

Total No. of printed pages =

SUBJECT CODE: MAT022102

Roll No. of candidate

2017

End Semester B.Tech. Examination

1st Semester

APPLIED MATHEMATICS-I

Full Marks- 70

Pass Marks- 21

Time- 3 hours

 $16 \ge 16 = 16$

The figures in the margin indicate full marks.

PART – A (Marks: 16)

1. Answer all questions:

- a) If $y = e^{2x}$, find y_n .
- b) If $z = x^2 y^3$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- c) Give the geometrical interpretation of Rolle 's theorem.
- d) State the Leibnitz's theorem for n^{th} derivative of product of two functions.
- e) If $= x^2y + 5y^3$, then find the value of $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$

f) If
$$u = xy$$
, $x = 3t$, $y = t$, find $\frac{du}{dt}$.

- g) Evaluate: $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x dx$.
- h) Discuss the symmetry of the curve: $y^2(a^2 + x^2) = x^2(a^2 x^2)$
- i) Find the volume of the solid generated by revolving the line y = x from x = 0 to x = 1 about the x-axis.
- j) State Leibnitz's rule for differentiation under integral sign.
- k) Evaluate: $\int_0^1 \int_1^2 (xy) dx dy$.
- 1) Compute: $\Gamma\left(\frac{3}{2}\right)$
- m) Write down the condition of co-planarity of three vectors \vec{a} , \vec{b} and \vec{c} .
- n) If $\hat{a} \times (\hat{b} \times \hat{c}) = \frac{1}{\sqrt{2}} \hat{b}$, then find the angle which \hat{a} makes with \hat{c} .

- o) Find the vector equation of the straight line passing through the point $2\hat{i} \hat{j} + 3\hat{k}$ and parallel to the line $\hat{i} + \hat{j} - \hat{k}$.
- p) Show that the vector $\vec{r} = (x+3y)\hat{\imath} + (y-3z)\hat{\jmath} + (x-2z)\hat{k}$ is solenoidal.

PART – B (Marks: 14)

2. Answer all questions:

- a) Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} sin^n x dx$. b) Evaluate: $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx$
- c) Expand $2x^3 + 7x^2 + x 1$ in powers of x 2.
- d) If $(\vec{a}, \vec{b}, \vec{c})$ and $(\vec{a}, \vec{b}, \vec{c})$ are reciprocal triad of vectors, prove that

$$\vec{a} \times \vec{a} + \vec{b} \times \vec{b} + \vec{c} \times \vec{c} = \vec{0}$$
.

PART – C

(Marks: 40)

3. Answer the following questions:

- a) Verify Lagrange's mean value theorem for the function $f(x) = x^2$ in the interval [2, 4].
- b) If $y = tan^{-1}x$, then prove that $(1 + x²)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0.$

OR

- a) Find the area included between the curve $xy^2 = a^2(a x)$ and its asymptote.
- b) Find the volume of the solid generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line

4. Answer the following questions:

a) Verify Euler's theorem on the homogeneous function $z = \sin(\frac{x^2 + y^2}{xy}).$ b) If u = f(y - z, z - x, x - y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.

5+5=10

3.5 x 4=14

5+5=10

- a) Evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$ by applying differentiation under integral sign and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.
- b) Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

5. Answer the following questions:

a) Find the extreme value of the function

$$f(x,y) = 4x^{2} + 9y^{2} - 8x - 12y + 4.$$

b) If $u = xyz$, $v = xy + yz + zx$, $w = x + y + z$, compute $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.
OR

- a) Prove that the surface area of a sphere is $4\pi a^2$, where a is the radius of the sphere.
- b) Express the following in terms of Gamma functions:

(i)
$$\int_0^1 \frac{dx}{\sqrt{1-x^4}}$$
 (ii) $\int_0^{\pi/2} \sqrt{\tan\theta} \, d\theta$

6. Answer the following questions:

- a) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of $2\hat{\iota} \hat{j} 2\hat{k}$.
- b) If $\vec{F} = ax\hat{i} + by\hat{j} + cz\hat{k}$, a, b, c are constants, show that $\iint_{S} \vec{F} \cdot \hat{n} \, dS = \frac{4}{3}\pi(a+b+c)$, where S is the surface of a unit sphere.

OR

- a) Find the divergence and curl of the vector $\vec{v} = (xyz)\hat{i} - (3xy^2)\hat{j} + (xz^2 - y^2z)\hat{k}$ at the point (1, -2, 3).
- b) Verify Green's Theorem in the plane for $\oint (3x^2 8y^2)dx + (4y 6xy)dy$, where C is the boundary of the region defined by x = 0, y = 0 and x + y = 1.

5+5=10

5+5=10