berrios to double base von 43 (6) ARC 6.6

anadroadA 2017 Stodmick

BUILDING SERVICES-IV

Paper: ARC 6.6 (Acoustics)

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

		The state of the s	
) = 30	Fill i	in the blanks:	5×1=5
nirit men	(a)	The unit of absorption is the window unit which is called a	open
and ions	ere. Jerel	The middle ear cavity contains a atmospheric pressure due to the _ which connects to the throat.	air at
		Velocity of sound in bricks is	•
ting	(d)	'The whispering gallery effect' is known as	also
	(e)	The scale for measuring intens sound is the scale.	

Contd.

- 2. Write short notes: (any six) 5×6=30
 - (a) Frequency and Pitch of sound
 - (b) Helmholtz Resonant Absorbers
 - (c) Sound absorption coefficients
 - (d) Reverberation time
 - (e) Masking of sound
 - (f) Inverse square law
 - (g) Flanking of sound.
- 3. What is Acoustics? Why acoustics is studied in the field of Architecture? 5+5=10
- 4. Answer the following : (any three) 3×10=30
 - (a) Discuss behavior of sound within enclosed space.
 - (b) Explain with neat sketches different acoustical defects, their causes and remedies.
 - (c) Discuss acoustical design considerations for auditorium with needful sketches.
 - (d) What is sound insulation? Discuss different types of sound insulating materials.
- 5. What is intensity of sound? 1+3+3+3=10 A car horn outdoor produces a sound intensity level (loudness) L_1 of 90 dB at 10ft away.

- (i) Find the sound intensity I_1 at a location 10ft away
- (ii) Find the sound intensity I_2 at a location 80ft away
- (iii) What will be the difference in sound intensity level (loudness) between both the locations?

tytiosquo an to hidr-ovor sonellos od

Define Transmission loss (TL).

A 3ft by 7ft louvered door which has a TL of 10dB at 500Hz is located in one wall of a conference room. The 18ft long by 8ft high wall with a TL of 45dB at 500Hz is staggered wood stud construction with two layers of gypsum board on both sides. Find the composite TL at 500Hz for this wall-door construction.

6. An auditorium, rectangular in shape, has the following dimensions: Length=35m, breadth=25m, and height=9m. The internal areas of different surfaces are as follows: Cement plaster: 800m²; Concrete floor: 700m²; Timber floor: 200m²; Plaster of paris ceiling: 600m². The capacity of the auditorium is 1050 seats (chairs, upholstered seat with spring). If absorption co-efficient are: Cement plaster: 0.02; Concrete floor: 0.03; Timber floor: 0.09; Suspended ceiling: 0.05; Upholstered chair: 0.16; Person: 0.30, determine the following: 10+5=15

- (a) Number of absorbing units and time of reverberation when there is (i) no audience (ii) one third audience (iii) two-third audience (iv) full audience.
- (b) Number of extra absorbing units required so as to get an optimum reverberation time of 1.2 seconds when the strength of the audience is two-third of its capacity.

(JT) asolorossanderini - unital

Define Noise. Discuss classification of Noise and effects of Noisy condition.

In an apartment building, two adjacent living rooms have a party wall constructed of 4 inches thick brick which has a TL of 40dB at 500Hz. The surface area 'S' of the wall is $200ft^2$ and both rooms have 300 sabins of absorption a_2 at 500Hz. Find the sound level L_2 in room 2 if the sound L_1 in room 1 is 74dB.

700m% Timber Boor : 200m% Plaster of paris ceiling : e00m% The capacity of the auditorium