

Total No. of printed pages = 3

SUBJECT CODE :MAT024101

Roll No. of candidate

2017

End Semester M.Tech.(Mechanical Engineering) Examination

1st Semester

ADVANCED ENGINEERING MATHEMATICS

Full Marks-70

Pass marks:21

Time-3 hours

The figures in the margin indicate full marks for the questions

PART – A

1. Answer all questions:

- (a) What is the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 7 \\ 0 & 0 & 6 \end{bmatrix}$?
- (b) What do you mean by ill- condition system of linear equations?
- (c) Does a system of homogeneous linear equations inconsistent? Justify your answer.
- (d) Is the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ invertible? Justify your answer.
- (e) What is interpolation?
- (f) Find f(2) if f(0) = 1, f(1) = -1, f(3) = 0.
- (g) For f(x) = x, find f(a, b, c).
- (h) Give the error of Euler's method of solving differential equation.
- (i) If A and B are independent events with probabilities $\frac{1}{2}$ and $\frac{1}{5}$ respectively, evaluate $P(A\overline{B})$.
- (j) Define Null Hypothesis.
- (k) Write one application of t- test.
- (1) If *X* follows poisson distribution with mean 2, evaluate $P(X \ge 1)$.
- (m)What is $\Delta^2 y_x$, $y_x = a + bx$, a and b are constants.
- (n) Which value is minimized by least square method?
- (o) Which curve may be taken as the best fit if $\Delta^2 y_x = \text{constant}$?
- (p) Write one important use of fitting a curve for given data set.

PART – B

2. Answer the following:

- (a) Reduce the matrix $\begin{bmatrix} 3 & 2 & 1 \\ 1 & 4 & 5 \\ 5 & 6 & 2 \end{bmatrix}$ to the normal form.
- (b) Using Newton's divided difference formula find the missing value from the table: [5]

x	1	2	4	5	6
у	14	15	5		9

 $[16 \times 1 = 16]$

[5]

(c) A bag contains 10 gold and 8 silver coins. Two Successive drawings of 4 coins are made such that: (i) coins are replaced before the second trial, (ii) the coins are not replaced before the second trial. Find the probability that the first drawing will give 4 gold and second 4 silver coins.

$\mathbf{PART} - \mathbf{C}$

3. Answer the following:

(a) Find the solution of the following system of linear equations by LU decomposition method

$$2x - 3y + 10z = 3, \quad -x + 4y + 2z = 20, \quad 5x + 2y + z = -12$$
[10]

OR

(b) Solve the following system of linear equations by Gauss elimination method

$$10x - 7y + 3z + 5w = 6, -6x + 8y - z - 4w = 5, 3x + y + 4z + 11w = 2, 5x - 9y - 2z + 4w = 7. [10]$$

4. Answer the following:

(a) Use Runge-Kutta method of fourth order to find
$$y(0.1)$$
, (0.2) ;
given that $\frac{dy}{dx} = y - x$, $y(0) = 2$. [10]
 OR

(b) (i) Given
$$\sin 45^{\circ} = 0.7071$$
, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$, find $\sin 52^{\circ}$.

(ii) Using Euler's method solve
$$\frac{dy}{dx} = x + y + xy$$
, at $x = 0.1$, given $y(0) = 1$, $h = 0.025$.
[5]

5. Answer the following:

(a) In a group of 2000 men, 5% are under 60 inches in height and 40% are between 60 and 65 inches. Assuming a normal distribution, find the mean height and standard deviation. [10]

OR

- (b) (i) In answering a question on a multiple choice test, an examinee either knows the answer (with probability p) or he guesses the answer (with probability 1-p). Assume that the probability of answering a question correctly is unity for an examinee who knows the answer and 1/5 for the examinee who guesses, where 5 is the number of multiple choice alternatives. Supposing an examinee answers a question correctly, What is the probability that he really knows the answer? [5]
 - (ii) What is Binomial distribution? Derive mean of the Binomial distribution. [5]

6. Answer the following:

(a) Fit an exponential curve of the form $Y = ab^x$ to the following data: X: 1 2 3 4 5 6 7 8

Δ.	1	2	5	-+	5	0	/	0	
Y:	1.0	1.2	1.8	2.5	3.6	4.7	6.6	9.1	[10]
	OR								

(b) Explain the method of fitting of exponential curves (i) $Y = ab^x$ and (ii) $Y = ae^{bx}$. [10]