43 (5) STRU-V 5.5

2016

STRUCTURES-V

Paper: ENG-5.5

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Question no. 1 is Compulsory and answer any four from the rest.

1. (i) Steel is an alloy of $2 \times 10 = 20$

- (a) Iron
- (b) Carbon
- (c) both (a) and (b)
- (d) None of these

(ii)	The	dead	load	on	structures	are

- (a) Wind load
- (b) Snow load
- (c) Permanent load
- (d) All of these.

(iii) The diameter of longitudinal bars of a column should never be less than

- (a) 6 mm
- (b) 12 mm
- (c) 8 mm
- (d) 10 mm
- (iv) The minimum depth cover in mm to ties in column shall be
 - (a) 40
 - (b) 60
 - (c) 80
 - (d) None of these.

- (v) As per IS: 456, the reinforcement in a column should not be less than
 - (a) 0.5% of cross-sectional area
 - (b) 0.6% of cross-sectional area
 - (c) 0.7% of cross-sectional area
 - (d) 0.8% of cross-sectional area.
- (vi) The maximum ratio of span to depth of a simply supported slab with mild steel reinforcement and spanning in two direction is
 - (a) 25
 - (b) 30
 - (c) 35
 - (d) 40
- (vii) In the design of a footing, the self weight of footing including backfill of soil is generally assumed as
 - (a) 5 to 10% of axial load
 - (b) 10 to 20% of axial load
 - (c) 20 to 30% of axial load
 - (d) 30 to 40% of axial load.

- (viii) T-beams behave as a rectangular beam of width equal to its flange of its neutral axis is
 - (a) remains within the flange
 - (b) remains below the slab
 - (c) below the geometrical centre of the web
 - (d) coincides with the geometrical centre of the web.
- (ix) The shape of a column should be
 - (a) Circular
 - (b) Square
 - (c) Rectangular
 - (d) All of these
- (x) The weight of cement concrete is
 - (a) $10,000 N/m^3$
 - (b) $38,000 N/m^3$
 - (c) $34,000 N/m^3$
 - (d) None of these.

- 2. (a) Write down the I.S. recommendations regarding longitudinal reinforcement in a column.
 - (b) Write in brief the philosophy of limit state design.

10+10=20

- 3. (a) What are dead load and wind load?
 - (b) A reinforced concrete beam is supported on two walls of 500mm thickness each, at a clear spacing of 4.5m. The beam carries a superimposed load of 8.2 kN/m including its self-weight. Using M-15 and Fe-250 steel, design the section. Also draw a neat sketch. 5+15=20
- 4. (a) Design the classification of columns according to materials of construction and shape of column.
 - (b) Design a short column having an axial load of 1500kN. Using M-25 grade of concrete and Fe-415 HYSD bars.

10+10=20

- What is water-cement ratio? What is 5. (a) its relation to workability of concrete?
 - Design a singly reinforced beam having (b) a clear span of 4.0m. The beam carries a uniformly distributed load of 8 kN/m including its own weight. Use M-15 grade of concrete and Fe-415 grade of steel. Draw neat sketches of longitudinal section and cross-sections at mid-span and at support.

5+15=20

- Explain briefly what do you understand (a) by working stress method of design.
 - Design a simply supported slab having (b) a size of $3.0m \times 7.0m$ and resting on a wall of width 250mm. Use M-15 grade of concrete and Fe 415 grade of steel. Also draw the reinforcement arrangements in plain and elevation.

5+15=20

What are the basic components of (a) reinforced cement concrete? Discuss its advantages over other materials of construction.

Design a rectangular column footing for carrying an axial load of 600kN for a column having base size of 400mm×600mm. The safe bearing capacity of the soil is to be taken as 120 kN/m^2 . Use M-20 grade of concrete and Fe-415 grade steel. Draw longitudinal section showing all dimension and reinforcement details.

5+15=20