Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1504
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalita, Bimalendu-
dc.contributor.authorHazarika, Munmun-
dc.date.accessioned2018-06-21T08:22:37Z-
dc.date.available2018-06-21T08:22:37Z-
dc.date.issued2009-
dc.identifier.urihttp://hdl.handle.net/123456789/1504-
dc.description.abstractConsider the sequence of positive weights α(x, y) : √ x, √ y, 3 4 , 4 5 , . . . with a Bergman tail. If y = 2 3 then it was shown in [2] that for 0 < x ≤ y, the weighted shift operatorWα(x,y) is positively quadratically hyponormal. In this paper we show that there exists an interval (k1, k2) about 2 3 such that if y ∈ (k1, k2) then for 0 < x ≤ y ,Wα(x,y) is positively quadratically hyponormal. In fact, using Mathematica graphs we show that the largest such interval is [k1, k2) where k1 = 29 46 ≈ 0.630435 and k2 = 0.737144.en_US
dc.language.isoenen_US
dc.subjectquadratic hyponormalityen_US
dc.subjectpositive quadratic hyponormalityen_US
dc.titleOn Positively Quadratically Hyponormal Weighted Shiftsen_US
dc.typeArticleen_US
dc.typeWorking Paperen_US
Appears in Collections:Dr. Bimalendu Kalita

Files in This Item:
File Description SizeFormat 
hazarikaIJCMS33-36-2009.pdf112.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.