

Total No. of printed pages = 3

SUBJECT CODE = CSE024105

Roll No. of candidate

2017

End Semester M.Tech Examination

1st Semester

FUNDAMENTALS OF COMPUTER SYSTEMS

Full Marks-70

Pass Marks- 21

Time- 3 hours

The figures in the margin indicate full marks.

PART A

Q 1. Answer all questions:

(16x1=16)

- a) Where does the assembler store the object code?
- b) In which addressing mode operand value is directly specified?
- c) What is pipelining?
- d) What are the three types of CPU organization basically most computers fall into?
- e) Does the kernel remain aware of user threads?
- f) Consider a set of n tasks with known runtimes $r_1, r_2, ..., r_n$ to be run on a uniprocessor machine? Which of the scheduling algorithms will result in maximum throughput?
- g) Where is the control transferred after the interrupt breaks the execution of instructions?
- h) How can a deadlock arise?
- i) Draw the waveform for: $X = A \sin(2\pi f t + \emptyset)$ where A=0.5, f=2 and $\emptyset=0$
- j) Give the vital difference between packet switching and circuit switching.
- k) How are the frames in a LAN transmitted to another LAN?
- 1) What is IP addressing?
- m) Give the difference between synthesized and inherited attributes.

n) Consider the following C program and find the tokens:

```
int min( i, j )
{
  int i,j;
  return i > j ? i : j;
}
```

o) Associate semantic rules for the following grammar:

```
E \rightarrow E + T/T
T \rightarrow T^*F/F
F \rightarrow (E)/id
```

p) Construct the DAG for:

$$a + a * (b - c) + (b - c) *d$$

PART B

Q 2.

- a) A computer system supports one address and two address instructions and the word size is 16 bits. Main memory is 64 words. If there are 8 two address instructions then how many one address instructions are used?
- b) Explain time slicing. How its duration affects the overall working of the system?
- c) Consider a network of bandwidth **1 MHz** and SNR of **24 db**. Calculate the capacity of the channel. Also find how many signalling levels are required.
- d) Consider the following code fragment. Generate the three-address code for it.

for
$$(j = 1; j \le 10; j++)$$

if $x = y$ then $a=b+c$

PART C

Q 3. Explain the instruction format in detail.

(10)

OR

Give the differences between micro program control unit and hard wired control unit. (10)

Q 4. Assume you has arriving in the or		llowing jobs t	o execute w	ith one proces	ssor, with the jobs	3
i:	1	2	3	4	5	
Burst time:	70	10	20	12	60	
		_			culate the average process P3 in each (10)	
			OR			
Apply FIFO and following referen		-	_		s and consider the (10))
		5, 2, 4, 6, 1,	3, 6, 4, 1, 3,	5, 1.		
Q 5. Explain TCP/IP model. Compare it with OSI model.					(10)	
		O	R			
Define modulation. Explain its different types in detail.					(10)	
Q 6. Construct the pro-	-	•	the given gra	nmar using fi	rst() and follow() (10)	•
$E \rightarrow TA$						
$A \rightarrow + TA/\varepsilon$						
$T \rightarrow FB$						
$B \to *FB/\varepsilon$						
$F \rightarrow (E)/id$						
			OR			
Describe the pha	ases of the	compiler desig	n with a figu	re.	(10)	