of employment, not as 
recommendations. 
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Fig. A6.2 (continued) 



Appendix 7: Demonstrations and 
Experiments 

A7.1 I n t r o d u c t i o n  

The first section of this appendix presents a compilation of lecture room demonstrations 
that I have found to be successful in illustrating acoustic and vibroacoustic phenomena 
and principles. The second section briefly describes the apparatus and procedure for 
formal laboratory experiments, together with suggestions for the analysis and inter- 
pretation of results. The importance of repeatability should be emphasized. 

For the class demonstrations, it is usually beneficial to set up a microphone, amplifier 
and large oscilloscope to monitor the sound. Simultaneous display of time history and 
short-term (exponentially averaged) spectra enhances some of the demonstrations. 

A7.2  D e m o n s t r a t i o n s  

A7.2.1 Noise sources 

1. Blow closely on a finger tip, or sharp edge of an object, and withdraw the obstacle 
periodically to show that vibration of a surface is not necessary for sound production. 

2. Partially obstruct the inflow to a fan with a bar or a plate edge placed close to the inlet 
face to demonstrate generation of blade passage tones. Sculpt one blade to generate 
rotational frequency. Dynamically balance with 'blutak'. Blow the etttux from 
industrial vacuum cleaner onto the blades to show effect of oncoming turbulence. 
Through-wall ventilation fans of about 300 mm in diameter are better than desk fans, 
although the latter afford the advantage of variable speed. Monitor the sound 
pressure level (and narrow band spectrum) as a function of fan speed. 

3. Make a pin hole in a cycle inner tube and monitor the sound spectrum with a 
microphone and a spectrum analyser. Observe the variation of the spectrum as you 
vary the tube pressure and the angle of the jet axis to the microphone. 

4. Open your mouth wide and 'buzz' your vocal cords (say 'ughhh'). The narrow band, 
line spectrum of the periodic, Category 1 source is impressive. Demonstrate the 
formant effect of partially closing your mouth. 

5. Take two nominally identical, cabinet-mounted loudspeakers of not more than 
150 mm diameter. Feed them with 'pink' random noise from separate sources. Place 
them on a desk and slide them towards and away from each other, face to face. Now 
reverse the polarity of one of the inputs and repeat the process. Now feed the 

411 
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loudspeakers with a common random signal with common polarity and repeat the 
process. Reverse the polarity of one of the speakers and repeat the process. The low 
frequencies progressively decrease in strength as the separation is reduced. This 
demonstrates the cancellation phenomenon. 

6. Place the two loudspeakers as close together as possible on a desk set against a wall, 
with cones facing upwards and the line joining their centres normal to the wall. Feed 
with common pink noise of the same, and then opposite, polarities. Slide the pair of 
loudspeakers towards a wall. With opposite polarities, you have created a compact 
quadrupole at low frequencies. 

7. Take a sheet of really stiff card, or thin plywood, about 500 mm square. Tap it hard 
near the centre with the end of your finger as you move it towards a wall or table top, 
keeping it parallel to the surface. Note the reduction of low-frequency sound as the 
edge dipoles become quadrupoles. 

8. Obtain two lengths of wooden dowel, about 1 m long, one of about 6 mm diameter 
and one of about 12 mm diameter. Swish each through the air at about the same 
speed. Try to minimize the difference of speed at the two ends. Note the approximate 
octave difference of pitch. Now swish one dowel at various speeds. NB: no pure tone 
is produced because of varying speeds with position. However, the tip end wins 
because it is a dipole source and the sound power varies as v 6. 

9. Obtain a manually or mechanically operated music box mechanism to demonstrate 
the effectiveness of minute vibrational power in generating considerable noise. Use a 
series of plywood (or similar) sounding boards of dimensions about 700 mm square 
and of various thicknesses (h) and areas (S), but of the same type of material. Mount  
them on a table on corner blocks (not a sheet) of plastic foam. Place the mechanism 
on the board and operate. 

The different plates produce sounds of remarkably similar subjective loudness. As 
thickness is increased, the decrease of mean square velocity due to the combination of 
greater mass (h) and greater input impedance (h 2) is largely offset by the greater 
radiating area (S) and increase of subcritical radiation efficiency of an unbaffled plate 
(h23). The sound power of baffled plates tends to decrease with increase of thickness. 
A roving accelerometer may be used to monitor vibration. 

Move the source from the centre of a table to a position over a leg to illustrate the 
influence of input impedance. Sit on the table to show the dynamic mismatch between 
yourself and the table, and also how little effect on sound radiation a constraint 
remote from the source has. You may put also some heavy weights on the table to 
make the same point. Impedance control at source is necessary. 

A7.2.2 Sound intensity and surface acoustic impedance 

1. If you are lucky enough to possess one of the 'old-fashioned' portable B&K Sound 
Intensity Meters (Type 4337) you may use the analogue outputs of pressure and 
particle velocity signals to demonstrate many aspects of intensity and acoustic 
impedance on an oscilloscope. 

Set up a pure tone noise source and rotate the intensity probe about an axis 
parallel, and close, to the loudspeaker cone. Observe the p and u signals. The x - y  

display on the 'scope' is interesting. 
Move the probe away from the source while monitoring the pressure and radial 
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particle velocity. Note the phase difference between p and u. Note that the particle 
velocity is multiplied by poc in the instrument. 

Blow very gently on the probe without a windscreen. Which signal is the more 
perturbed? Repeat with a windscreen in place. 

2. Display the on-axis dB(A) sound pressure and intensity levels in the field between two 
face-to-face loudspeakers about 400 mm apart driven by broadband noise. Move the 
intensity probe slowly from one loudspeaker to the other. Note the switch of sign of 
the intensity and the variation of the pressure-intensity index. 

3. Drive the lecture room with a loudspeaker fed with broadband random noise. Move 
well away from the loudspeaker and rotate the intensity probe around its axis of 
symmetry (normal to the axis joining the microphones) while keeping the axis of 
rotation more or less at right angles to the direction of the speaker. Observe how the 
switch of dB(A) intensity sign clearly indicates the location of the loudspeaker even 
when the probe is well beyond the reverberation radius. This demonstrates that the 
direct intensity field dominates even deep in the reverberant field because the latter 
has almost zero intensity. 

4. If you have analogue outputs from your intensity meter, feed the analogue p and u 
signals to your FFT analyser to display the real and imaginary parts of the transfer 
function p/u which is the specific acoustic impedance ratio. Drive the room with white 
noise and observe the effect approaching an impedance of various forms of absorbent 
and 'non-absorbent' surfaces with the probe axis normal to the surface. The surface 
impedance is not very accurately indicated because the particle velocity is not 
measured at the surface. 

Vibrate thin and thick plates and observe how the phase and magnitude of the 
normal specific acoustic impedance ratio varies with distance from the surface. 

A7.2.3 Room acoustics 

1. Set up a loudspeaker in a rather reverberant room. Drive it with a pure tone signal 
and locate a deep minimum and a maximum of sound pressure. You will have to do 
this remotely because your presence will disturb the field to an unacceptable degree. 
Locate the microphone at the minimum and switch on the tonal signal. Observe the 
microphone output on an oscilloscope. See how long it takes to stabilize to a steady 
value. Repeat the process with the microphone at a maximum. The cumulative 
addition of the many reflections to produce a very small final value due to destructive 
interference takes much longer than the creation of a large value by constructive 
interference. 

Observe the effects on the pressure minimum of a person walking into the room. 
With the microphone at a minimum, switch on an electric heater in the room at a 

location remote from the microphone and wait. The speeds of sound, and hence the 
interference pattern, will change with time. 

2. Drive a room with broadband noise and observe the sound pressure level in 1 / 1 octave 
bands or dB(A) as you walk away from the source holding a sound level meter. Is the 
transition from direct field to reverberant field (the reverberation radius) detectable? 

A7.2.4 Miscellaneous 

1. Take various samples of woven sheet materials, 25 mm thick samples of plastic foam, 
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and any other sheet materials that the students think might be good at absorbing 
sound (egg boxes?). Get the students to try to blow through them. Any which offer 
appreciable, but not very great, or very little, resistance to flow are potentially useful 
as sound-absorbing elements. 

2. Drop the unsharpened end of a pencil end-on onto a bare table. Then place a folded 
handkerchief on the table and drop the pencil onto it from the same height. The 
change of momentum (impulse) is the same in both cases, but the noise is much 
reduced in the second case. The difference is due to the spreading of a lower force over 
a longer time, which alters the force spectrum combined with the frequency- 
dependent sensitivity of the ear (see Chapter 10). 

3. Find a large vertical reflective surface, such as the end of a building, beside which 
there is a large open area with no other large reflectors around. Instruct the students 
to position themselves about 25 m from the reflecting surface and then walk slowly 
towards it, clapping every 2 s or so. Ask them to indicate the distance at which they 
can no longer distinguish an echo. This test gives a rough indication of limit of the 
performance of the integrating mechanism of the auditory system, which allows us to 
understand speech in enclosures that are not excessively reverberant. 

4. This demonstration cannot really be done in a packed classroom: 50% of occupied 
seats is the maximum. Ask the members of a class in a lecture room, or laboratory, to 
sit apart from each other as far as possible, in order to reduce the danger of injury. 
Arrange for a loudspeaker to be driven either by a pure tone at about 400 Hz, or by 
broadband noise. Ensure that you can switch the inputs on, and increase the 
amplification smoothly, without any 'scratchy' potentiometer noise or other give- 
away signal disturbances. Instruct the class that you are going to ask them to close 
their eyes and point to the apparent location of a source. Warn them to move slowly 
so as to avoid hurting their neighbour. Then ask the class to close their eyes. Quietly 
move the loudspeaker and then slowly increase the level of white noise. Ask them to 
point and then tell them to open their eyes. Repeat with the tone. Initiate a discussion 
about the reason for the agreement or lack of it. 

5. Set up two pressure microphones of the same type as close together as possible in a 
fairly reverberant room and/or two accelerometers of the same type on a flat plate of 
1 to 3 mm thickness of at least 0.5 m 2 in area. Excite the room/plate with pure tone 
sound/vibration. Monitor the cross-correlation coefficient and coherence function 
using an FFT system as one of the sensors is increasingly separated from the other. 
Repeat the exercise with band-limited broadband noise, and observe the variations of 
the cross-correlation coefficient and coherence function as a function of sensor 
separation and excitation bandwidth. 

6. Acoustic impedance in a tube: A demonstration of the extremes of impedance 
experienced in an open-end tube at below the lowest cut-off frequency is described in 
Section 4.4.2. 

7. Modify a piezo-electric gas lighter by removing almost all of the shroud. This forms a 
simple impulsive acoustic source for time domain demonstrations with just a 
microphone and storage oscilloscope. 
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A7.3 Formal laboratory class experiments 

A7.3.1 Construct a calibrated volume velocity source ( C W S )  

For many experiments it is useful to have an acoustic source of which the volume 
velocity can be monitored. Such a source may be constructed by taking two similar mid- 
range units of about 150mm in diameter and mounting them in tandem, one 
immediately behind the other, in a section of rigid plastic pipe into which they just fit 
and are well sealed around the periphery. One loudspeaker cone is mounted 'flush' with 
one end of the tube and the other end of the tube is closed by a thick plug to form an 
enclosure for the other loudspeaker. The 'cabinet' volume between the internal 
loudspeaker and the plug may be filled with mineral wool to suppress high-frequency 
resonances. The length of tube is selected to provide the desired resonance frequency of 
the system. The inner loudspeaker is driven electrically and the velocity of the voice coil 
of the exposed drone unit is indicated by the voltage generated by coil velocity. 
Calibration of the system by means of comparison with a laser or accelerometer could 
form the basis of a laboratory class. At frequencies below cone break-up, the volume 
velocity may be assumed to equal the product of the coil velocity and the cone area. 

The transfer function (TF) between volume velocity and excitation current may be 
evaluated as a function of the acoustic loading on the radiator. For example, it could be 
placed in the corner of an ordinary room, or anywhere in a reverberation chamber, to see 
whether the acoustic radiation impedance can approach the internal impedance, in 
which case the acoustic load would change the TF. 

It is also possible to check the theoretical relation between mean square volume 
velocity and radiated power at low ka in an anechoic or reverberant room, or by a sound 
intensity scan over an enclosing surface, or from the real part cross-spectral density of 
average pressure on the surface of the cone and the volume velocity. 

A7.3.2 Source sound power determination using intensity scans, 
reverberation t ime measurements and power balance 

Equipment 
Mid-range loudspeaker in a cabinet. Intensity measurement system. Roving microphone 
and reverberation decay measurement system. Sound level meter with octave band 
display. Measuring tape. String. Four retort stands. 

Procedure 
Estimate the free volume of the room: spaces under benches don't  count. Set the 
loudspeaker cabinet on its back on a bench. Measure the reverberation times in octave 
bands at six places in the room. Use six decays at each position unless the Schroeder 
integrated impulse technique is being used. 

Set the stands around the loudspeaker cabinet at a mean distance of about 400 mm 
from the centre of the drive unit. Construct a parallelepiped measurement surface with 
string. Drive the loudspeaker with steady broadband noise. Record octave band sound 
pressure levels at least six positions in the room no closer than 1 m to large reflecting 
surfaces. Make intensity scans over the five surfaces, recording the space-average 
intensity levels (including directional sign) and sound pressure levels. Check 
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repeatability of intensity estimate on at least one surface. Open out the measurement 
surface to about 800 m average distance and repeat. 

Analysis 
Estimate the absorption of the room in octave bands from the reverberation time and 
volume estimates. Estimate the source sound power from the absorption and space- 
average mean square pressure in the room. Compare the results with those from the 
intensity scan. 

Discussion 
Which technique of sound power determination is subject to the greater error/ 
uncertainty of estimate? Examine the likely uncertainties in each component of the 
estimate, e.g. volume, and its possible effect on the estimate. Error analysis is best done 
on ensemble data after the results from many classes have been compiled. Reference to 
ISO Standard 9614-Part 2 (1995) will assist error analysis. 

A7.3.3 Investigation of small room acoustic response 

Equipment 
As small a reverberant room as possible-  ideally, principal dimensions between 2 and 
4 m. CVVS. Microphone and stand. FFT analysis system. Measurement tape. Some 
large thick sheets of sound-absorbent material. 

Procedure 
Set up the CVVS near one corner of the room, facing diagonally across the room. Place 
the microphone approximately on axis at a measured distance of about 300 mm from 
centre of the cone. Measure and display the transfer function (TF: H1) between cone 
acceleration and sound pressure in the frequency range 0-200 Hz (or less in a medium 
size room) in the form mag/phase. Also display coherence (Co). Have a look at the 
impulse response (IR). 

Select one or two well-separated response peaks and estimate the modal loss factor 
from the Nyquist display. Record the frequencies of all the distinct peaks. 

Repeat the TF, IR and Co measurements in the frequency range 0-10 kHz. Zoom in to 
a frequency range of a few hundred Hz around 3000 Hz. What happens to the Co? Does 
it make any difference whether you use true random or periodic random excitation? 

Repeat both frequency ranges at a distance of 1500-2000 mm (more in a medium size 
room). 

Place sound-absorbent sheets on one or more room surfaces and repeat the measure- 
ments. 

Introduce another source of independent true random noise into the room and vary its 
output to produce signal-to-noise ratios in terms of the noise from the CVVS of about 0, 
- 1 0  and -20dB(A) .  Compare estimates of TF: Hi using 50 independent averages. 
Check repeatability of the 50 average estimates. Try 500 averages. Also compare U l and 

H2. 

Analysis 
How do the low frequency peaks compare with theoretical estimates of the low order 
mode natural frequencies? Why does the wrapped phase of the TF exhibit a sawtooth 
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character? What can we calculate from its slope? Why does it get more 'ragged' when the 
distance is increased? Why does it tend to be less ragged at the higher frequencies? 
(Greater directivity and wall absorption.) What causes the Co to increase when you 
zoom? (Bias error with true random input; record length much less than reverberation 
t i m e -  or reflection delay.) Why is the 0-250 Hz IR apparently non-causal? Can you 
identify reflections from individual surfaces in the IR? What does the introduction of the 
absorbing sheets do to the low-order mode frequencies, the coherence (random) the 
impulse response? Compare the estimated modal loss factors with 2.2/iT. 

A7.3.4 Determination of the complex wavenumbers of porous materials 

Equipment 
Obtain a 2.3 m length of rigid-walled plastic tube (A) of internal diameter of about 
100 mm, a 1 m length of rigid-walled plastic tube (B) that will slide into tube A, and a 
1.5 m length of plastic tube (D) of about 70 mm diameter. Fit the outside of tube B with a 
number of soft O-ring seals so that it can be pushed into tube A with reasonable effort so 
that the seals close the annular gap. A lubricant will probably be needed. 

Tube A will be fitted with a loudspeaker unit sealed onto one end. 
Obtain a 2.5 m length of thin-wall metal tube (C) of about 6 mm external diameter 

with a very smooth outer surface. Insert a small electret microphone in a hole in the wall 
of tube C at a distance of 1.25 m from one end in such a manner that its sensing surface is 
slightly recessed below the outer surface of the tube. Seal the microphone firmly into the 
hole with the lead passing out through one end of the tube. Seal the other end. 

Cut a set of discs from a sheet of porous plastic foam in sufficient number to make a 
stack 1 m long. The diameter of the discs should be such that each can be pushed into 
tube B without great effort, but without a gap between the wall of the tube and the disc. 
Make a hole in the centre of each disc of diameter such that the tube C may be pushed 
through the hole without great effort, but such that there are no clear annular gaps 
between the disc and the tube. 

Push the discs one by one into tube B so that they form a continuous stack without 
intermediate gaps. Pass tube B into tube A until the two tubes are flush at one end. 
Secure the other end of the disc stack by supporting it with the end of tube D, which is 
passed through the other end of tube A until it is in a position to stop the discs being 
pushed out of tube B. Now pass tube C through the stack until 1.3 m protrudes from the 
other end: this free section should now be within tube D. Withdraw tube D. Now fit the 
loudspeaker onto the end of tube A containing the 1.3 m of free tube C. 

Procedure 
Drive the loudspeaker with a signal of bandwidth of your choice. Measure the TF 
between the loudspeaker voltage and the microphone. Pull the microphone through the 
stack and measure the TFs at selected intervals. Output the spatial distribution of 
magnitude and phase of the TFs at each frequency of interest. 

Analysis 
From the best-fit lines through the data, estimate the complex wavenumber of sound 
propagating within the foam, and hence infer the flow resistivity and structure factor by 
assuming a porosity of 0.95. Hence estimate Zc and compare with impedance measure- 
ments. 
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Note." the technique is not reliable if tube C is short enough to leave a hole through the 
stack as it is withdrawn. Vibration of tubes A and B sometimes causes errors with very 
absorbent types of test material. If the sound is strongly attenuated by the material, it is 
best to discard the very small TFs. Repeatability checks to assess random error are vital. 
Increase the number of averages in case of difficulty. 

A7.3.5 Measurement of the specific acoustic impedance of a sheet of 
porous material 

Equipment 
Obtain a 1.5 m length of rigid-walled plastic tube (D) of such a diameter that it can be 
adapted to push fit into the end of an old-style, 100-mm diameter, B&K impedance tube 
that normally receives the B&K sample holder. Pack mineral wool or glass fibre into a 
1 m length of tube D terminating at one end. Make the packing density high at this end, 
decreasing gradually to a very loose pack at the other end of the pack. 

Construct a sample holder in the form of two rigid 'spiders' webs' formed from 
concentric circles and radial lines at 45 ~ intervals made out of wire of about 1.5-2 mm in 
diameter. Make the faces of the holders as smooth as possible. Arrange the diameter so 
that they are a push fit into the end fitting of the impedance tube that normally receives 
the B&K sample holder. 

Procedure 
Cut a sample of woven sheet or a thin (< 10mm) sample of porous plastic foam to fit 
into the sample holder. Introduce one sample holder into the impedance tube, followed 
by the test sample, and then secure the sample by sandwiching it between the two 
holders. Make sure that the sample cannot 'rattle' between the holders. Locate the 
sample holder assembly by pushing the end of tube D that is free of sound absorbent into 
the end of the impedance tube. 

Use your normal impedance measurement procedure to estimate the specific acoustic 
impedance presented by tube D at the sample holder position, with the sample absent. 
Then introduce the sample and repeat the measurement. The difference between the two 
impedances is an estimate of the impedance of the sample. If the thickness of the sample 
is not negligible, the impedance measured in its absence should be referred to the 
location of the face that 'looks into' tube D. For thin sheet materials this correction is 
negligible. The impedance of perforated sheets may also be measured in this way. 

Making the termination tube D highly absorbent is not necessary in principle, but it 
serves to exclude external noise and reduce the dynamic range of the sound field in the 
impedance tube, which improves the accuracy of the technique. 

A7.3.6 Measurement of the impedance of side branch and in-line reactive 
attenuators 

The combination of the impedance tube and the sound absorbing termination tube D 
described in Section A7.3.3 above may be adapted for the measurement of the 
impedance of side branch tubes, resonators, etc., by placing the side branch entrance 
immediately upstream of entry to the termination tube D. Since the impedance at the 
entrance to tube D can be measured, as described above, it may be entered into 
expression for impedance Zj at the side branch joint to determine the impedance of the 
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side branch (see Section 8.6.4). It may also be used to terminate in-line elements such as 
bends and expansion chambers. 

A7.3.7 Sound pressure generation by a monopole in free space and in a 
tube 

Equipment 
A conventional treble loudspeaker unit having an accessible diaphragm/dome mounted 
in a large, rigid baffle. An anechoic chamber, if possible: otherwise a large, fairly dead, 
room. Termination tube D, described above. A microphone (1/4 inch if possible). A 
means of suspending the microphone by thin wire/string from stands at least 1 m apart. 
An FFT analyser. 

Procedure 
Support the baffle in a horizontal position near the floor of the chamber (or on packs of 
sound absorbent material). Suspend the microphone 400mm above the loudspeaker. 
Excite the loudspeaker with broadband noise. Measure the TF and IR between the 
loudspeaker current and the microphone signal. Then place the open end of tube D over 
the loudspeaker and insert the microphone into the tube through a side hole 400mm 
from the lower end. Seal the hole. Repeat the measurement. 

Measure the TF between the current and the velocity of the diaphragm/dome by 
means of a laser, or estimate it from direct field pressure. 

Analysis 
From your acquired data files, compute the TFs between the sound pressure and the 
diaphragm/dome velocity and acceleration. Compare the two cases to ascertain whether 
the sound pressure is proportional to volume acceleration or volume velocity of the 
loudspeaker. Note: the comparison is only valid below the lowest cut-off frequency of 
the tube. 

A7.3.8 Mode dispersion in a duct 

Equipment 
The combination of impedance tube and sound-absorbing termination tube D. An FFT 
analyser. 

Procedure 
Measure the TF and IR between the sound pressure measured about 100 mm from the 
diaphragm of the impedance tube loudspeaker and sound pressures measured at various 
locations along the impedance tube in the frequency range 50 Hz-10 kHz. 

Analysis 
Observe the effect of mode dispersion above the lowest cut-off frequency. 

A7.3.9 Scattering by a rough surface 

Equipment 
Anechoic chamber. A loudspeaker and amplifier. A selection of corrugated plastic sheets 
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of varying corrugation width and depth, measuring at least 1 m x 1 m. A microphone 
and FFT analyser. 

Procedure 
Suspend a corrugated sheet in a vertical position in the anechoic chamber. Stiffen it with 
a frame if necessary. Place the loudspeaker at a distance of about 1 m from the centre of 
the sheet on an axis at 45 ~ to the normal to the centre of the sheet. Place the microphone 
at a distance of about 1 m from the sheet on this normal. Measure the TF between 
loudspeaker input and microphone output in the frequency range 0-10 kHz. Rotate the 
sheet in its plane through 90 ~ . Repeat the measurement. Change the sheet and repeat the 
procedure. Finally, repeat the procedure with no sheet present. 

Analysis 
Divide the various TFs by that with no sheet present. Examine the different IRs. What 
can you conclude from the strength of the interference effects as functions of frequency 
and orientation of the sheet? 

A7.3.10 Radiation by a vibrating plate 

Equipment 
A rectangular sheet of 1- to 2-mm thick aluminium or steel mounted in a rigid frame. An 
electrodynamic vibration generator that can be attached to the sheet well off-centre. A 
box made from 25-mm medium density fibreboard (or similar) onto which the frame can 
be well sealed. A loudspeaker which can be mounted inside the box. A sound intensity 
measurement system. A small accelerometer or LDV system. An FFT analyser. 

Procedure 
Mount the frame and panel on the box and submit it to broadband excitation by the 
vibrator mounted underneath in the box. Estimate the space-average mean square 
velocity of the plate from autospectral measurements at about ten positions, none nearer 
than about 100mm to the shaker attachment. Construct a rectangular measurement 
surface which has the panel as one face. Determine the radiated sound power by means 
of intensity scans. Repeat with acoustic excitation from the loudspeaker inside the box. 

Analysis 
Calculate the radiation ratios (efficiencies) in the frequency bands of your choice and 
compare. Interpret the difference by reference to Chapters 10 and 11. 

Feedback of news of success, or otherwise, would be gratefully received (fjf@isvr. 
soton.ac.uk) 
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Chapter 3 

3.1 Express the equat ion of state and the adiabatic pressure-densi ty relation in terms of 
equilibrium values (no sound). Perturb the pressure, density and temperature by p, p' 
and 6 T. Neglect second-order quantities. 

3.2 I/7(x)t = (18 - 8 cos 2kx  + 16 sin 2kx)l/2; 
Let J = a + jb and iq = c + jd. 
Use /7(x) 2 = 15(X)lY(X)* = 2p--Z(x). 

m 

p2(x) = 9 -- 4 COS 2kx  + 8 sin 2kx.  

3.3 --5 2 4~/5)/(9 44'-5) - 25 dB. Phaax/P~in = (9 + 
Derive expressions for ~(p--Y)/~x and ~2(p-5)/~x2 to find positions of minima and 
maxima. 

3.4 l l 0 m s  -1. 
Isolate one cell that  on average contains one ball. Assume that  the inertia is 
contr ibuted entirely by the water and the compressibility is contr ibuted entirely by 
the balls. Derive an expression for the volumetric strain per unit pressure in the cell. 
This is the inverse of the effective bulk modulus  K. Cph = v/K/Pw �9 

3.5 p2(x, t) = 0.25 [1 - sin 2(cot - kx)]. 

3.6 Prms - 0 . 1 P a  
~rms = 1.5 x 1 0 - T m  
Urms = 2.4 x 10 - 4  m s-1 
a r m s  = 0.38 m s - 2  

P ' rms  = 8 . 5  x 1 0  - 7  kg m -3 

(Prms/P0 = 10-  6) 

(P'rms/PO = 7.1 x 1 0  - 7 )  

Chapter 4 

4.1 co = (co2 _ C2/2 m 2 ) 1 / 2 ,  w h e r e  coo = (K/M) 1/2. 
Maximum displacement per unit force. 
jcoZm - -  ]/~/97. Consider the derivative with respect to co of )?/F 2. 

4.2 f l  = 91.8 Hz;f2 = 619.9 Hz. 
ZA is purely imaginary. Equate  it to zero to obtain the eigenfrequency equation. 

421 
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4.3 Zm = Moo0 [1 + 1/2~] whe re  ~ = C/2Mcoo. 
D a m p i n g  is i m p o r t a n t  if ~" < 0.5. Mcoo = ( K M )  1/2, so mass  a n d  stiffness are  equa l ly  
i m p o r t a n t .  

4.4 59.0 Hz.  

C o n s i d e r  the v o l u m e t r i c  s t ra in  o f  the  air  in the cab ine t  caused  by a smal l  
d i s p l a c e m e n t  o f  the  cone.  This  yields an  exp res s ion  for  the stiffness o f  the  air. 

4.5 Z i n  t - -  j[copol'/rca 2 -- poc2/o) Vo] + R/ga 2 
= 6 . 4 7  x 1 0 4 + 7 . 2 3  x 104j; 

Vo = 1.77 x 10 -3  m3; rca 2 = 3.14 x 10 - 4  m2; l' = 8 m m .  

4.6 8poa3/3. 

4.7 /~/A = (z' - 1)/(z' + 1). 

Chapter 5 

5.1 R = ~/5/3; 0 = a r c t a n  ( - 0 . 5 )  = - 2 6 . 6  ~ 
I =  1 . 0 x  10 - S W m  - 2  

LI = 70 dB 

/ n e t - -  I i n c -  /refl --  ~ Iinc 
/ne t  = ( ~zl 2 __ /~ 2)/2poc = ( ~ 2/2poc) (1 - R 2 ) .  

5.2 ~ = lpou-7 = l[ ~ 2/poc2][ 1 _ 2R cos (2kx + O) + R 2] 

ep = �89 = 1[ ~ 2/poc2][ 1 + 2R cos (2kx + O) + R 2] 

et = e~ + Up = 1[ ~ 2/poc2][ 1 + R 2] 

et  = 1.1 x 10 -7  J m -3 .  
Use  u 2 = �89 and  p-7 = �89 a n d  s u b s t i t u t e / ~  = A R e  j~ 

5.3 Refe r  to Eq.  (5.17). O n e  can  a p p r o x i m a t e  ~(PZ)/~x by 2(p  2 - pZ)/Ax. 

5 . 4  300:  ~pI--- 0.63 dB 
6 0 0 : % 1  = 3 . 0  d B  

90~ 6pi--  0(3 
I(0) = (pZ/poc) cos 0 

6pi = 10 log10 (see 0). 

5.5 W = 57.5 x 10 - 6  W; L w  = 77.6 dB. 

5.6 L I = 72.6 or  70 dB; qSf = kAx  = ___ 3.41~ q~m - -  1~ 
F r a c t i o n a l  e r ro r  ei = qSm/~bf = (Ie -- 1)/1 = _+ 0.29 
whe re  Ie = e s t ima t ed  in tens i ty  a n d  I = t rue  in tensi ty .  
Ie = 1.4 x 10 -5  (1 _+ 0.29) 

= 1.83 x 10 -5  or  1.0 x 1 0 - S W  m -2 .  

5.7 A t  p ressure  max:  f r ac t iona l  e r ro r  = - 0 . 9 3  - + 3 dB or  - 11.5 dB. 
A t  p ressure  min:  f r ac t iona l  e r ro r  - _+ 0.1 - _+ �89 dB. 

F r o m  Eq. (5.27) (~pI = - -  10 loglo [([~4)/Or )/k] 
~--T- --  1 ~2  
Pmax --  ~ A (1 + R )  2 

I = ( A 2/2 poc) (1 - R 2) 
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R = 0.5. 

At m a x :  ~pi-- Lp - LI = 5 dB. 
A t  min :  (~pi--- - 5  dB.  

At max: 4~f = 1.08~ 
At min: ~bf = 10.1 ~ 

5.8 +0.72 dB. 
From Eq. (6.15(b)), express the complex amplitudes of pressures at distance r and 
r + fir in terms of the first-order approximations (6r/r << 1), and substitute in Eqs 
(5.38) and (5.39) to give approximate expressions for the complex amplitudes of 
pressure and particle velocity. Compare with the exact expression at r + 6r/2. 

5.9 I++ = 0.22pock 2 0_, 2/~2d2 

I+_  = 0 .  

Chapter 6 

6.1 W =  1.22 • 10 -5 W 
Q = 2.36 • 10 -4  m 3 s-1 
u = 5 . 1 0  • 10 - S m s  -1. 

6.2 W = IQ 2o94pod2/24rcc3. 

Let pressure on source 1" Pl = Pll + P12. 
Let pressure on source 2" P2 = P22 + P21, where Pll and P22 are generated by the 
individual sources in isolation and P12 and P21 are the pressures induced by their 
neighbours. The sound power of an individual source in isolation W = �89 Re { Q/y*}. 
The sound power of source 1 in the presence of source 2 is W = 
• Re { Q l(fi~'l + fi~'2)}, and vice versa. 2 

6.3 m = �88 2 /~ 2poc (ka)2/(o9m) 2 
f /F  = [C + j ( ~ M -  K/O9)]-1 
o9 >> 090: IQ//~ = Ina2/ogM 
Use Za,ra d for a piston (or monopole power expression). 

6.4 15.3. 
Use monopole power expression and Q/F = [~a 2 Za,rad + Zm/zr, a2] - 1. 
Account for the different wavenumbers in air and water. 

6.5 (g"/g')(d/2) - (ka)(kr) - 2(d/r) - 2j(kd) 
2(2 +jkr )  

(kd)(kr) 
= 2(2 +jkr )  d/r and kd  << 1 

= - j ( k d ) / 2  "if, in addition, kr >> 1. 

6.8 To avoid exciting higher-order modes that will not be well represented as compact 
quadrupoles. 
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Chapter 7 

7.1 A = 1.61 Pa;  /~ = 1.467 P a  

/~/A = R e j~ = (39 - 12j)/45 

R = 0 . 9 0 6 ; 0 = -  17.1 ~ 
p-5 -- �89 ~ 2 [1  + 2 R cos ( 2 k L  + O) + R 2] 

k L  = 1.1; p2 = 1.59 P a  2 

cos  ( 2 k L  + 0) = - 0.33. 

--3 --1 7.2 a = 4933 k g m  s 
e -2~x _= 40 dB 

10 l o g 1 0 ( e -  2~x) __ _ 40 
c~ = 4.61 - l (~rk/poc)s-  1/2. 

7.3 ~ = 3.63; ~ a p p r o x  - -  4.73 

fl -- 5 .81;  flapprox -- 4.48 

L e t  k '2 = a + jb  
w h e r e / 3  = -T- (a  2 + b2) 1/4 c o s  (0 /2 )  

= -I- (a  2 + b 2)1/4 sin (0/2) 

a = coZspo/tr 

b = - coha/K. 

7.4 100 Hz:  

Zc -- 1065 - 980j; zc approx - -  5 0 6  - -  2133j. 

1 0 0 0  Hz:  

Zc = 4 8 4 -  224j; zc approx - -  5 0 6 -  213j. 

7.5 100 H z ' ~  = 0.13. 

1 0 0 0  Hz:  ~ = 0 . 6 1 .  

z ' =  2.41 + ( 1 . 6 - j  103/f) .  

7.6 ~ = 0.91; meq = 0.11 m -2 .  

See p e n u l t i m a t e  p a r a g r a p h  o f  Sec t ion  4.4.1 a n d  C h a p t e r  12. 

E q u i v a l e n t  specific acous t i c  r e a c t a n c e  -- X / n  
t t Zn = r/poc + j X / n p o c  + Zn (wool )  

= [0.12 + 0.87J1 + [ 1 . 6 -  0.5J] 
-- 1.72 + 0.37j  

X jcoPo 
Z m - -  - =  ~ = j C O m e q  

n 2an 
meq = po/2an. 

7.8 m = 1 kg  m - 2 ; f =  2000 Hz:  q = 0.48 

m = 0.1 kg m - Z ; f  = 2000 Hz:  q = 0 .42 

m = 1 kg  m - 2 ; f =  200 Hz:  q = 0 .42  
m = 0.1 kg m - Z ; f  = 200 Hz:  q = 3.2 x 10 - 2  

S u b s t i t u t e  va lues  in Eq.  (7.43). 

7.9 f =  485 H z  
! _ _  , t _ _ _  m =  l ' r .  1 8 6 ; x .  0 . 5 ; ~ = 0 . 9 6  

l I _ _  m = 0.1" r .  = 0.24; x .  0.05; ~ = 0.50. 

7.10 ~ = 0.35. 



Answers 425 

Chapter 8 

8.1 W = 3.7 x 10 - 4  W 

k = 7.32; k 2 - -  53.7 

W = ]F.,Wmn 
Wm,, = (1/4c0p0) AmnlZ(ab) emn Re {kmn} 
Am,, = 2o~po(~ cos (0.5m~) cos (0.6n:rc)/e, mnkmn(ab) 

m n ~'mn Re {kin,,} 

0 0 4 7.32 

1 0 2 3.75 
0 1 2 5.78 

1 1 1 0 
0 2 2 0 

cut-off  

cut-off  

-'~oo = 0.59 Pa 

Alo = 0 
Aol - 0.46 Pa 
Woo = 3.0 x 1 0 - 4 W  

Wol = 7.0 x 1 0 - S W  
W =  3.7 x 1 0 - 4 W  

Power  is rad ia ted  in both directions.  

8.2 100 Hz: - 4 . 7 3  dB m -1" 1000 Hz: - 1 34 dB m -1 �9 o 

8.3 Z m = R m + j X m  

SpocR'  - ooMR' tan  k L  + ( toM + Spoc tan  kL) (R '  tan  kL)  
where Rm - 1 + R '2 tan  2 k L  

toM -t- Spoc tan  k L  - R' tan  kL(SPocR'  - coMR' tan  kL)  
X'm = 1 + R '2 tan k L  

where  S = rca 2 and  R ' - -  RrcaZ/po c. 

Resonance  when  Xm = 0 

b j(b)2 
tan  k L  - - -~ 4- -~ - c  

where b = Spoc (R '2 - 1)/(,oMR '2 
and  c = 1/R '2. 

Can  use impedance  t ransfer  or two-por t  expressions.  Across  the hole Ap = RQ. 

At  surface of  p is ton  in contac t  with the fluid co lumn  

Z' = Z't + j tan  kL 

1 + j Z '  t tan  k L  

where Z / =  RS/poc  
= j c o M V  + S~pocZ' 

F / v  -- Zm -- (Sp~ - coMR' tan  kL) + j ( c o M  + Spoe tan k L  ) 
1 + jR '  tan  k L  



426 Foundations of Engineering Acoustics 

8.4 091 - -  (K/rca2tps) 1/2 = 212.9 rad S - 1  ~ 33.9 Hz 
(_0 2 = [(K + 2rca2poc2/L)/rca2tps] 1/2 -- 551.3 rad s-1 ~ 87.7 Hz 
where L is the separation distance of the pistons and K is the stiffness of each spring. 

8.5 r = co/kmn = 09/[k 2 - (mrc/a) 2 - -  ( t lT~/b)2] 1/2 

Cg -- km n c2/200 
Cg -- &o/Skz = (Skz/8Og)-1 
km,, = [k 2 - (rare~a) 2 - (nrc/b)2] 1/2 
~km,,/~oo = l[k2 - (rare~a) 2 - (mz/b)2] - 1/2 (2co/c 2) 

Cg "- kmnc~/2o9. 

8.6 In free space the pressure is proportional to volume acceleration and will follow the 
force-time history. In a plane wave in a tube the pressure is proportional to volume 
velocity and the initial pulse will take a triangular form. This will be followed by 
contributions from higher-order modes that have no diametral nodal planes. 

In the case of application of a given voltage rather than current, the inductance of 
the coil will tend to make the current proportional to the time-integral of voltage. 
Hence the acceleration-time history of the cone will tend to the form taken by the 
velocity-time history in the case of given current excitation and the velocity will tend 
to behave like the displacement in the previous case. The resistance of the coil will 
have little effect. 

, Z~ +j(1 + Z'b)Z '  b t ankd  
8.8 Zj - Zg(2 + Zg) +j[(1 + Z'b) + Z'b2]tankd 

When tan k L  = 0, Z j ' -  Z'b/(2 + Z'b). 
= , ' =  Z b ) Z b ] / [ 1  + Z b  When tan k L  Go Zj  [ ( 1  + ' ' ' . 

At the second joint, the impedances of the side branch and anechoically terminated 
duct continuation are in parallel. This gives the impedance at the entrance to the 
second junction, which constitutes the termination impedance for the length of duct 
between the branches. The impedance transfer expression is used to transfer this 
impedance to the outlet of the first junction. The impedance at the entry to the first 
junction equals the parallel combination of the side branch impedance and outlet 
impedance. 

8.9 r = 4 m2/[4 m 2 + (kL2) 2 (m 2 + 1) 2] 

i 1 1 [ T ] -  jcoS2L2 1 
po c2 

]ffl "-'~,~-k- jB 
O1 = ( A -  B) (S1 /poC)  

= 02 poc/Sl 
B / A  = jkL2  (m 2 -  1)/(2m + kL2 m2 + jkL2)  
kL2 ~O; ' c  ~ l. 

8.10 Plane wave propagation cannot occur. 
Principle embodied in pulse control sections of liquid-filled pipelines. 
Same cut-off frequencies as rigid-walled duct. 
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p(y,  z, t) = An e +_jk.~z sin (nrcy/d) e j~ 
N o  plane wave: n = 0, p = 0. 

Chapter 9 

9.1 ~Xs - 0.29 
Ss = 48 m2; S T - -  216 m2; S T -  Ss = 168 m 2 

A = 22.2 m 2 = 48 as + 168 0~ d 

T = 1.3 = 28.8/A. 

9.2 83 dB; (p--2) = 0.083 pa2; A = 20 m 2. 

9.3 T1 = 1.82 s; T2 = 1.04 s. 

9.6 fi = 0.14. 

Chapter 10 

10.2 Q - L  waves: n(o9) = L/rccT; k = r do9/dk = c7; Ao9 = cTrc/L. 
B - waves: n(~o) - -+L(m/E1)  TM o 9 - 1 / 2 ; k  -" o91/2(m/EI)l /4.  
~k/~o9 -- 109--1/2 ( mfE1) 1 / 4  

Ao9 = 2o91/2 (El /m)  1/4 Ak 
= 2ogl/2(E1/m)l/4 rc/L. 

10.3 ogc = (GJ/Ip) (m/D) 1/2. 

Coincidence:  kT = ke 
og(Ip/ GJ) 1/2= og l /2(m/D) l /4. 

10.5 Apply  a posit ive shear  force at the tip and  a negat ive shear  force at a dis tance 2d 

f rom the tip. Derive expressions for the slope at a dis tance d f rom the tip in each 
case and  sum them. Divide the applied m o m e n t  by the ro ta t iona l  velocity at 
dis tance d f rom the tip, re ta ining only first-order terms in (kd). 

10.6 S/(j'o9aw/ax) = - E I  k~/o9 
M/jo9 w = - 1 E I  k2(1 + j). 

10.7 K~<6 .3  x 1 0 4 N m  -1 

Ys = o9/2 E1 k3(1 + j) 
YR = (8 , v ' m O )  - 1  

YI _ l + a + j b  
E - -  l + yR + y s c + j d  

where a = 0 and  b = - K / o 9  

c + j d  + a + j b  2 (a -1" r .~_ (d + b) 2 
E 2 _ __ 

c + j d  C2 q_ d 2 

(C 2 4- d 2) E 2 = (a + c) 2 + (d + b) 2 

b 2 4- 2db + d 2 + c a -  (c a + d 2) E 2 = 0. 

Eq. (10.44) 
Eq. (10.47): S = source; R - receiver. 

= 10 4 

10.8 YI>~ 1.34 x 1 0 - 6 m s  - 1 N  -1.  
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10.9 Win --  4 ~ 2 / 8 ( m D )  1/2 --  40/3.08 • 106 

Wdiss --  r / o o E -  r/o~M(v 2) - -  ~/~n 
(F2)_  1.71 x 10 -11 m 2 S -2  

Wrad --  PoCryS(v 2) -- 2.49 x 1 0 - 7 W :  Lw = 54 d B  

Chapter 11 

11.1 h = 1 . 6 m m  
R(0) mus t  equal  10 dB to give 90% energy reflection 
10 = 20 lOgl0(fm) - 42 

f m  = 102.6 

m =  1 . 6 k g m  -2. 

11.2 The radia t ion damping  p robab ly  exceeds any structural  damping.  

11.3 39 dB(A). 
Assumpt ions :  
�9 diffuse field in factory 
�9 t ransmission coefficient of  aper ture  is unity 
�9 radia t ion  into ~z steradians 
�9 pressure doubl ing  at the facade of  the house. 

Sources of  uncertainty:  
�9 r -r 1 at low frequencies 
�9 interference between the direct field and that  reflected off the g round  
�9 factory sound field unlikely to be un i fo rm and diffuse. 

11.4 100 Hz: covered a - 0.23; uncovered  a = 0.20. 
1000 Hz: covered a = 0.21; uncovered  a = 0.91. 
Z n c - - j o o m  + [z n pocZ/jo~L]/[Zn + poc2/j~L] 
100 Hz: Znc - 1.6 - 4.6j. 
1000 Hz: Znc -- 15.8 + 3.4j. 

11.5 3724 HZ. 

r = 1 + p l c l / p 2 c 2  Eq. (11.19). 

11.6 27.5 kHz. 

11.7 Sandwich panel  f~ = 299 Hz 
5-mm plywood fr - 4 kHz  
6-mm glass f r  2.1 kHz  
1-mm Perspex fc = 27.7 kHz  
Sandwich panel  D = E h  d2/2(1 - y2)  

where h = face plate thickness and d = overall thickness. 

11.8 12/~ = ze/[Zc cos k ' l  - ( j p o c  - tom)  sin k'/]. 

Chapter 12 

12.1 ,~2 s e c  qS/4~z. 
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The blocked pressure and the radiat ion resistance are both half  those in the baffled 
case. 
The presence of  the body of the resonator  would not alter the scattering cross- 
section substantially if the body dimensions were considerably less than a 
wavelength at the resonance frequency. 

12.2 100 Hz:/Y//Yi = 1; I P/Pi = 1. 
1000 Hz: fi/fii = 1 + 0.7j; I/~//~i = 1.002. 
5000 Hz:/~//~i = 1.02 + 0.33j; /~//~i = 1.07. 

f i - -  fii + Za,rad Ov 
where 0v = virtual volume velocity of the microphone 
Q_.v = rca2 fii/poc 
/Y =/Yi[1 + ~za 2 Za,rad/pOC] 
= P~i [1 -}- Za,rad].  

12.3 Zin/Zvi s -- jcopoa2/81t 
f =  20 Hz. 

12.5 The field of  a point  monopole  is not affected by a thin rigid screen, the plane of  
which contains the monopole .  

Appendix 2 

E 1 1 ] A2.1 F(co) - j ( A / 2 )  ~ + j ( f 2  + 09) - ~ +j(S2 - co) 

except when S2 - co when F(co) - - j ( A / o O  1 + 2jS2/e " 

A2.2 Fn = An[1 - ( -  1)n]/[1 - (n/2)2]. 
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Page numbers in italics refer to tables and figures and bold to main discussion. 

Absorption, sound, 140-180 
by air, 144 
by cellular and fibrous materials, 171-172 
by plane surface of uniform impedance, 156- 

163 
by thick porous sheets, 167-170 
by thin porous sheets, 163-167 
in double wall cavity, 336-337 
enclosure, 263 

Absorption coefficient, sound power, 
measurement, 178-180 
of locally reactive surface, 158-161 

Absorbers, sound, 140-180 
non-porous, 174-177 

Acceleration, 
fluid particle, 33, 33 
force, 102 
sphere, 117 
surface, 120 
body, 103, 118 

Acoustic 
disturbance, 7,45 
emission, 4 
impedance, 56-72 
reciprocity, 111-112 
plaster, 149 

Acoustically induced response of beer cans, 275 
Acoustics and the engineer, 2-5 
Aerodynamic noise, 97, 100-103, 138, 139 
Adiabatic process, 26, 27 
Airborne sound transmission, 315-349 

suite, 349 
Air-water interface, 16,19 
Angular frequency, 381-2 
Anti-resonance, 169, 170, 170 
Apertures, 62, 370-373, 373, 374 

effects of mean flow through, 372 
Attenuation, 30, 224-226 

air, 144 
constant, 155 
exponential, 155 

Attenuators, 

in-line reactive, 202-204, 418-419 
side-branch, 206-210, 418-419 
splitter, 224-226, 225 

Auralization, 239, 268 

Bandwidth, 242, 390, 390-392, 405 
Barriers, 

diffraction by, 268,362-369, 369 
Basis functions, 197 
Bass bin, 233, 234 
Beam 

bending, 279-282, 282 
bending modal density, 290 
bending wave equation, 284-285 
bending wave impedance, 294-296 
bending waves in, 272, 272, 279, 291,292 
bending wave modes, 289, 

Beer cans, acoustically induced response of, 275 
Bends in ducts, 211,212 
Bending 

moment, 281-282, 292, 294, 298 
stiffness, 281,293,308 
wave dispersion, 9, 286, 304 
wave energy flux, 291-293 
wave equations, 284-286 
wave group speed, 285, 292 
wave phase speed, 285, 292 
waves, 9, 273,279-286, 291-293, 296-297, 

303 
wave power transmission, 297-298 
wave power transmission coefficient, 299 
wavenumber, 285 

Bessel function, 128, 219, 220 
Bessel's equation, 46 
Blade-passing frequency, 102 
Boundary conditions, 69, 112-113, 117, 118- 

120, 123, 146 
dissipation, 143 
impedance, 158, 169, 178-180 
layer, 146-7, 145, 378,378 
sources, 105-6, 118-121,119 
vibration, 254-255, 306 
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Bubbles, 30, 72, 153 
Bulk modulus, 28, 31, 142, 146, 147, 154 
Bulk viscosity, 142 

Calibrated Volume Velocity Source (CVVS), 
415 

Cancellation phenomenon, 99, 132, 304, 305 
Cavity, 33, 169, 174, 176, 331,336, 343 
Characteristic 

acoustic impedance, 60 
frequency (see 'Frequency'), 
function (see also 'Mode'), 188 
specific acoustic impedance, 39, 59, 155, 156, 

157 
specific mechanical impedance, 291,293 

Circumferential mode, 220 
Cladding, 342 
Close-fitting enclosure, 342-347, 344 
Closed-cell materials, 171 
Coherence, 397--400, 398 
Coincidence 

angle, 322 
condition, 305, 322, 289 
dip, 338,329 
frequency, 323,323 
phenomenon, 286, 287, 305, 322, 323,324 
transmission, 328 

Complex 
intensity, 84 
density, 154 
Exponential Representation (CER), 380- 

383 
frequency, 191 
wavenumber, 154-156, 309, 417, 418 

Compressibility, 25, 28, 30 
Concrete 

floor mobility, 299 
properties, 280 

Conservation 
of energy, 78, 78 
of mass, 32 
of momentum, 34 

Control volume, 40 
Convection, 20-21,378 
Correlation, 258,397-400, 399 
Couple, 295, 295, 296 
Coupling, fluid-structure, 189, 200, 255 
Critical frequency (see 'Frequency') 
Cut-off 

frequency, 215-216, 220, 221,272 
phenomenon, 21 6-7 

Cylinder radiation, 313 
Cylindrical coordinate system, 219 

Damped oscillator, 402--405 
Damped spring element, 301 
Damper, viscous, 56, 56 

Damping, 402-3 
effect on sound transmission, 318-319, 322, 

345 
Damping coefficient, 402-403 
dB(A), 390 
Decibel (dB), 408 
Demonstrations, 64, 411-414 
Density, 

complex, 154 
gas, 26-27 
material, 280 

Diffraction, 17-18, 17, 18, 62, 362-373,363 
by apertures, 363, 370-3,370, 373, 374 
by obstacles, 363 
by plane screens, 362-369, 366, 367 

Diffuse field, 237, 238,244, 258-266, 262, 340 
sound transmission, 326-329 
sound absorption coefficient, 161, 169, 244, 

263 
Diffusors, 360-362, 371 
Dipole, 

and force on fluid, 112, 117 
compact, 84-5, 112-116, 114, 117-118 
directivity, 115, 115 
intensity field, 84-85 
moment, 114 
source geometry, 114 
source strength, 114, 116, 117, 118 
sound power, 116 

Dirac delta function, 106-107, 107 
Direct field, 265-266, 266 
Directivity, distributed source, 129-30 
Discrete Fourier transform (DFT), 389 
Dispersion, wave, 42, 216, 287-289, 394-396, 

395 
curves, 216, 286, 289 

Doppler effect, 20, 20 
Double-leaf partition, 330-342, 332, 339 
Ducts, sound in, (see also 'Waveguides'), 181- 

234 
Duct, abrupt change in cross section, 202-204, 

203 
Dynamic properties of materials, 280 

Edge 
diffraction, 362, 366, 367 
radiation, 304, 306 

Efficiency, 
aero-acoustic, of jet, 138 
mechano-acoustical, 136, 137 
radiation, (also 'radiation ratio'), 72-73, 308, 

310,311,312 
Eigenfrequency, 188, 197, 198 
Eigenfunction, 188,252, 254 
Elasticity, 6, 7, 27-28,278 
Element, 24 
Enclosure, noise control, 347-348, 347 
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Enclosures, sound fields in, 236-268 
acoustic natural frequencies, 245-248 
diffuse model, 237, 238,244, 258-266, 262, 

340 
general features, 239-242 
coupling to panels, 254-256 
energy balance, 262-263,265-266, 265 
free vibration, 249-251 
geometric (ray) model, 267-268 
image model, 243-244, 244 
impulse response, 243-245,245, 263 
modal density, 247-248 
modal energy, 248-251 
modal overlap, 256-257 
modes, 245-248, 251 
steady state response, 251-253 
mode count, 247 
probabilistic model, 256-261 
reverberant energy, 265-266 
reverberation decay, 263-264, 264 
reverberation time, 263-264 
reverberation radius, 266 

Energy, sound, 74-78 
conservation, 77-78, 78 
density, 76, 79, 80, 89, 262-263 

Energy, structure-borne, 277-278, 278, 290- 
293 

vibration, 403,405 
Equation of state of a gas, 26 
Euler-Bernoulli beam, 281,282, 285, 303 
Expansion chamber, 202-204, 204 
Experiments, 415-420 

Fans, 102-103 
Far field (see 'Fields') 
Fast Fourier transform (FFT), 389 
Fatigue, 2 
FFT analysers, 398 
Field incidence, 327-328 
Field, sound, 

direct, 259, 266, 266, 
diffuse, 237, 238,244, 258-266, 262, 340 
far, 45, 115, 127, 128, 128, 134-135, 134 
free, 111,121 
geometric near, 134, 135 
high-frequency, in enclosures, 257-262 
hydrodynamic near, 111,134, 135 
in enclosures, 239-242 
near, 45 
probabilistic model of, 256-261 
proximal, 115 
reverberant, 244, 258,260 
zones, 134-135 

Fibrous materials, 147-149, 148, 153, 171 
Filters, 

acoustic, 203-211 
frequency, 390-392, 391 

Flanking transmission, 273,273 
Flat plates (see 'Plates') 
Flow resistance, 150, 154, 163-167 
Flow resistivity, 150, 151, 154-156, 336-337 
Fluid 

dynamic sources, 100-103, 136 
element in horn, 229 
friction, 24, 143 
loading of structures, 70-71, 189, 200, 236 
pressure, 25, 26-9 
particle motion, 29 
temperature, 25-26 
viscosity, 141-142 

Fluids, 
properties of, 23-34 
incompressible, 41 

Force, 
impact, amplitude spectrum, 303 
boundary, 105, 112-113, 118-121 
drag, 102 
dipole-equivalent, 117 
external, on fluid, 29, 67, 112-116, 113, 117- 

119 
generalized modal, on fluid, 67 
internal, 29 
lift, 102 
shear, 281-282, 284, 290-291,292, 294- 

296 
spatially harmonic, distibution, 382 
impact, time history, 303 

Force field, spatially harmonic travelling, 
163 

Foreign bodies, radiation into fluid, 104-105 
Fourier analysis, 

spatial, 394-396 
practical implementation, 388-389 

Fourier 
analysis, 69, 125, 386-392 
coefficients, 388 
integral transform (FIT), 49, 110, 302, 308- 

309, 386, 387 
inverse Fourier transform (IFT), 240, 303, 

393 
series analysis, 387-388 

Free field (see 'Field') 
Free vibration 

of simple oscillator, 401 
of fluid in tube, 187-194 
of fluid in enclosure, 249-251 

Frequency 
A-weighting, 390, 406 
analysis, 384-93 
bands, standard, 390 
filters, 390-392 
response of enclosure, 14, 239-240, 241, 

257 
resolution, 388 
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Frequency, 
coincidence, 323,323 
critical, 272, 287, 304-305, 322, 324-325,325 
cut-off, 215-216, 220, 221,272 
damped natural, of oscillator, 402 
large-room (Schroeder), 257 
mass-air-mass, 333-4, 340 
natural, of undamped oscillator, 401 
natural, of Helmholtz resonator, 61 
resonance, of damped oscillator, 405 

Frequencies, 
natural, of rectangular enclosures, 245-246 

Fresnel number, 368,368 
Fresnel zones, 365, 366 
Funnelling effect, 360 

Gaps (see 'Apertures') 
Gas 

equation of state, 26 
pressure, 26-28 
temperature, 26 
viscosity, 141-142 

Gases, properties of, 24-26 
Gauss's integral (divergence) theorem, 91,120 
Geometric (ray) acoustics, 11,239, 267-268, 

375-377 
Glass, 

critical frequency of, 325 
sound reduction index of, 329 

Glass-fibre (wool), 148, 149, 336 
Gravitational force, 29 
Green's function, 

boundary, 121-122, 123, 123, 126, 127, 128, 
355 

enclosure, 251,254-255,258 
free-space (harmonic), 110, 111 
free-space (time-dependent), 108, 110 
waveguide, 196-197, 222 

Group speed 
of bending waves in beams, 285, 292 
of bending waves in plates, 293 
of waveguide modes, 216, 216, 292 

Hankel function, 46 
Harmonic 

function, CER representation, 380-383 
wave representation, 36, 42, 286 

Heaviside function, 113 
Helmholtz equation, 35, 196, 197, 218,245, 

251 
Hemholtz resonator 

as waveguide filter, 210-211 
impedance, 61, 62 
resonance frequency of, 62, 175 
scattering by, 359-360, 359, 360 
sound absorption by, 63, 174-176, 175 

Helmholtz flow, 147, 147, 150 

High frequency 
enclosed sound fields, 256-258 
vibration isolation, 298-301 

Hooke's law, 28 
Horn, acoustic, 

applications, 227-228 
equation, 228-234 
shapes, 229, 230 
transmission ratio, 230 

Huygens principle, 11, 12, 17, 362 

Impact, generation of structure-borne sound 
by, 301-303,303 

Impedance, 48-73, 66-67 
acoustic, 60 
acoustic radiation, 67 
beam, 294-296 
characteristic acoustic, 60 
characteristic specific acoustic, 39, 59, 155, 

156, 157 
characteristic specific mechanical, 291,293 
concept of, 49 
discontinuity, 64, 201-202 
forms of acoustic, 56-60, 66, 67 
Helmholtz resonator, 61 
junction, 207 
lumped acoustic, 57-63 
match, 49 
mechanical, 53-56 
mismatch, 49 
modal density and, 297 
modal radiation, 71-72 
network representation, 62 
normal specific acoustic, 66, 156-160 
of interacting systems, 50 
plate, 296 
radial specific, 46, 111 
radiation, 67 
rod, 293-294 
rotational, 56 
single-degree-of-freedom system, 56 
specific acoustic, 59, 59 
specific acoustic, of a tube, 59, 63, 65 
tube, 178-179 
utility of, 50-52 
wave, 68-71, 162-163 

Impulse intensity sequence, 260 
Impulse response, 

of damped oscillator, 403 
of enclosure, 243-245, 240, 393 
pressure-squared, of auditorium, 245 
structural, 303 
undamped oscillator, 401 

In-plane, transverse (shear) wave, 286-287 
Insertion loss, 

barrier, 368,368, 369 
close cover, 345-347,347 
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definition of, 201-202, 202 
noise control enclosure, 348 
pipe lagging, 349 

Intensity, sound, 
active, 80-82, 85 
and mean square pressure, 82 
applications, 92-93, 93, 94 
complex, 84 
definition, 77 
determination of sound power using, 91, 91, 

92 
dipole field, 84-85, 85 
in a waveguide, 222-223,223 
in interference fields, 85-88, 85, 86, 87, 88, 89 
in plane wave fields, 78 
instantaneous, 78, 79, 79, 80, 80, 83 
measurement, 88-91, 92 
monopole field, 82-83 
probe, 90 
reactive, 80-82, 85 

Interference, 12-14, 13,14, 38, 42, 85, 166, 213 
Interfering monopoles, 

intensity field, 85 
sound power, 131-132, 132 

Internal forces, 29 
Isolation, 

vibration, 298-301,300 
Isolator effectiveness, 300 

Junction 
impedance, 207 
structural wave energy transmission, 297- 

298,299 

Kinematics, 29 
Kinetic energy (see 'Energy') 
Kirchhoff-Helmholtz (K-H) integral equation, 

120 
application to a duct at low frequency, 196- 

198 
application to an enclosure, 243,251-253 
application to a panel-enclosure system, 254 
application to scattering problems, 355 
application to structural sound radiation, 

277 

Lamb wave, 273 
Lagging, pipe, 349 
Laplace's equation, 41 
Laplacian scalar operator, 41, 44 
Large room (Schroeder) frequency, 257 
Limp porous sheet, 164-166, 165 
Linearity, 49, 392, 393 
Linearization, 27, 31-33, 40-41 
Linearized acoustic wave equation, 34, 41 
Lined ducts, 224-226 
Liquid-filled enclosures, 236 

Liquids, 
properties of, 7, 23, 24, 25, 29-30 

Local reaction, model, 156-158 
absorption coefficient associated with, 158- 

160 
Longitudinal wave 

equation, 279 
in solids, 270, 272, 278 
speed, 279 
strain, 271 
stress, 271 

Loss factor, 253,403 
Loudspeaker, 50-51, 50, 126-129, 126, 131, 

132, 227 
Lumped element model of vibration isolator, 

302 
Lumped elements, 

acoustic, 57-67 
mechanical, 53-56 

Mass conservation equation, 32, 153 
Mass flux through control volume, 32, 40 
Mass-air-mass resonance frequency, 333-334, 

340 
Mass law, 

diffuse field, 327 
field incidence, 327 
normal incidence, 319 
oblique incidence, 325 

Mass-spring (simple) oscillator, 54, 55, 189, 401 
Mass-spring system (2 d-o-f), 55, 55 
Material properties, 280 
Mean square pressure, 37, 38, 82, 135, 258, 

407-408,407 
Mechanical impedance 

and modal density, 297 
curves, 190 
of infinite, uniform rods, beams and plates, 

293-297 
of lumped element systems, 52-56 

Mechano-acoustic efficiency, 136, 137 
Mineral wool, 148, 151,336 
Mobility, 48,298-301 
Modal density, 

acoustic, of enclosures, 247-248 
and impedance, 297 
of uniform beams in bending, 297 
of uniform, flat plates, 287-290, 290 

Modal 
energy of fluid in an enclosure, 248-249 
frequency response, 257 
overlap factor, 256-257 
radiation analysis, 306-310 
radiation impedance, 71-72 
radiation efficiency, 308 
wavenumber vector, 246, 247 

Mode dispersion in ducts, 419 
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Mode, 
principal, in ducts, 217, 218 
count, 247 

Modes, 
acoustic enclosure, 245-248 
acoustic waveguide, 211-220, 215, 219 
flat plate, 289 

Modified wave equation, 154-156 
Molecular 

'collision', 141 
diffusion, 142-143, 146 
momentum transport, 142 
relaxation, 143 

Molecules, 24-25 
Moment (see 'Bending') 
Momentum equation, fluid, 34, 40, 80-81, 

154 
Monopole 

intensity field, 82-83, 111 
mutual sound power modification, 131-132 
pair interference field, 130 
point, 106, 108--111 
sound power, 110 
source strength, 110 
source strength density, 104 

Multimode vibration, 277 
Multiple scattering, 358-359 

Near field (see 'Field, sound') 
Near field acoustic holography (NAH), 43, 125, 

125 
Noise control enclosure, 347 
Noise criterion (NC) curves, 409,409 
Noise rating (NR) curves, 409, 409 
Non-linearity of sound, 26 
Normal incidence mass law (see 'Mass law') 
Normal surface derivative, 119, 119 
Normal particle velocity field, 163,355 
No-slip condition, 145 
Null index convention, 249 
Nyquist sampling criterion, 388 

Oscillating sphere, 116-118, 116 
Oscillator, simple, 54, 55, 189,401-405 
Oscillatory flow, 80 

P-wave, 270 
Pair dissociation energy, 23 
Panel (membrane) absorber, 176-177, 177 
Particle, 25 
Particle displacement vector, 270 
Particle motion, 29 
Particle velocity, 38-39, 45, 77, 85, 88-89, 115, 

124, 150, 163,355 
Particle velocity 

in intererence field, 43 
in spherical sound field, 45-6 

measurement, 88 
profile in tubes, 147 

Particles, 24-25 
Partitions, 

apertures in, 370-374, 373, 374 
sound transmission through double, 320-342 
sound transmission through single, 315-330 

Perfect gas law, 31 
Perforated sheets, 172-174, 174 
Periodic signals, 385, 387,385 
Phase 

match, 88 
spatial gradient, 81 

Phasor, 36-37, 37, 59, 170, 381,381 
Piston 

coupling to fluid in a tube, 200-201,200 
radiation impedance, 129, 130 
sound radiation, 126-129, 126, 127, 128 
tube excitation, 184-187, 184, 198-199, 

Plane wave 
diffraction by apertures, 363, 370-3,370, 

373,374 
diffraction by obstacles, 363 
diffraction by plane screens, 362-369, 366, 

367 
equation, 30-35 
harmonic form of, 35 
in three-dimensions, 41, 42 
in two dimensions, 42, 42 
in tubes, 51, 57-59, 57, 58, 59 
impedance, 39, 
incident on change of duct section, 59 
intensity, 78-82, 79, 80 
interference field, 5 7 
modes of uniform waveguides, 187-193, 188 
natural frequencies of uniform waveguides, 

187-193, 188 
particle velocity, 38-39, 39 
pulse sequence in waveguides, 183--187, 185, 

212-213,213 
scattering by a disc, 355-356, 356 
scattering by a Helmholtz resonator, 359- 

360, 360 
scattering by a sphere, 356-358, 357 
strain, 31 

Plastic foam, 148, 149, 156, 162, 171,172, 174, 
336 

Plate, flat, 
bending, 285 
bending modal density, 289-290 
bending wave equation, 286 
bending wave impedance, 296-297 
bending waves in, 285-286 
bending wave modes, 289 
bending wave phase speed, 285 
bending wavenumber, 285, 286 
orthotropic, 288 
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radiation, 124-126, 304-313, 305, 306, 308 
radiation efficiency, 311 
thickness and critical frequency, 325 
transverse wave in, 286-287 
wavenumber spectrum, 309, 309, 311 

Poiseuille flow, 147, 147, 150 
Poisson effect, 32, 272, 278 
Poisson's ratio, 278,280 
Porosity, 149-150, 154 
Porous materials, 147-156, 171-172 
Porous sheets, 

sound absorption and transmission by, 167- 
170 

Potential energy (see 'Energy') 
Power, sound, 74, 78, 98, 118 

absorption coefficient, 158-161 
determination from intensity, 91, 91 
dissipation coefficient, 408 
methods for determination, 135-136 
of a monopole in an enclosure, 253-254 
of a monople in free field, 110 
of a dipole in free field, 11 6-118 
of distributed sources, 129-131 
of a source in presence of another, 131-134, 

132 
radiated into a duct, 182 
reasons for determination of, 135 
reference, 408 
reflection coefficient, 165 
transmission coefficient, 165, 201,203, 322 

Pressure 
atmospheric, 6 
-density relation, 27 
gradient, 34 
in fluids, 25 
in gases, 26-29 
-intensity index, 82 

Pressure, sound, 27, 406 
level, 40 
mean square, 407-407, 407 
probability density, 258 
reference, 408 
reflection coefficient, 178 
spatial distribution, 258 
standard deviation of, 258 
statistical properties of, 258 
-time history, 10, 10, 406-407, 407 
typical, levels, 28 

Pressure-release boundary, 120, 186 
Probabilisitic models of sound fields, 155 
Propellers, 102 
Properties of materials, 280 
Proximal field, 115 
Pseudo sound, 28-29 
Pulse sequence in waveguides, 183--187, 185, 

212-213,213 
Pure tone source in enclosure, 259 

Quadrupole source, 132-133 
Quasi-diffuse field, 259 
Quasi-longitudinal wave 

energy flux in, 290-291 
in uniform rods and plates, 278-279, 
impedance of, 293 
kinematic form of, 272 
speed, 279 

Radiation, 
damping, 319 
efficiency(also 'radiation ratio'), 72-73, 308, 

310,311,312 
impedance, 67-68 
impedance ratio, 130 
index, 308 
reactance ratio, 130 
resistance ratio, 130 

Radiation, sound, 
by cylinders, 313 
by foreign bodies, 104-105 
by loudspeakers, 126, 227-228 
by pistons, 126-129, 126, 127, 128 
by plates, 124-126, 304-313, 305, 306, 308 
by transversely vibrating tubes, 312 

Ray acoustics, 11,239, 267-268, 375-378 
Rayl (unit), 39, 158 
Rayleigh integrals, 122-126 
Rayleigh wave, 273 
Reactance, specific acoustic, 158, 158 
Reciprocity, 111-112, 121,122 
Reference curves, 409 
Reference values, 408-409 
Reflection, wave, 14-16, 15, 352 
Reflector, 373-375,374 
Refraction, 18-19, 341,352, 354, 375-378, 375- 

378 
Resilient vibration isolator, 301 
Resistance, specific acoustic, 158, 158 
Resonance, 13, 52, 60-62, 65, 72, 167, 169, 170, 

170, 175-177, 194-195, 208-209, 210- 
211,236-237, 253,254, 255, 257, 333, 
334, 335, 339, 345, 359-360, 372, 405 

Resonator, 30, 58, 60-62, 60, 62, 63, 174-177, 
175, 210-11, 211,359-360, 360 

Reverberant 
corridor, 244 
enclosure, 253-254, 255, 258,263,265 
field sound pressure, 265, 266 
steady state field energy, 265-266 
sound level distribution, 266-267 

Reverberation, 8,13,236 
decay, 26, 263-264, 264 
room method, 179-180 
time, 258, 263-264 

Room criterion curves, 410 
Rotors, 102 
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S-wave, 270 
Sabine's equation, 263 
Scattering, 352, 353,354, 355 

by a discrete body, 354-358 
by crowds of bodies, 358-359 
by a circular disc, 355-356, 356 
by a Helmholtz resonator, 359-360, 359, 360 
by a rough surface, 419-420 
by a sphere, 356-358,357 
coefficient, 356 
cross-section, 356, 357, 360 
volume, 358-359 

Schroeder (large room) frequency, 257 
Schroeder integrated impulse technique, 264 
Schroeder integrated impulse curve, 264 
SEA (Statistical Energy Analysis), 274 
Series transmission line network, 205-206 
Shear force, 281-282, 283,286, 291,292, 294, 

295, 296 
Shear layer, 141 
Shear strain, 287 
Shear stress, 24, 145,270, 281-283,283, 287 
Sheets (see 'Porous sheets') 
Side-branch 

connections to waveguides, 206-208 
orifice, 210 
resonator, 210-211,211 
tubes, 208-209, 208, 209 

Signal categories, 385-386 
Signals, Fourier analysis of, 386-392 
Snell's law, 376, 376 
Solids, sound in, 9 
Sound 

and vibration, 7-9 
in liquids, 29-30 
in solids, 9 

Sound reduction index (see also 'Transmission 
loss'), 

of partitions, 318-319, 325, 327, 328, 329, 
334, 335, 336, 340, 341,342, 343 

Sound, What is?, 6-7 
Sound field (see 'Field, sound') 
Sound intensity (see 'Intensity, sound') 
Sound power (see, Power, sound') 
Sound pressure (see 'Pressure, sound') 
Source, sound power determination, 415-4 16 
Source, sound, 96-138 

aerodynamic, 97, 100-103, 138, 139 
boundary, 105, 118-121 
categories, 97-103 
characterization, 136-137 
ideal elementary, 106-111,114-116 
location, 92 
strength, 104 
terms, 104 

Spatial coupling coefficient, 255, 256 
Spatial Fourier analysis, 394-396 

Speed, 
group, 216, 285 
phase, 36 

Speed of sound, 6, 19, 29, 35, 35, 131,138, 
213 

Sphere, 
oscillating, 116 
scattering by a, 356-357, 357 

Spherically symmetric sound field, 44-45 
Splitter attenuator, 224-226, 226 
Spring, damped, 301,301 
Statistics, sound field, 257-258 
Strain, 

longitudinal wave, 271 
plane sound wave, 31, 31 
transverse wave, 31 
uniform, 32 

Strouhal number, 138 
Structure factor, 151-153,336 
Structure-borne, 

sound, 4, 9, 270-314 
wave energy, 290-293 
wave energy flux, 290-293 

Structure-fluid interaction, 199-200 

Taylor series, 114 
Tee junction, 206, 206 
Temperature, fluid, 25-26 
Temperature, 

effects, 19, 377-378 
inversion, 19, 378 

Thermal diffusion, 142-143 
Trace wavenumber, 162, 287, 320, 375 
Transmission coefficient (see 'Sound power 

transmission coefficient') 
Transmission lines, acoustic, 205-206 
Transmission loss, 201,202, 204, 209, 212, 318, 

337 
Transmission ratio, horn, 230 
Transverse 

force, 28, 284, 295 
plane wave in plates, 286-287 
waveguide modes, 211-220 
wave, 15, 15, 270, 271 
wave equation, 287 
wave strain, 271 

Travelling (progressive) plane wave, 
CER representation, 382 

Turbulence, 28-29, 100, 102, 103, 104, 145 
Two-port representation, 205-206 

Ultrasound applications, 3,4 

Velocity, 
free-stream, 145 
particle, 29, 38, 40 
profile, 145, 147 
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Vibration, 
control, 3 
isolation, 298-301,302 
positive uses, 3 

Vibroacoustics, 273,274, 404 
Vibroacoustic reciprocity, 112 
Virtual 

dipole, 357, 357 
monopole, 357, 357 
oscillating rigid sphere, 356 
periodic signal, 388 
radiators, 357 

Viscosity, 
bulk, 142 
fluid, 24 
gas, 141-142, 142 

Viscous 
boundary layer, 147 
damper, 56 
flow in tubes, 147 
resistance, 150, 154 

Viscously damped oscillator, 402-3 
sound power determination, 415-416 

Volume 
source strength density, 104 
velocity, 60, 61, 109 

Vortex shedding, 102 

Wave (see under specific type entries) 
Wave equation, 

acoustic (homogeneous), 41 
acoustic (inhomogeneous), 104 
beam bending, 284 

longitudinal, 279 
modified plane acoustic (homogeneous), 

154 
plane acoustic (homogeneous), 34 
thin plate bending, 286 
transverse, 287 

Wave phenomena, 9-12 
Wave speed (see 'Speed') 
Wavefront, 9-12, 375 
Waveguides, 181-235 

bends in, 211,212 
cut-off frequencies, 215--216, 220, 221,272 
circular cross-section, 218-219 
modes, 215-217 
natural frequencies, 187-93 
rigid-walled, 211-217 
with finite impedance boundaries, 217-218, 

218 
Wavenumber, 43,382 

decomposition, 313 
lattice, 246, 288, 290 
spectrum, 70, 309, 309, 311 
trace, 305, 323 
transform, 394 
vector, 42, 43, 215, 215, 287-290 

Windowed records, 388,389 

Young's modulus, 278, 287 

Zone cancellation, 365 
Zones, of radiation field of extended sound 

source, 134-135, 134 
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