

Total No. of printed pages = 3

SUBJECT CODE: CSE024104

Roll No. of candidate

_					

2017

End Semester M.Tech Examination

1st Semester

THEORY OF COMPUTATIONS

Full Marks- 70

Pass Marks- 21

Time-3 hours

 $16 \ge 1 = 16$

The figures in the margin indicate full marks.

PART-A

Q.1. Answer all questions:

a) What is transition function in DFA?

b) Give the difference between DFA and NFA.

c) Write the regular expression for the language $L = \{W \in \{0,1\}^* : W \text{ has no pair of consecutive} \}$

zeroes}.

d) Draw the finite automata for $\mathbf{r} = \mathbf{a}$ where 'a' is the regular expression.

e) Give an example of regular grammar.

f) Write the regular expression for $\mathbf{L} = \{ \mathbf{a}^{n} \mathbf{b}^{n} : \mathbf{n} + \mathbf{m} \text{ is even} \}.$

g) Give two examples of operators of regular expression.

h) What do you mean by ambiguous grammar?

i) Which of the following computational models is more powerful: Push Down Automata or Turing Machine?

j) Draw the model of Turing machine.

k) Construct a DFA for $\mathbf{L} = \mathbf{0}^+$ over $\sum = \{\mathbf{0}\}$.

1) Arrange the following computational models in the ascending order of their power of accepting more class of languages: DFA, DPDA, NFA, NPDA, TM

m) Give an example of unit production.

- n) Why reduced grammar is required?
- o) Explain Push Down Automata.
- p) What is Grebaich Normal Form (GNF)?

PART-B

Q.2. Answer the following questions:

a) Explain Arden's theorem with an example.

b) Convert the given regular expression into **E-NFA**:

ab + (b+aa) b* a

c) Find a grammar in CNF equivalent to

 $S \to abSb \mid a \mid aAb$

 $A \rightarrow bS \mid aAAb.$

d) Find the CFG for (**110** + **11**)* (**10**)*

PART-C

Q.3.

Construct a DFA equivalent to the NFA. $\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}, \{\mathbf{a}, \mathbf{b}\}, \delta, \mathbf{q}_0, \{\mathbf{q}_2\})$ where δ is given by the table below. Here \mathbf{q}_0 is the initial state and \mathbf{q}_2 is the final state . 10

STATES	INPUTS				
	а	b			
qo	$\{\mathbf{q}_0,\mathbf{q}_1\}$	{q ₂ }			
q 1	{q ₁ }	$\{\mathbf{q}_0\}$			
q ₂	$\{ \mathbf{q}_0 \}$	$\{q_1, q_2\}$			

OR

Write short notes on:

a) Context free grammar.

b) Deterministic Finite Automata.

5x 2=10

4 x 3.5 =14

Q.4. Design a PDA for the language $L = \{ a^m b^m c^n | m, n > = 1 \}.$ 10

OR

Design a PDA for accepting the language { $L = 0^n 1^n | n \ge 1$ }. 10

Q.5. Explain the working of Turing Machine with an example.

OR

Construct the Turing Machine which recognizes the language $L=\{wcw | w \in (0+1)^*\}$. 10

Q.6. What is pumping lemma for regular languages? Design a DFA with $\sum = \{a,b\}$ that accepts the strings having: 1+3+3+3=10

(i) even number of a's.

(ii) three consecutive b's (not necessarily at the end).

(iii) either even number of a's or even number of b's.

OR

Explain how NFA with ε -moves can be converted to NFA without ε -moves with an example.

10

10